1887
Volume 25, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Salt rim synclines contain important hydrocarbon and coal resources in central Europe. The Schöningen salt rim syncline is filled with >300 m of Early to Middle Eocene unconsolidated clastics with interbedded lignitic coal seams that are mined at the surface. In this study, 357 lithologic logs are integrated with measured outcrop sections and paleo‐botanical data to interpret the depositional environments and sequence stratigraphic framework of the rim syncline fill. As salt withdrew, it generated an elongate mini‐basin that mimicked an incised valley. The sustained accommodation and slow broadening of the syncline affected the stratigraphic architecture and contributed to the preservation of coal units. The clastic units in the syncline filled in seven depositional stages: (1) tidally influenced fluvial estuarine channels; (2) mixed tide‐ and wave‐ dominated estuaries; (3) prograding wave dominate deltas; (4) transgressive shoreline deposits; (5) braided fluvial channels; (6) estuaries; and (7) prograding tide‐dominated channels. The succession defines four 3rd order sequences and several higher order sequences that are possibly related to Milankovitch cycles. The higher order sequences are dominantly characterized by stacked transgressive cycles of thick, lowstand coals overlain by estuarine sands. The nearly continuous warm and wet Eocene climate was conducive to continuous peat production with a climatic overprint recorded in the mire type: ombrotrophic mires developed in wetter times and rheotrophic mires developed in relatively drier conditions pointing to the presence of orbitally controlled seasonality. Both mire types were impacted by the interplay of subsidence and base‐level. The continuous dropping of the mires below base‐level via subsidence protected the mires against erosion and may account for the absence of coals outside of the rim synclines in the region.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12021
2013-08-26
2024-10-10
Loading full text...

Full text loading...

References

  1. Ahrendt, H., Köthe, A., Lietzow, A., Marheine, D. & Ritzkowski, S. (1995) Lithostratigraphie, Biostratigraphie und radiometrische Datierung des Unter‐Eozäns von Helmstedt (SE‐Niedersachsen). ZdGG, 146, 450–457.
    [Google Scholar]
  2. Allen, G.P. (1991) Sedimentary processes and facies in the Gironde estuary: a recent model of macrotidal estuarine systems. In: Clastic Tidal Sedimentology (Ed. by G.D.Smith , G.E.Reinson , B.A.Zaitlin & R.A.Rahmani ) Can. Soc. of Petrol. Geol. Mem., 16, 29–40.
    [Google Scholar]
  3. Allen, G.P. & Posmantier, H.W. (1993) Sequence stratigraphy and facies model of an incised valley fill: the Gironde Estuary, France. J. Sediment. Petrol., 63, 378–391.
    [Google Scholar]
  4. Allen, G.P., Salomon, J.C., Bassoulet, P., DuPenhoat, Y. & DeGrandpré, C. (1980) Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sed. Geol., 26, 69–90.
    [Google Scholar]
  5. Alsop, G.I. (1996) Physical modelling of fold and fracture geometries associated with salt diapirism. In: Salt Tectonics (Ed. by G.I.Alsop , D.J.Blundell & I.Davison ) Geol. Soc. Spec. Publ., 100, 227–241.
    [Google Scholar]
  6. Ambrose, W.A. & Ayers, W.B. (2007) Geologic controls on transgressive‐regressive cycles in the upper Pictured Cliffs sandstone and coal geometry in the lower Fruitland Formation, northern San Juan Basin, New Mexico and Colorado. AAPG Bull., 91, 1099–1122.
    [Google Scholar]
  7. Antia, J., Fielding, C.R. & Joeckel, R.W. (2011) Multiple cycles of wave‐dominated estuary deposits in low‐accommodation settings, Cretaceous J sandstone, northwestern Nebraska. AAPG Bull., 95, 1227–1256.
    [Google Scholar]
  8. Aziz, H.A., Hilgen, F.J., van Lujik, G.M., Sluijis, A., Kraus, M., Pares, J.M. & Gingerich, P.D. (2012) Astronomical climate control on paleosols stacking patterns in the upper Paleocene—lower Eocene Willwood Formation, Bighorn Basin, Wyoming. Geology, 36, 531–534.
