1887
Volume 25, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Depositional models of ancient lakes in thin‐skinned retroarc foreland basins rarely benefit from appropriate Quaternary analogues. To address this, we present new stratigraphic, sedimentological and geochemical analyses of four radiocarbon‐dated sediment cores from the Pozuelos Basin (PB; northwest Argentina) that capture the evolution of this low‐accommodation Puna basin over the past . 43 cal kyr. Strata from the PB are interpreted as accumulations of a highly variable, underfilled lake system represented by lake‐plain/littoral, profundal, palustrine, saline lake and playa facies associations. The vertical stacking of facies is asymmetric, with transgressive and thin organic‐rich highstand deposits underlying thicker, organic‐poor regressive deposits. The major controls on depositional architecture and basin palaeogeography are tectonics and climate. Accommodation space was derived from piggyback basin‐forming flexural subsidence and Miocene‐Quaternary normal faulting associated with incorporation of the basin into the Andean hinterland. Sediment and water supply was modulated by variability in the South American summer monsoon, and perennial lake deposits correlate in time with several well‐known late Pleistocene wet periods on the Altiplano/Puna plateau. Our results shed new light on lake expansion–contraction dynamics in the PB in particular and provide a deeper understanding of Puna basin lakes in general.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12025
2013-07-03
2024-10-10
Loading full text...

Full text loading...

References

  1. Anadón, P., Utrilla, R. & Vásquez, A. (2002) Mineralogy and Sr–Mg geochemistry of charophyte carbonates: a new tool for paleolimnological research. Earth Planet. Sci. Lett., 197, 205–214.
    [Google Scholar]
  2. Baker, P., Rigsby, C., Seltzer, G., Fritz, S., Lowenstein, T., Bacher, N. & Veliz, C. (2001b) Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature, 409, 698–701.
    [Google Scholar]
  3. Baker, P., Seltzer, G., Fritz, S., Dunbar, R., Grove, M., Tapia, P., Cross, S., Rowe, H. & Broda, J. (2001a) The history of South American tropical precipitation for the past 25,000 years. Science, 291, 640–643.
    [Google Scholar]
  4. Bennett, M.R., Doyle, P. & Mather, A.E. (1996) Dropstones: their origin and significance. Palaeogeogr. Palaeoclimatol. Palaeoecol., 121, 331–339.
    [Google Scholar]
  5. Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J. & Rylander, K.A. (2000) A 22,000‐yr record of monsoonal precipitation from northern Chile's Atacama Desert. Science, 289, 1546–1550.
    [Google Scholar]
  6. Blair, T.C. & Mcpherson, J.G. (2008) Quaternary sedimentology of the Rose Creek fan delta, Walker Lake, Nevada, USA, and implications to fan‐delta facies models. Sedimentology, 55, 579–615.
    [Google Scholar]
  7. Blard, P.‐H., Sylvestre, F., Tripati, A.K., Claude, C., Causse, C., Coudrain, A., Condom, T., Seidel, J.‐L., Vimeux, F., Moreau, C., Dumoulin, J.‐P. & Lavé, J. (2011) Lake highstands on the Altiplano (Tropical Andes) contemporaneous with Heinrich 1 and the Younger Dryas: new insights from 14C, U–Th dating and δ18O of carbonates. Quatern. Sci. Rev., 30, 3973–3989.
    [Google Scholar]
  8. Blodgett, T.A., Isacks, B.L. & Lenters, J. D. (1997) Constraints on the origin of paleolake expansions in the central Andes. Earth Interactions, 1, 1–28.
    [Google Scholar]
  9. Bobst, A.L., Lowenstein, T.K., Jordan, T.E., Godfrey, L.V., Ku, T.L. & Luo, S. (2001) A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeogr. Palaeoclimatol. Palaeoecol., 173, 21–42.
    [Google Scholar]
  10. Bohacs, K.M., Carroll, A.R., Nede, J.E. & Mankirowicz, P.J. (2000) Lake‐basin type, source potential, and hydrocarbon character: an integrated sequence‐stratigraphic‐ geochemical framework. In Lake Basins through Space and Time (Ed. by E.H.Gierlowski‐Kordesch & K.R.Kelts ) AAPG Stud. Geol., 46, 3–33.
    [Google Scholar]
  11. Bonaventura, S.M., Tecchi, R. & Vignale, D. (1995) The vegetation of the Puna Belt at laguna de Pozuelos Biosphere Reserve in northwest Argentina. Plant Ecol., 119, 23–31.
    [Google Scholar]
  12. Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., Mcmanus, J., Andrews, J., Huon, S., Jantschilk, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G. & Ivy, S. (1992) Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature, 360, 245–249.
    [Google Scholar]
  13. Burns, S.J. (2011) Speleothem records of changes in tropical hydrology over the Holocene and possible implications for atmospheric methane. Holocene, 21, 735–741.
    [Google Scholar]
  14. Caffe, P.J., Trumbull, R.B., Coira, B.L. & Romer, R.L. (2002) Petrogenesis of early Neogene magmatism in the Northern Puna; implications for magma genesis and crustal processes in the Central Andean Plateau. J. Petrol., 43, 907–942.
    [Google Scholar]
  15. Carroll, A.R. & Bohacs, K.M. (1999) Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology, 27, 99–102.
    [Google Scholar]
  16. Carroll, A.R., Chetel, L.M. & Smith, M.E. (2006) Feast to famine: sediment supply control on Laramide basin fill. Geology, 34, 197–200.
    [Google Scholar]
  17. Caziani, S.M., Derlindati, E.J., Talamo, A., Suredam, A.L., Trucco, C.E. & Nicolossi, G. (2001) Waterbird richness in Altiplano wetlands of Northwestern Argentina. Waterbirds, 24, 103–117.
    [Google Scholar]
  18. Chepstow‐Lusty, A., Bush, M.B., Frogley, M.R., Baker, P.A., Fritz, S.C. & Aronson, J. (2005) Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago. Quatern. Res., 63, 90–98.
    [Google Scholar]
  19. Chivas, A.R., De Deckker, P., Nind, M., Thiriet, D. & Watson, G. (1986) The Pleistocene palaeoenvironmental record of Lake Buchanan: an atypical Australian playa. Palaeogeogr. Palaeoclimatol. Palaeoecol., 54, 131–152.
    [Google Scholar]
  20. Cladouhos, T.T., Allmendinger, R.W., Coira, B. & Farrar, E. (1994) Late Cenozoic deformation in the Central Andes: fault kinematics from the northern Puna, northwestern Argentina and southwestern Bolivia. J. S. Am. Earth Sci., 7, 209–228.
    [Google Scholar]
  21. Cohen, A.S. (2003) Paleolimnology. The History and Evolution of Lake Systems. Oxford University Press, New York.
    [Google Scholar]
  22. Colman, S.M., Peck, J.A., Karabanov, E.B., Carter, S.J., Bradbury, J.P., King, J.W. & Williams, D.F. (1995) Continental climate response to orbital forcing from biogenic silica records in Lake Baikal, Siberia. Nature, 378, 769–771.
    [Google Scholar]
  23. DeCelles, P.G. & Guiles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  24. DeCelles, P.G., Ducea, M.N., Kapp, P. & Zandt, G. (2009) Cyclicity in Cordilleran orogenic systems. Nat. Geosci., 2, 251–257.
    [Google Scholar]
  25. Demaster, D.J. (1979) The Marine Budgets of Silica and Si‐32. PhD Thesis, Yale University, New Haven, CT.
    [Google Scholar]
  26. Demicco, R.V. & Gierlowski‐Kordesch, E.H. (1986) Facies sequences of a semi‐arid closed basin; the Lower Jurassic East Berlin Formation of the Hartford Basin, New England, U.S.A. Sedimentology, 33, 107–118.
    [Google Scholar]
  27. Deocampo, D.M. & Ashley, G.M. (1999) Siliceous islands in a carbonate sea: modern and Pleistocene spring‐fed wetlands in Ngorongoro Crater and Oldupai Gorge, Tanzania. J. Sed. Res., 29, 974–979.
    [Google Scholar]
  28. Drummond, C.N., Wilkinson, B.H. & Lohmann, K.C. (1996) Climatic control of fluvial‐lacustrine cyclicity in the Cretaceous Cordilleran Foreland Basin, western United States. Sedimentology, 43, 677–689.
    [Google Scholar]
  29. Espitalie, J., Laporte, J.L., Madec, M., Marquis, F., Leplat, P., Paulet, J. & Boutefeu, A. (1977) Methode rapide de caracterisation des roches meres, de leur potentiel petrolier et de leur degre d'evolution. Rev. Inst. Fr. Pétrol., 32, 23–42.
    [Google Scholar]
  30. Eugster, H. & Hardie, L.A. (1975) Sedimentation in an ancient playa‐lake complex: the Wilkins Peak Member of the Green River Formation of Wyoming. Geol. Soc. Am. Bull., 86, 319–334.
    [Google Scholar]
  31. Fedo, C.M. & Cooper, J.D. (1990) Braided fluvial to marine transition: the basal Lower Cambrian Wood Canyon Formation, southern Marble Mountains, Mojave Desert, California. J. Sed. Petrol., 60, 220–234.
    [Google Scholar]
  32. Fisher, J.A., Krapf, C.B.E., Lang, S.C., Nichols, G.J. & Payenberg, T.H.D. (2008) Sedimentology and architecture of the Douglas Creek terminal splay, Lake Eyre, central Australia. Sedimentology, 55, 1915–1936.
    [Google Scholar]
  33. Freytet, P. & Verrecchia, E.P. (2002) Lacustrine and palustrine carbonate petrography: an overview. J. Paleolimnol., 27, 221–237.
    [Google Scholar]
  34. Fritz, S.C., Baker, P.A., Lowenstein, T.K., Seltzer, G.O., Rigsby, C.A., Dwyer, G.S., Tapia, P.M., Arnold, K.K., Ku, T.‐L. & Lou, S. (2004) Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quatern. Res., 61 (9), 5–104.
    [Google Scholar]
  35. Fritz, S.C., Baker, P.A., Tapia, P.M., Spanbauer, T. & Westover, K. (2012) Evolution of the Lake Titicaca basin and its diatom flora over the last ~370,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol., 1, 93–103.
    [Google Scholar]
  36. Galloway, W.E. & Hobday, D.K. (1996) Terrigenous Clastic Depositional Systems; Applications to Fossil Fuels and Groundwater Resources. 2nd edn, Springer‐Verlag, Berlin. 489 pp.
    [Google Scholar]
  37. Gangui, A.H. (1998) A combined structural interpretation based on seismic data and 3D gravity modeling in the northern Puna/Eastern Cordillera, Argentina. PhD Thesis, Freien Universität, Berlin.
    [Google Scholar]
  38. Garreaud, R.D., Vuille, M., Compagnucci, R. & Marengo, J. (2009) Present‐day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180–195.
    [Google Scholar]
  39. Geyh, M.A., Grosjean, M., Núñez, L. & Schotterer, U. (1999) Radiocarbon reservoir effect and the timing of the late‐glacial/early Holocene humid phase in the Atacama Desert (northern Chile). Quatern. Res., 52, 143–153.
    [Google Scholar]
  40. Gierlowski‐Kordesch, E.H. & Park, L.E. (2004) Comparing species diversity in the modern and fossil record of lakes. J. Geol., 112, 703–717.
    [Google Scholar]
  41. Gierlowski‐Kordesch, E.H. & Rust, B.R. (1994) The Jurassic East Berlin Formation, Hartford basin, Newark Supergroup (Connecticut and Massachusetts); a saline lake‐playa‐alluvial plain system. In: Sedimentology and Geochemistry of Modern and Ancient Saline Lakes (Ed R.W.Renaut & W.M.Last ) SEPM Spec. Publ., 50, 249–265.
    [Google Scholar]
  42. Godfrey, L.V., Jordan, T.E., Lowenstein, T.K. & Alonso, R.L. (2003) