1887
Volume 25, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Despite abundant data on the early evolution of the Central Alps, the latest stage exhumation history, potentially related to relief formation, is still poorly constrained. We aim for a better understanding of the relation between glaciation, erosion and sediment deposition. Addressing both topics, we analysed late Pliocene to recent deposits from the Upper Rhine Graben and two modern river sands by apatite fission‐track and (U‐Th‐Sm)/He thermochronology. From the observed age patterns we extracted the sediment provenance and paleo‐erosion history of the Alpine‐derived detritus. Due to their pollen and fossil record, the Rhine Graben deposits also provide information on climatic evolution, so that the erosion history can be related to glacial evolution during the Plio‐Pleistocene. Our data show that Rhine Graben deposits were derived from Variscan basement, Hegau volcanics, Swiss Molasse Basin, and the Central Alps. The relations between glaciation, Alpine erosion, and thermochronological age signals in sedimentary rocks are more complex than assumed. The first Alpine glaciation during the early Pleistocene did not disturb the long‐term exhumational equilibrium of the Alps. Recent findings indicate that main Alpine glaciation occurred at . 1 Ma. If true, then main Alpine glaciation was coeval with an apparent decrease of hinterland erosion rates, contrary to the expected trend. We suggest that glaciers effectively sealed the landscape, thus reducing the surface exposed to erosion and shifting the area of main erosion north toward the Molasse basin, causing sediment recycling. At around 0.4 Ma, erosion rates increased again, which seems to be a delayed response to main glaciation. The present‐day erosion regime seems to be dominated by mass‐wasting processes. Generally, glacial erosion rates did not exceed the pre‐glacial long‐term erosion rates of the Central Alps.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12023
2013-05-25
2020-08-05
Loading full text...

Full text loading...

References

  1. Attal, M. & Lavé, J. (2009) Pebble abrasion during fluvial transport: experimental results and implications for the evolution of the sediment load along rivers. J. Geophys. Res., 114, F04023. doi: 10.1029/2009JF001328.
    [Google Scholar]
  2. Barker, C.E. & Pawlewicz, M.J. (1986) The correlation of vitrinite reflectance with maximum temperature in humic organic matter. Paleogeothermics, 5, 79–93.
    [Google Scholar]
  3. Berger, A.L. & Spotila, J.A. (2008) Denudation and deformation in a glaciated orogenic wedge: the St. Elias orogen. Alaska. Geology, 36, 523–526.
    [Google Scholar]
  4. Berger, J.‐P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., Storni, A., Pirkenseer, C., Derer, C. & Schaefer, A. (2005) Paleogeography of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene. Int. J. Earth Sci., 94, 697–710.
    [Google Scholar]
  5. Boenigk, W. (1987) Petrographische Untersuchungen jungtertiärer und quartärer Sedimente am linken Oberrhein. Jber. Mitt. oberrhein. geol. Ver., 69, 357–394.
    [Google Scholar]
  6. Brocklehurst, S.H., Whipple, K.L. & Foster, D. (2008) Ice thickness and topographic relief in glaciated landscapes of the western USA. Geomorphology, 97, 35–51.
    [Google Scholar]
  7. Campani, M., Herman, F. & Mancktelow, N. (2010) Two‐ and three‐ dimensional thermal modeling of a low‐angle detachment: exhumation history of the Simplon Fault Zone, central Alps. J. Geophys. Res., 115, B10420. doi: 10.1029/2009JB007036.
    [Google Scholar]
  8. Cederbom, C.E., Sinclair, H.D., Schlunegger, F. & Rahn, M.K. (2004) Climate‐ induced rebound and exhumation of the European Alps. Geology, 32, 709–712.
    [Google Scholar]
  9. Cederbom, C.E., van der Beek, P., Schlunegger, F., Sinclair, H.D. & Oncken, O. (2011) Rapid extensive erosion of the North Alpine foreland basin at 5–4 Ma. Basin Res., 23, 528–550.
    [Google Scholar]
  10. Ciancaleoni, L. (2005) Deformation processes during the last stages of the continental collision: the brittle–ductile fault systems in the Bergell and Insubric areas (Eastern Central Alps, Switzerland–Italy). PhD Thesis, University Neuchâtel, Switzerland.
    [Google Scholar]
  11. Danišik, M., Pfaff, K., Evans, N.J., Manoloukos, C., Staude, S., McDonald, M.J. & Markl, G. (2010) Tectonothermal history of the Schwarzwald Ore District (Germany): an apatite triple dating approach. Chem. Geol., 278, 58–69.
    [Google Scholar]
  12. Donelick, R.A., Ketcham, R.A. & Carlson, W.D. (1999) Variability of apatite fission‐ track annealing kinetics: II. Crystallographic orientation effects. Am. Mineral., 84, 1224–1234.
    [Google Scholar]
  13. Dunkl, I. (2002) Trackkey: a windows program for calculation and graphical presentation of fission track data. Comput. Geosci., 28, 3–12.
    [Google Scholar]
  14. Ehlers, J. & Gibbard, P.L. (2007) The extent and chronology of Cenozoic Global Glaciation. Quatern. Int., 164–165, 6–20.
    [Google Scholar]
  15. Elfert, S., Reiter, W. & Spiegel, C. (2011) Doming and unroofing of the Lepontine Dome (Central European Alps). New insights from low‐temperature thermochronology. Geophysical Research Abstracts, 13, EGU2011–EGU11983.
    [Google Scholar]
  16. Ellwanger, D., Wielandt‐Schuster, U., Franz, M. & Simon, T. (2011) The Quaternary of the southwest German Alpine Foreland (Bodensee, Oberschwaben, Baden‐ Württemberg, Southwest Germany). Quaternary Science Journal, 60, 306–328.
    [Google Scholar]
  17. Farley, K. (2002) (U‐Th)/He dating: techniques, calibrations, and applications. Rev. Mineral. Geochem., 47, 819–844.
    [Google Scholar]
  18. Farley, K., Wolf, R.A. & Silver, L.T. (1996) The effects of long alpha‐stopping distances on (U‐Th)/He ages. Geochim. Cosmochim. Acta, 60, 4223–4229.
    [Google Scholar]
  19. Frisch, W., Dunkl, I. & Kuhlemann, J. (2000) Post‐collisional orogen‐parallel large‐scale extension in the Eastern Alps. Tectonophysics, 327, 239–265.
    [Google Scholar]
  20. Gabriel, G., Ellwanger, D., Hoselmann, C. & Weidenfeller, M. (2010) The Heidelberg basin drilling project – characteristics of an outstanding archive of quaternary sediments. Geophysical Research Abstracts EGU General Assembly, 12, EGU2010–EGU7791.
    [Google Scholar]
  21. Garver, J.I., Brandon, M.T., Roden‐Tice, M. & Kamp, P.J.J. (1999) Exhumation history of orogenic highlands determined by detrital fission‐track thermochronology. Geological Society Special Publications, 154, 283–304.
    [Google Scholar]
  22. Garzanti, E., Vezzoli, G. & Andò, S. (2011) Paleogeographic and paleodrainage changes during Pleistocene glaciations (Po Plain, Northern Italy). Earth Sci. Rev., 105, 25–48.
    [Google Scholar]
  23. Giger, M. (1991) Geochronologische und petrographische Studien an Geröllen und Sedimenten der Gonfolite Lombarda Gruppe (Südschweiz und Norditalien) und ihr Vergleich mit dem alpinen Hinterland. PhD thesis, University Bern, Switzerland.
    [Google Scholar]
  24. Gleadow, A.J.W. (1981) Fission track dating methods: what are the real alternatives?Nucl. Tracks Radiat. Meas., 5, 3–14.
    [Google Scholar]
  25. Gleadow, A.J.W. & Duddy, I.R. (1981) A natural long‐term annealing experiment for apatite. Nucl. Tracks Radiat. Meas., 5, 169–174.
    [Google Scholar]
  26. Glotzbach, C., Reinecker, J., Danišik, M., Rahn, M., Frisch, W. & Spiegel, C. (2008) Neogene exhumation history of the Mont Blanc massif, western Alps. Tectonics, 27, TC4011, doi:10.1029/2008TC002257.
    [Google Scholar]
  27. Glotzbach, C., Reinecker, J., Danišik, M., Rahn, M., Frisch, W. & Spiegel, C. (2010) Thermal history of the central Gotthard and Aar massifs, European Alps: evidence for steady state, long‐term exhumation. J. Geophys. Res., 115, F03017. doi:10.1029/2009JF001304.
    [Google Scholar]
  28. Glotzbach, C., van der Beek, P. & Spiegel, C. (2011) Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data. Earth Planet. Sci. Lett., 304, 417–430.
    [Google Scholar]
  29. Glotzbach, C., Van Der Beek, P., Carcaillet, J. & Delunel, R. (in revision) Deciphering the driving forces of erosion rates on millennial to million year timescales in glacially impacted landscapes, an example from the Western Alps. J. Geophys. Res. (in revision).
    [Google Scholar]
  30. Graf, H.R. (2009) Stratigraphie und Morphogenese von frühpleistozänen Ablagerungen zwischen Bodensee und Klettgau. Quaternary Science Journal, 58, 12–53.
    [Google Scholar]
  31. Habbe, K.A., Ellwanger, D. & Becker‐Haumann, R. (2007) Stratigraphische Begriffe für das Quartär des süddeutschen Alpenvorlandes. Quaternary Science Journal, 56, 66–83.
    [Google Scholar]
  32. Haeuselmann, P., Granger, D.E., Jeannin, P.‐Y. & Lauritzen, S.‐E. (2007) Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland. Geology, 35, 143–146.
    [Google Scholar]
  33. Hagedorn, E.‐M. & Boenigk, W. (2008) The Pliocene and Quaternary sedimentary and fluvial history in the Upper Rhine Graben based on heavy mineral ana lyses. Neth. J. Geosci., 87, 21–32.
    [Google Scholar]
  34. von Hagke, C., Cederbom, C.E., Oncken, O., Stöckli, D.F., Rahn, M.K. & Schlunegger, F. (2012) Linking the northern Alps with their foreland: the latest exhumation history resolved by low‐temperature thermochronology. Tectonics, 31, TC5010, doi:10.1029/2011TC003078.
    [Google Scholar]
  35. Hoselmann, C. (2008) The Pliocene and Pleistocene fluvial evolution in the northern Upper Rhine Graben based on results of the research borehole at Viernheim (Hessen, Germany). Quaternary Science Journal, 57, 286–315.
    [Google Scholar]
  36. Howat, I.M., Joughin, I., Tulaczyk, S. & Gogineni, S. (2005) Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophys. Res. Lett., 32, L22502. doi:10.1029/2005GL024737.
    [Google Scholar]
  37. Hunze, S. & Wonik, T. (2008) Sediment input into the Heidelberg Basin as determined from Downhole Logs. Quaternary Science Journal, 57, 367–381.
    [Google Scholar]
  38. Hurford, A.J. (1986) Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib Mineral Petrol, 92, 413–427.
    [Google Scholar]
  39. Hurford, A.J. & Green, P.F. (1983) The zeta age calibration of fission‐track dating. Chem. Geol., 41, 285–317.
    [Google Scholar]
  40. Ivy‐Ochs, S., Poschinger, A.V., Synal, H.‐A. & Maisch, M. (2009) Surface exposure dating of the Flims landslide, Graubünden, Switzerland. Geomorphology, 103, 104–112.
    [Google Scholar]
  41. Keller, J., Kramel, M. & Henjes‐Kunst, F. (2002) 40Ar/39Ar single crystal dating of early volcanism in the Upper Rhine Graben and tectonic implications. Schweiz. Mineral. Petrogr. Mitt., 82, 121–130.
    [Google Scholar]
  42. Keller, L.M., Hess, M., Fügenschuh, B. & Schmid, S. (2005) Structural and metamorphic evolution of the Camughera–Moncucco, Antrona and Monte Rosa units southwest of the Simplon line. Western Alps. Eclogae geol. Helv., 98, 19–49.
    [Google Scholar]
  43. Knipping, M. (2008) Early and Middle Pleistocene pollen assemblages of deep core drillings in the northern Upper Rhine Graben, Germany. Neth. J. Geosci., 87, 51–65.
    [Google Scholar]
  44. Koppes, M.N. & Montgomery, D.R. (2009) The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. Nature Geosciences, 2, doi:10.1038/NGEO616.
    [Google Scholar]
  45. Kuhlemann, A. & Kempf, O. (2002) Post‐Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sed. Geol., 152, 45–78.
    [Google Scholar]
  46. Kuhlemann, J., Frisch, W., Székely, B., Dunkl, I. & Kázmer, M. (2002) Post‐ collisional sediment budget history of the Alps: tectonic versus climatic control. Int. J. Earth Sci., 91, 818–837.
    [Google Scholar]
  47. Larsen, I.J. & Montgomery, D.R. (2012) Landslide erosion coupled to tectonics and river incision. Nat. Geosci., 5, doi:10.1038/NGEO1479.
    [Google Scholar]
  48. Lauer, T., Frechen, M., Hoselmann, C. & Tsukatomo, S. (2010) Fluvial aggradation phases in the Upper Rhine Graben – new insights by quartz OSL dating. Proceedings of the Geologists' Association, 121, 154–161.
    [Google Scholar]
  49. Link, K. (2010) Die thermo‐tektonische Entwicklung des Oberrheingraben‐Gebietes seit der Kreide. PhD Thesis, Albert‐Ludwigs Universität Freiburg, Germany. URL: http://www.freidok.uni-freiburg.de/volltexte/7847/.
    [Google Scholar]
  50. Lippolt, H.J., Gentner, W. &, Wimmenauer, W. (1963) Altersbestimmungen nach der Kalium‐Argon‐Methode an tertiären Eruptivgesteinen Südwestdeutschlands. Jh. geol. Landesamt Baden‐Württemberg, 6, 507–538.
    [Google Scholar]
  51. Litt, T. (2007) Das Quartär als chronostratigraphische Einheit. Quaternary Science Journal, 57, 3–6.
    [Google Scholar]
  52. Litt, T., Ellwanger, D., Villinger, E. & Wansa, S. (2005) Das Quartär in der Stratigraphischen Tabelle von Deutschland 2002. Newsl. Stratigr., 41, 385–399.
    [Google Scholar]
  53. Litt, T., Schmincke, H.‐U., Frechen, M. & Schlüchter, C. (2008) Quaternary. In: The Geology of Central Europe – Vol. 2: Mesozoic and Cenozoic (Ed. by T.McCann ), pp. 1287–1340. The Geological Society, London.
    [Google Scholar]
  54. Michalski, I. & Soom, M. (1990) The Alpine thermo‐tectonic evolution of the Aar and Gotthard massifs, Central Switzerland: fission track ages on zircon and apatite and K‐Ar mica ages. Schweiz. Mineral. Petrogr. Mitt., 70, 373–387.
    [Google Scholar]
  55. Miller, G.H., Briner, J.P., Lifton, N.A. & Finkel, R.C. (2006) Limited ice‐sheet erosion and complex exposure histories derived from in situ cosmogenic 10Be, 26Al, and 14C on Baffin Island, Arctic Canada. Quat. Geochronol., 1, 74–85.
    [Google Scholar]
  56. Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S. & Sciunnach, D. (2003) Onset of major Pleistocene glaciations in the Alps. Geology, 31, 989–992.
    [Google Scholar]
  57. Nie, J., Horton, B.K., Saylor, J.E., Mora, A., Mange, M., Garzione, C.N., Basu, A., Moreno, C.J., Caballero, V. & Parra, M. (2012) Integrated provenance analysis of a convergent retroarc foreland system: U‐Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth‐ Science Reviews, 110, 111–126.
    [Google Scholar]
  58. Pignalosa, A., Zattin, M., Massironi, M. & Cavazza, W. (2011) Thermochronological evidence of a late Pliocene climate‐induced erosion rate increase in the Alps. Int. J. Earth Sci., 100, 847–859.
    [Google Scholar]
  59. Preusser, F., Graf, H.R., Keller, O., Krayss, E. & Schlüchter, C. (2011) Quaternary glaciation history of northern Switzerland. Quaternary Science Journal, 60, 282–305.
    [Google Scholar]
  60. Rahn, M.K. & Selbekk, R. (2007) Absolute dating of the youngest sediments of the Swiss Molasse basin by apatite fission track analysis. Swiss J. Geosci., 100, 371–381.
    [Google Scholar]
  61. Rahn, M.K., Hurford, A.J. & Frey, M. (1997) Rotation and exhumation of a thrust plane: apatite fission‐track data from the Glarus thrust, Switzerland. Geology, 25, 599–602.
    [Google Scholar]
  62. Reinecker, J. & Kuhlemann, J. (2008) Timing of orogen‐parallel Rhône valley incision, Switzerland. Geophysical Research Abstracts, 10, EGU2008‐A‐00000.
    [Google Scholar]
  63. Reinecker, J., Danišik, M., Schmid, C., Glotzbach, C., Rahn, M., Frisch, W. & Spiegel, C. (2008) Tectonic control on the late stage exhumation of the Aar Massif (Switzerland): constraints from apatite fission track and (U‐Th)/He data. Tectonics, 27, TC6009 doi:10.1029/2007TC002247.
    [Google Scholar]
  64. Reiter, W., Elfert, S., Glotzbach, C. & Spiegel, C. (in review) Plio‐Pleistocene evolution of the north‐Alpine drainage system – implications from Neogene foreland deposits. Basin Res. (in review).
    [Google Scholar]
  65. Rignot, E., Rivera, A. & Casassa, G. (2003) Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science, 302, 434–437.
    [Google Scholar]
  66. Rolf, C., Hambach, U. & Weidenfeller, M. (2008) Rock and palaeomagnetic evidence for the Plio‐Pleistocene palaeoclimatic change recorded in Upper Rhine Graben sediments (Core Ludwigshafen‐Parkinsel). Neth. J. Geosci., 87, 41–50.
    [Google Scholar]
  67. Rotstein, Y. & Schaming, M. (2011) The Upper Rhine Graben (URG) revisited: miocene transtension and transpression account for the observed first‐order structures. Tectonics, 30, TC3007. doi:10.1029/2010TC002767.
    [Google Scholar]
  68. Schaer, J.P., Reimer, G.M. & Wagner, G.A. (1975) Actual and ancient uplift rate in the Gotthard region, Swiss Alps: a comparison between precise levelling and fission‐track apatite age. Tectonophysics, 29, 293–300.
    [Google Scholar]
  69. Schlunegger, F. & Mosar, J. (2011) The last erosional stage of the Molasse Basin and the Alps. Int. J. Earth Sci., 100, 1147–1162.
    [Google Scholar]
  70. Schlunegger, F., Rieke‐Zapp, D. & Ramseyer, K. (2007) Possible environmental effects on the evolution of the Alps‐Molasse Basin system. Swiss J. Geosci., 100, 383–405.
    [Google Scholar]
  71. Schmid, S.M., Fügenschuh, B., Kissling, E. & Schuster, R. (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol. Helv., 97, 93–117.
    [Google Scholar]
  72. Schreiner, A. (1992) Erläuterungen zu Blatt Hegau und westlicher Bodensee. Geologisches Landesamt Baden‐Württemberg, Freiburg, Stuttgart.
    [Google Scholar]
  73. Shuster, D.L., Ehlers, T.A., Rusmore, M.E. & Farley, K.A. (2005) Rapid Glacial Erosion at 1.8 Ma Revealed by 4He/3He thermochronometry. Science, 310, 1668–1670.
    [Google Scholar]
  74. Sissingh, W. (1998) Comparative tertiary stratigraphy of the Rhine Graben, Bresse Graben and Molasse Basin: correlation of Alpine foreland events. Tectonophysics, 300, 249–284.
    [Google Scholar]
  75. Soom, M. (1990) Abkühlungs‐ und Hebungsgeschichte der Externmassive und der penninischen Decken beidseits der Simplon‐Rhône‐Linie seit dem Oligozän: Spaltspurendatierung an Apatit/Zirkon und K‐Ar‐Datierungen an Biotit/Muskovit (Westliche Zentralalpen). Ph.D. thesis, University of Bern, Switzerland.
    [Google Scholar]
  76. Spiegel, C., Kuhlemann, J., Dunkl, I., Frisch, W., von Eynatten, H. & Balogh, K. (2000) The erosion history of the Central Alps: evidence from zircon fission track data of the foreland basins. Terra Nova, 12, 163–170.
    [Google Scholar]
  77. Spiegel, C., Kuhlemann, J., Dunkl, I. & Frisch, W. (2001) Paleogeography and catchment evolution in a mobile orogenic belt: the Central Alps in Oligo–Miocene times. Tectonophysics, 341, 33–47.
    [Google Scholar]
  78. Spiegel, C., Siebel, W., Kuhlemann, J. & Frisch, W. (2004) Toward a comprehensive provenance analysis: a multi‐method approach and its implications for the evolution of the Central Alps. In: Detrital thermochronology – Provenance Analysis, Exhumation, and Landscape Evolution in Mountain Belts (Ed. by M.Bernet & C.Spiegel ), pp. 37–50. GSA Special Paper 378.
    [Google Scholar]
  79. Spiegel, C., Kohn, B., Raza, A., Rainer, T. & Gleadow, A. (2007) The effect of long‐ term low‐temperature exposure on apatite fission track stability: a natural annealing experiment in the deep ocean. Geochim. Cosmochim. Acta, 71, 4512–4537.
    [Google Scholar]
  80. Spiegel, C., Kohn, B., Belton, D., Berner, Z. & Gleadow, A. (2009) Apatite (U–Th– Sm)/He thermochronology of rapidly cooled samples: the effect of He implantation. Earth Planet. Sci. Lett., 285, 105–114.
    [Google Scholar]
  81. Steck, A. & Hunziker, J. (1994) The Tertiary structural and thermal evolution of the Central Alps – compressional and extensional structures in an orogenic belt. Tectonophysics, 238, 229–254.
    [Google Scholar]
  82. Steiner, H. (1984) Mineralogisch‐petrographische, geochemische und isotopengeologische Untersuchungen an einem Meta‐Lamprophyr und seinem granodioritischen Nebengestein (Matorello‐Gneis) aus der Maggia‐Decke. Schweiz. Mineral. Petrogr. Mitt., 64, 227–259.
    [Google Scholar]
  83. Stewart, R.J. & Brandon, M.T. (2004) Detrital‐zircon fission‐track ages for the “Hoh Formation”: implications for late Cenozoic evolution of the Cascadia subduction wedge. Geol. Soc. Am. Bull., 116, 60–75.
    [Google Scholar]
  84. Sue, C., Delacou, B., Champagnac, J.‐D., Allanic, C., Tricart, P. & Burkhard, M. (2007) Extensional neotectonics around the bend of the Western/Central Alps: an overview. Int. J. Earth Sci., 96, 1101–1129.
    [Google Scholar]
  85. Teichmüller, R. & Teichmüller, M. (1986) Relations between coalification and palaeogeothermics in Variscan and Alpidic foredeeps of western Europe. Paleogeothermics, Lecture Notes in Earth Sciences, 5, 53–78.
    [Google Scholar]
  86. Thomson, S.N., Brandon, M.T., Tomkin, J.H., Reiners, P.W., Vásquez, C. & Wilson, N.J. (2010) Glaciation as a destructive and constructive control on mountain building. Nature, 467, doi:10.1038/nature09365.
    [Google Scholar]
  87. Timar‐Geng, Z., Grujic, D. & Rahn, M. (2004) Deformation at the Leventina–Simano nappe boundary, Central Alps. Switzerland. Eclogae geol. Helv., 97, 265–278.
    [Google Scholar]
  88. Timar‐Geng, Z., Fügenschuh, B., Wetzel, A. & Dresmann, H. (2006) Low‐ temperature thermochronology of the flanks of the southern Upper Rhine Graben. Int. J. Earth Sci., 95, 685–702.
    [Google Scholar]
  89. Trautwein, B., Dunkl, I. & Frisch, W. (2001) Accretionary history of the Rhenodanubian Flysch zone in the Eastern Alps – evidence from apatite fission‐track geochronology. Int. J. Earth Sci., 90, 703–713.
    [Google Scholar]
  90. Valla, P.G., Shuster, D.L. & van der Beek, P. (2011) Significant increase in relief of the European Alps during mid‐Pleistocene glaciations. Nat. Geosci., 4, 688–692.
    [Google Scholar]
  91. Valla, P.G., van der Beek, P., Shuster, D., Braun, J., Herman, F., Tassan‐Got, L. & Gautheron, C. (2012) Late‐Neogene exhumation and relief development of the Aar and Aiguilles Rouges massifs (Swiss Alps) from low‐temperature thermochronology modeling and 4He/3He thermochronometry. J. Geophys. Res., 117, F01004.
    [Google Scholar]
  92. Vermeesch, P. (2004) How many grains are needed for a provenance study?Earth Planet. Sci. Lett., 224, 441–451.
    [Google Scholar]
  93. Vernon, A.J., van der Beek, P.A., Sinclair, H.D. & Rahn, M.K. (2008) Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission‐track thermochronology database. Earth Planet. Sci. Lett., 270, 316–329.
    [Google Scholar]
  94. Vernon, A., van der Beek, P.A., Sinclair, H.D., Persano, C., Foeken, J. & Stuart, F.M. (2009) Variable late Neogene exhumation of the central European Alps: low‐temperature thermochronology from the Aar Massif, Switzerland, and the Lepontine Dome, Italy. Tectonics, 28, TC5004, doi:10.1029/2008TC002387.
    [Google Scholar]
  95. Villinger, E. (1998) Zur Flussgeschichte von Rhein und Donau in Südwestdeutschland. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 80, 361–398.
    [Google Scholar]
  96. Villinger, E. (2003) Zur Paläogeographie von Alpenrhein und oberer Donau. Zeitschrift der deutschen geologischen Gesellschaft, 154, 193–253.
    [Google Scholar]
  97. Wagner, G.A. & Reimer, G.M. (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet. Sci. Lett., 14, 263–268.
    [Google Scholar]
  98. Wagner, G.A., Reimer, G.M. & Jager, E. (1977) Cooling ages derived by apatite fission‐ track, mica Rb‐Sr and K‐Ar dating: the uplift and cooling history of the Central Alps. Mem Ist Geol Min Univ Padova, Padua, Italy.
    [Google Scholar]
  99. Wedel, J. (2008) Pleistocene molluscs from research boreholes in the Heidelberg Basin. Quaternary Science Journal, 57, 382–402.
    [Google Scholar]
  100. Weh, M. (1998) Tektonische Entwicklung der penninischen Sediment‐Decken in Graubünden (Prättigau bis Oberhalbstein). PhD Thesis, University Basel, Switzerland.
    [Google Scholar]
  101. Weidenfeller, M. & Kärcher, T. (2008) Tectonic influence on fluvial preservation: aspects of the architecture of Middle and Late Pleistocene sediments in the northern Upper Rhine Graben, Germany. Neth. J. Geosci., 87, 33–40.
    [Google Scholar]
  102. Weidenfeller, M. & Knipping, M. (2008) Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area, western Heidelberg Basin. Quaternary Science Journal, 57, 270–285.
    [Google Scholar]
  103. Willenbring Staiger, J., Gosse, J., Little, E.C., Utting, D.J., Finkel, R., Johnson, J.V.& Fastook, J. (2006) Glacial erosion and sediment dispersion from detrital cosmogenic nuclide analyses of till. Quat. Geochronol., 1, 29–42.
    [Google Scholar]
  104. Willett, S.D., Schlunegger, F. & Picotti, V. (2006) Messinian climate change and erosional destruction of the central European Alps. Geology, 34, 613–616.
    [Google Scholar]
  105. Wolf, R.A., Farley, K.A. & Kass, D.M. (1998) Modeling of the temperature sensitivity of apatite (U‐Th)/He thermochronometer. Chem. Geol., 148, 105–114.
    [Google Scholar]
  106. Ziegler, P.A. & Dèzes, P. (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. Global Planet. Change, 58, 237–269.
    [Google Scholar]
  107. Ziegler, P.A. & Fraefel, M. (2009) Response of drainage systems to Neogene evolution of the Jura fold‐thrust belt and Upper Rhine Graben. Swiss J. Geosci., 102, 57–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12023
Loading
/content/journals/10.1111/bre.12023
Loading

Data & Media loading...

Supplements

Probability‐density plots of AFT grain ages (AFT ages vs. density). Sample name, sedimentation age (Sed. age), number of counted grains () and modelled peak ages (P1/P2) are given.

WORD

 

IMAGE
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error