    [Google Scholar]
  9. Barke, J., Abels, H.A., Sangiorgi, F., Greenwood, D.R., Sweet, A.R., Donders, T., Reichart, G., Lotter, A.F. & Brinkhuiss, H. (2011) Orbitally forced Azolla blooms and Middle Eocene Arctic hydrology: clues from palynology. Geology, 39, 427–430.
    [Google Scholar]
  10. Bhattacharya, J.P. & Walker, R.G. (1992) Deltas. In: Facies Models‐Response to Sea Level Change (Ed. by R.G.Walker & N.P.James ), pp. 157–177. Geological Association of Canada, St. John′s.
    [Google Scholar]
  11. Bohacs, K. & Suter, J. (1997) Sequence stratigraphic distribution of coaly rocks: fundamental controls and paralic examples. AAPG Bull., 81, 1612–1639.
    [Google Scholar]
  12. Boyd, R., Dalrymple, R.W. & Zaitlin, B.A. (1992) Classification of coastal depositional environments. Sediment. Geol., 80, 139–150.
    [Google Scholar]
  13. Brandes, C., Pollok, L., Schmidt, C., Wilde, V. & Winsemann, J. (2012) Basin modelling of a lignite‐bearing salt rim syncline: insights into rim syncline evolution and salt diapirism in NW Germany. Basin Res., 24, 1–18.
    [Google Scholar]
  14. Bridge, J. (2003) Rivers and Floodplains. Blackwell Science, Oxford, p. 260.
    [Google Scholar]
  15. Burban, P.‐Y., Lick, W. & Lick, J. (1989) The flocculation of fine‐grained sediment in estuarine waters. J. Geophys. Res., 94, 8323–8330.
    [Google Scholar]
  16. Calder, J.H. (1993) The evolution of a ground‐water‐influenced (Westphalian B) peat‐forming ecosystem in piedmont setting: the No. 3 Seam, Springhill Coalfield, Cumberland Basin, Nova Scotia. In: Modern and Ancient Coal Forming Environments (Ed. by J.C.Cobb & C.B.Cecil ) GSA Spec. Paper, 286, 153–180.
    [Google Scholar]
  17. Calder, J.H. (1994) The impact of climate change, tectonism and hydrology on the formation of Carboniferous tropical intermontane mires: the Springhill Coalfield, Cumberland Basin, Nova Scotia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 106, 323–351.
    [Google Scholar]
  18. Cattaneo, A. & Steel, R.J. (2003) Transgressive deposits: a review of their variability Ear . Sci. Rev., 62, 187–228.
    [Google Scholar]
  19. Catuneanu, O. (2006) Principles of Sequence Stratigraphy. 1st edn, Elsevier BV., Amsterdam, p. 375.
    [Google Scholar]
  20. Cecil, C.B. (1990) Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology, 18, 533–536.
    [Google Scholar]
  21. Cecil, B.C. & Dulong, F.T. (2003) Precipitation models for sediment supply in warm climates. In: Climate Controls on Stratigraphy (Ed. by C.B.Cecil & N.T.Edgar ) SEPM Spec. Publ., 77, 21–28.
    [Google Scholar]
  22. Cecil, C.B., Stanton, R.W., Neuzil, S.G., Dulong, F.T., Ruppert, L.F. & Pierce, B.S. (1985) Paleoclimate controls on Late Paleozoic sedimentation and peat formation in the Central Appalachian Basin (U.S.A.). Int. J. Coal Geol., 5, 195–230.
    [Google Scholar]
  23. Cecil, C.B., Dulong, F.T., Cobb, J.C. & Supardi, A. (1993) Allogenic and autogenic controls on sedimentation in the central Sumatra basin as an analogue for Pennsylvanian coal‐bearing strata in Appalachian basin. In: Modern and Ancient Forming Coal Environments (Ed. by C.B.Cecil & N.T.Edgar ) GSA Spec. Paper, 286, 3–22.
    [Google Scholar]
  24. Cecil, C.B., Dulong, F.T., Harris, R.A., Cobb, J.C., Gluskoter, H.G. & Nugroho, H. (2003) Observations on climate and sediment discharge in selected tropical rivers, Indonesia. In: Climate Controls on Stratigraphy (Ed. by C.B.Cecil & N.T.Edgar ) SEPM Spec. Publ., 77, 29–50.
    [Google Scholar]
  25. Cramer, B.S., Wright, J.D., Kent, D.V. & Aubry, M. (2003) Orbital climate forcing of ∂13C excursions in the late Paleocene‐early Eocene (chrons C24n–C25n). Paleocenography, 18, 1–23.
    [Google Scholar]
  26. Dalrymple, R.W. & Choi, K. (2007) Morphologic and facies trends through the fluvial‐marine transition in tide‐dominated depositional systems: a schematic framework for environmental and sequence‐stratigraphic interpretation. Earth Sci. Rev., 81, 135–174.
    [Google Scholar]
  27. Dalrymple, R.W., Mankino, Y. & Zaitlin, B.A. (1991) Temporal and spatial patterns of rhythmite deposition on mud flats in the macrotidal Cobequid Bay‐Salmon River estuary, Bay of Fundy, Canada. In: Clastic Tidal Sedimentology (Ed. by D.G.Smith , G.E.Reinson , B.A.Zaitlin & R.A.Rahmani ) Can. Soc. of Petroleum Geol., Mem., 16, 3–28.
    [Google Scholar]
  28. Dalrymple, R.W., Zaitlin, B.A. & Boyd, R. (1992) Estuarine facies models: conceptual basis and stratigraphic implications. J. Sediment. Petrol., 62, 1130–1146.
    [Google Scholar]
  29. Diessel, C.F.K. (1992) Coal‐Bearing Depositional Systems. Springer, ‐Verlag, Berlin, p. 721.
    [Google Scholar]
  30. Diessel, C., Boyd, R., Wadsworth, J., Leckie, D. & Chalmers, G. (2000) On balanced und unbalanced accommodation/peat accumulation ratios in the Cretaceous coals from Gates Formation, Western Canada, and their and their sequence‐stratigraphic significance. Int. J. Coal Geol., 43, 143–186.
    [Google Scholar]
  31. Dyer, K.R. (1995) Sediment transport processes in estuaries. In: Geomorphology and Sedimentology of Estuaries (Ed. by G.M.E.Perillo ), Develop. Sedimentol., 53 423–449.
    [Google Scholar]
  32. Elliott, T. (1986). Siliclastic shorelines. In: Sedimentary Environments and Facies (Ed. by H.G.Reading ), pp. 155–188. Blackwell Science, Oxford, U.K.
    [Google Scholar]
  33. Eros, J.M., Montanez, I.P., Osleger, D.A., Davydov, V.I., Nemyrovska, T.I., Poletaev, V.I. & Zhykalyak, M.V. (2012) Sequences stratigraphy and onlap history of the Donets Basin Ukraine: insight into Carboniferous icehouse dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol., 313–314, 1–25.
    [Google Scholar]
  34. Flint, S., Aitken, J. & Hampson, G. (1995) Application of sequence stratigraphy to coal‐bearing coastal plain successions: implications for the UK Coal Measures. Geol. Soc. Lond. Spec. Publ., 82, 1–16.
    [Google Scholar]
  35. Gastaldo, R.A., Dimichele, W.A. & Pfefferkorn, H.W. (1996) Out of the icehouse into the greenhouse: a late Palaeozoic analogue for modern global vegetational change. GSA Today, 6, 1–7.
    [Google Scholar]
  36. Gibling, M.R. & Davies, N.S. (2012) Palaeozoic landsscapes shaped by plant evolution. Nature Geosci., 5, 99–105.
    [Google Scholar]
  37. Gołędowski, B., Nielsen, S.B. & Clausen, O.R. (2011) Patterns of cenezoic sediment flux from western Scandinavia. Basin Res., 23, 1–24.
    [Google Scholar]
  38. Grein, M., Utescher, T., Wilde, V. & Roth‐Nebelsick, A. (2011) Reconstruction of the middle Eocene climate of Messel using palaeobotanical data. Neues Jahrb. Geol. P‐A, 260, 305–318.
    [Google Scholar]
  39. Gürs, K. (2005) Das Tertiär Nordwestdeutschlands in der Stratigraphischen Tabelle von Deutschland 2002. Newsl. on Stratigr., 41, 313–322.
    [Google Scholar]
  40. Gürs, K., Lietyow, A. & Ritzkowski, S. (2002) Tertiär, Nordwestdeustchland. In: Stratigraphische Tabelle von Deutschland 2002 (Ed. by Stratigraphische Kommission von Deutschland ), Poster. Deutsche Stratigraphische Kommission, Potsdam.
    [Google Scholar]
  41. Hampson, G., Stollehofen, H. & Flint, S. (1999) A sequence stratigraphic model for the Lower Coal measures (Upper Carboniferous) of the Ruhr district, north‐west Germany. Sedimentology, 46, 1199–1231.
    [Google Scholar]
  42. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., De Graciansky, P.C. & Vail, P. (1988) Mesozoic and Cenozoic sequence chronostraigraphic framework of European basins. In: Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (Ed. by P.C.de Graciansky , J.Hardenbol , T.Jaquin & P.R.Vail ) SEPM Spec. Pub., 60, 3–13, charts 1–8.
    [Google Scholar]
  43. Holz, M., Kalkreuth, W. & Banerjee, I. (2002) Sequence stratigraphy of paralic coal‐bearing strata: an overview. Int. J. Coal Geol., 48, 147–179.
    [Google Scholar]
  44. Huggett, J.M. & Gale, A.S. (1997) Petrology and palaeoenvironmental significance of glacony in the Eocene succession at Whitecliff Bay, Hampshire Basin, UK. J. Geol. Soc. Lond., 154, 897–912.
    [Google Scholar]
  45. Hughes, Z.J. (2011) Tidal Channels on Tidal Flats and Marshes. In. Principles of Tidal Sedimentology (Ed. by R.A.Davies & R.W. Dalrymple ), pp. 269–300. Springer, Heidelberg, Germany.
    [Google Scholar]
  46. Jerrett, R.M., Hodgson, D.M., Flint, S.S. & Davies, R.C. (2011) Control of relative sea level and climate on coal character in the Westphalian C (Atokan) Four Corners Formation, Central Appalachian Basin, U.S.A. J. Sediment. Res., 81, 420–445.
    [Google Scholar]
  47. Junge, F. & Böttger, T. (2005) Zur Landschafts‐und Flussdynamik im obereozän‐unteroligozänen Schwemmfächer der Weisselster Beckens. Beispiele aus den Grosstagebauen südlich Leipzig. In: Das Tertiär im mitteldeutschen Ästuar, Stand und aktuelle Probleme (Ed. by C.H.Friedel & P.Balaske ) EdGG, 230, 11–12.
    [Google Scholar]
  48. Karpe, W. (1994) Zur Dynamik halokinetischer Randsenken auf der Subherzynen Scholle. Hallesches Jahrb. Geowiss, 16, 79–93.
    [Google Scholar]
  49. Kley, J. & Voigt, T. (2008) Late Cretaceous intraplate thrusting in Central Europe: effect of Africa‐Iberia‐Europe convergence, not Alpine collision. Geology, 36, 839–842.
    [Google Scholar]
  50. Knox, R., Bosch, A., Skovbjerg, E., Heilmann‐Clausen, C., Hiss, M., De Lugt, I., Kasinski, J., King, C., Köthe, A., Slodkowska, B., Standke, G. & Vandernberghe, N. (2011) Cenozoic. In: Petroleum Geological Atlas of the Southern Permian Basin Area (Ed. by H.Doornebal & A.Stevenson ) pp 222–235. EAGE Pub., Houten.
    [Google Scholar]
  51. Konig, W. & Blumenstengel, H. (2005) Die Oligozanvorkommen am Hartenberg und bei Huttenrode im Mittelharz und ihreBedeutung fur die kanozoische Harzentwicklung. Mitteilungen Verband deutscher Hohlen‐ und Karstforscher, 51, 120–125.
    [Google Scholar]
  52. Köthe, A. (2003) Korrelation der Dinozysten‐Zonen mit anderen biostratigraphisch wichtigen Mikrofossilgruppe im Tertiär Norddeutschlands. Rev. Paleobiol., 24, 697–718.
    [Google Scholar]
  53. Krutzsch, W. (2011) Stratigraphie und Klima des Paleogens im Mitteldeutschen Ästuar im Vergleich zur marinen nördlichen Umrahmung. ZdGG, 162, 19–47.
    [Google Scholar]
  54. Lang, J., Winsemann, J., Steinmetz, D., Polom, U., Pollock, L., Böhner, J., Serangeli, J., Brandes, C., Hampel, A. & Winghart, S. (2012) The Pleistocene of Schöningen, Germany: a complex tunnel valley fill revealed from 3D subsurface modeling and shear wave seismic. Quat. Sci. Rev., 39, 86–105.
    [Google Scholar]
  55. Lawrence, K.T., Sloan, L.C. & Sewall, J.O. (2003) Terrestrial climatic response to precessional orbital forcing in the Eocene. In: Causes and Consequences of Globally Warm Climates in the Early Paleogene (Ed. by S.L.Wing , P.D.Gingerich , B.Schmitz & E.Thomas ) GSA Spec. Pub., 369, 65–78.
    [Google Scholar]
  56. Lenz, O.K. (2005) Palynologie und Paläoökologie eines Küstenmoores. Palaeontographica B, 271, 1–157.
    [Google Scholar]
  57. Lenz, O., Riegel, W. & Bullwinkel, V. (2005) Die Wulfersdorfer Flözgruppe (Mitteleozän) im Tagebau Helmstedt. In: Das Tertiär im mitteldeutschen Ästuar, Stand und aktuelle Probleme (Ed. by C.H.Friedel & P.Balaske ) EdGG, 230, 17–19.
    [Google Scholar]
  58. Lenz, O.K., Wilde, V. & Riegel, W. (2011) Short‐term fluctuations in vegetation and phytoplankton during the Middle Eocene greenhouse climate: a 640‐kyr record from the Messel oil shale (Germany). Int. J. Earth Sci., 100, 1851–1874.
    [Google Scholar]
  59. Lietzow, A. & Ritzkowski, S. (1996) Bergbau und die Tertiäre Schichtenfolge. In: Exkursion A1. Braunschweigische Kohlnebergwerke AG. Tagebau Schöningen (Ed. by K.Cornelius , H.Elsener , S.Ritzkowski , H.Schütte & H.Thieme ). In: 63. Tagung der arbeitsgemeinschaft Nordwestdeutscher Geologen vom 26‐31.5.1996 in Helmstedt [unpublished fieldguide], NLfB, Hannover, 30–35.
    [Google Scholar]
  60. Lietzow, A. & Ritzkowski, S. (2005) Das marine Paläogene bei Helmstedt, südöstliches Niedersachesen. In: Das Tertiär im mitteldeutschen Ästuar, Stand und aktuelle Probleme (Ed. by C.H.Friedel & P.Balaske ) EdGG, 230, 20–22.
    [Google Scholar]
  61. Look, E. (1984) Geologie und Bergbau im Braunschweiger Land. Geol. Jb., A78, 467.
    [Google Scholar]
  62. MacEachern, J.A. & Bann, K.L. (2008) The role of ichnology in refining shallow marine facies models. In: Recent Advances in Models of Siliciclastic Shallow‐Marine Stratigraphy (Ed. by G.J.Hampson , R.J.Steel , P.M.Burgess & R.W.Dalrymple ) SEPM Spec. Pub., 90, 73–116.
    [Google Scholar]
  63. Makaske, B., Smith, D.G. & Berendsen, H.J. (2002) Avulsions, channel evolution and floodplain sedimentation rates of the anastomosing upper Columbia River, British Columbia, Canada. Sedimentology, 49, 1049–1071.
    [Google Scholar]
  64. McCabe, P.J. (1984) Depositional models of coal and coal bearing strata. In: Sedimentology of Coal and Coal‐Bearing Sequences (Ed. by R.A.Rahmani & R.M.Flores ) Int. Assn. Sedimentol. Spec. Pub., 7, 13–42.
    [Google Scholar]
  65. Miall, A.D. (1996) The Geology of Fluvial Deposits. Springer‐Verlag, Berlin, p. 582.
    [Google Scholar]
  66. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie‐Blick, N. & Pekar, S.F. (2005) The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  67. Nadon, G.C. (1994) The genesis and recognition of anastomosed fluvial deposits: data from the St. Mary River Formation, southwestern Alberta, Canada. J. Sediment. Res., 64, 451–463.
    [Google Scholar]
  68. Neuzil, S.G., Supardi, A., Cecil, C.C., Kane, J.S. & Soedjono, K. (1993) Inorganic geochemistry of domed peat in Indonesia and its implication for the origin of mineral matter in coal. In: Modern and Ancient Coal‐Forming Environments (Ed. by J.C.Cobb & C.B.Cecil ) GSA Spec. Pub., 286, 23–44.
    [Google Scholar]
  69. Nichols, G. (1999) Sedimentology and Stratigraphy. Blackwell Scientific Publications, Oxford, p. 355.
    [Google Scholar]
  70. Pflug, H.D. (1952) Palynologie und Stratigraphie der eozänen Braunkohlen von Helmstedt. Paläontologische Zeitschrift, 26, 112–137.
    [Google Scholar]
  71. Pflug, H.D. (1986) Palyno‐Stratigraphie des Eozän/Oligozän im Raum von Helmstedt, in Nordhessen und im südlichen Anschlussberich. In: Nordwestdeutschland im Tertiär (Ed. by H.Tobien ), Beiträge zur Regionalen Geologie der Erde, Gebrüder Bornträger, Berlin, Stuttgart, 18, 567–582.
    [Google Scholar]
  72. Pharaoh, T., Dusar, M., Geluk, M., Kockel, F., Krawezyk, C., Krzywiec, P., Scheck‐Wenderoth, M., Thybo, H., Vejbaek, O. & van WEES, J.D. (2011) Tectonic evolution. In: Petroleum Geological Atlas of the Southern Permian Basin Area (Ed. by H.Doornebal & A.Stevenson ) EAGE Pub.36–69.
    [Google Scholar]
  73. Plink‐Björklund, P. (2008) Wave‐to‐tide facies change in a Campanian shoreline complex, Chimney Rock Tongue, Wyoming‐Utah, U.S.A. In: Recent Advances in Models of Siliciclastic Shallow‐Marine Stratigraphy (Ed. by G.J.Hampson , R.J.Steel , P.M.Burgess & R.W.Dalrymple ) SEPM Spec. Publ., 90, 265–292.
    [Google Scholar]
  74. Plint, A.G. & Nummedal, D.. (2000) The falling stage systems tract: recognition and importance in sequence stratigraphic analysis. In: Sedimentary Response to Forced Regressions (Ed. by D.Hunt & R.L.Gawthorpe ) Geol. Soc. of Lon. Spec. Pub., 172, 1–17.
    [Google Scholar]
  75. Posamentier, H.W. & Allen, G.P. (1999) Siliclastic sequence stratigraphy; concepts and applications. SEPM Concepts Sedimentol. Paleontol., 7, 216.
    [Google Scholar]
  76. Posamentier, H.W., Jervey, M.T. & Vail, P.R. (1988) Eustatic controls on clastic deposition I – conceptual framwork. In: Sea level Changes – An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.St.C.Kendall , H.W.Posamentier , C.A.Ross & J.C.Van Wagoner ) SEPM Spec. Publ., 42, 110–124.
    [Google Scholar]
  77. Reineck, H.E. & Singh, I.B. (1973) Depositional Sedimentary Environments. Springer‐Verlag, Berlin, p. 1–439.
    [Google Scholar]
  78. Reineck, H.E. & Wunderlich, F. (1968) Classification an origin of flaser and lenticular bedding. Sedimentology, 11, 99–104.
    [Google Scholar]
  79. Riegel, W. & Wilde, V. (2005) Das Untereozän im Tagebau Schöningen. In: Das Tertiär im mitteldeutschen Ästuar, Stand und aktuelle Probleme (Ed. by C.H.Friedel & P.Balaske ) EdGG, 230, 28–39.
    [Google Scholar]
  80. Riegel, W., Wilde, V. & Lenz, O.K. (2012) The Early Eocene of Schöningen (N‐Germany) – an interim report. Aust. J. Earth Sci., 105(1), 88–109.
    [Google Scholar]
  81. Rimmer, S.M. & Davis, A. (1988) The influence of depositional environments on coal petrographic composition of the Lower Kittanning seam, western Pennsylvania. Org. Geochem., 12, 375–387.
    [Google Scholar]
  82. Robinson, J.M. (1990) Lignin, land plants and fungi: biological evolution affecting Phanerozoic oxygen balance. Geology, 15, 607–610.
    [Google Scholar]
  83. Schultz‐Ela, D.D., Jackson, M.P.A. & Vendeville, B.C. (1993) Mechanics of active salt diapirism. Tectonophysics, 228, 275–312.
    [Google Scholar]
  84. Schulz, M. & Schäfer‐Neth, C. (1997) Translating Milankovitch climate forcing eustatic fluctuations via thermal deep water expansion: a conceptual link. Terra Nova, 9, 228–231.
    [Google Scholar]
  85. Shearer, J.C., Moore, T.A. & Demchuk, T.D. (1995) Delineation of the distincitive nature of Tertiary coal. Int. J. Coal Geol., 28, 71–98.
    [Google Scholar]
  86. Smith, G.J. & Jacobi, R.D. (2001) Tectonic and eustatic signals in the sequence stratigraphic of Upper Devonian Canadaway Group. New York state. AAPG Bull., 85, 325–357.
    [Google Scholar]
  87. Stackebrandt, W. (1986) Beiträge zur tektonischen Analyse ausgewählter Bruchzonen der Subherzynen Senke und angrenzender Gebiete (Aufrichtungszone, Flechtinger Scholle). Veröffentlichung des Zentralinstituts für Physik der Erde, 79, 81.
    [Google Scholar]
  88. Standke, G. (2008) Paläogeographie des älteren Tertiärs (Paleozän bis Untermiozän= im mitteldeutsche Raum. ZdGG, 159, 81–103.
    [Google Scholar]
  89. Stonecipher, S.A. (1999) Genetic characteristics of glacuconite and siderite: implications for the origin of ambiguous isolated marine sandbodies. In: Isolated Shallow Marine Sandbodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation (Ed. by K.M.Bergman & J.W.Snedden ) SEPM Spec. Pub., 64, 191–204.
    [Google Scholar]
  90. Stottmeister, L. (2007) Tertiär. In: Erläuterungen zur Geologischen Karte 1:25000 von Sachsen‐Anhalt (GK 25), Blatt Helmstedt, 3732. 3., neubearbeitete Auflage, 135–155.
  91. Swezey, C.S. (2003) The role of climate in the creation and destruction of continental stratigraphic records: an example from the northern marine of the Sahara Desert. In: Climate Controls on Stratigraphy (Ed. by C.B.Cecil & N.T.Edgar ) SEPM Spec. Publ., 77, 21–28.
    [Google Scholar]
  92. Tabor, N.J. & Poulsen, C.J. (2008) Palaeoclimate across the Late Pennsylvanian‐Early Permain tropical palaeolatitudes: a review of climate indicators, their distribution, and relation to palaeophysiographic climate factors. Palaeogeogr. Palaeoclimatol. Palaeoecol., 268, 293–310.
    [Google Scholar]
  93. Thieme, H. & Maier, R. (1995) BKB –Über 120 Jahre Bergbautradition, In: Archäologische Ausgrabung im Braunkohletagebau Schöningen, Landkreis Helmstedt, Mit Beitraägen von D. MANIA, B. URBAN, T. VAN KOLFSCHOTEN, W.H. SCHOCH und der braunschweigische Kohlen‐Berwerke AG. HANNOVER, 17–43.
  94. Thomas, L. (2002) Coal Geology. John Wiley & Sons., West‐Sussex, p. 367.
    [Google Scholar]
  95. Törnqvist, T.E. (1993) Holocene alteration of meandering and anastomosing fluvial systems in the Rhine‐Muse delta (central Netherlands) controlled by sea‐level rise and subsoil erodibilty. J. Sediment. Petrol., 63, 683–693.
    [Google Scholar]
  96. Trusheim, F. (1960) Mechanism of salt migration in northern Germany. AAPG Bull., 44, 1519–1540.
    [Google Scholar]
  97. Vail, P.R., Mitchum, R.M.Jr & Thompson, S., III (1977) Seismic stratigraphy and global changes of sea level, part four: global cycles of relative change of sea level. AAPG Memoir, 26, 83–98.
    [Google Scholar]
  98. Van der Zwan, C.J. (2002) The impact of Milankovitch‐scale climatic forcing on sediment supply. Sed. Geol., 147, 271–294.
    [Google Scholar]
  99. Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M.Jr, Vail, P.R., Sarg, J.F., Louitt, T.S. & Jardenbol, J. (1988) An overview of the fundamentals of sequence stratigraphy and definitions. In: Sea‐Level Changes: An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.St.C.Kendall , H.W.Posamentier , C.A.Ross & J.C.Van Wagoner ) SEPM Spec. Pub., 42, 39–46.
    [Google Scholar]
  100. Voigt, T., Wiese, F., Eynatten, H., von Franzke, H.‐J. & Gaupp, R. (2006) Facies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). ZdGG, 157, 203–244.
    [Google Scholar]
  101. Wadsworth, J. & Leckie, D. (2003) Stratigraphic style of coal and non‐marine strata high accommodation setting: Falher Member and Gates Formation (Lower Cretaceous), western Canada. Bull. Can. Pet. Geo., 51, 275–303.
    [Google Scholar]
  102. Wadsworth, J., Boyd, R., Diessel, C., Leckie, D. & Zaitlin, B.A. (2002) Stratigraphic style of coal and non‐marine strata in a tectonically influenced intermediate accommodation setting: the Manville Group of the Western Canadian Sedimentary Basin, south‐central Alberta. Bull. Can. Pet. Geo., 50, 507–541.
    [Google Scholar]
  103. Waldron, J.W.F. & Rygel, M.C. (2005) Role of evaporite withdrawal in the preservation of a unique coal‐bearing succession: Pennsylvanian Joggins Formation, Nova Scotia. Geology, 33, 337–340.
    [Google Scholar]
  104. Walker, R.G. & Plint, A.G. (1992) Wave and storm dominated shallow marine systems. In: Facies Models‐Response to Sea Level Change (Ed. by R.G.Walker & N.P.James ), pp. 219–238. Geological Association of Canada, St. John′s.
    [Google Scholar]
  105. Warwick, P.D. (2005) Coal systems analysis: a new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons. In: Coal System Analysis (Ed. by P.D.Warwick ) GSA Spec. Paper, 387, 1–6.
    [Google Scholar]
  106. Wing, S.L. & Harrington, G.J. (2001) Floral response to rapid warming in the earliest Eocene and implications for concurrent faunal change. Paleobiology, 27, 539–563.
    [Google Scholar]
  107. Witzke, B.J. (1990) Paleoclimatic constraints for Paleozoic paleolatitudes of Larentai and Euramerica. In: Paleozoic Paleogeography and Biogeography (Ed. by W.S.Mckerrow & C.R.Scoese ) Geol. Soc., London Memoir, 12, 57–73.
    [Google Scholar]
  108. Wright, L.D., Coleman, J.M. & Thom, B.G. (1973) Processes of channel development in a high tide range environment: Cambridge Gulf‐Ord River delta, Western Australia. J. Geol., 81, 15–41.
    [Google Scholar]
  109. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Bilups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.
    [Google Scholar]
  110. Ziegler, P.A. (1990) Evolution of sedimentary basins in north‐west Europe. The Hague (Shell Internationale Petroleum Maatschappij B.V.). 2nd and completely revised edition, Shell, The Hague, distribution by Elsevier, Amsterdam, pp. 1–238.
    [Google Scholar]
  111. Ziegler, A.M., Raymond, A., Gierlowski, T.C., Horrell, M.A., Rowley, D.B. & Lottes, A.L. (1987) Coal climate and terrestrial productivity –the present and Early Cretaceous compared. In: Coal and Coal Bearing Strata– Recent Advances (Ed. by A.C.Scott ) Geol. Soc. of Lon. Spec. Pub, 32, 25–49.
    [Google Scholar]
/content/journals/10.1111/bre.12021
Loading
/content/journals/10.1111/bre.12021
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error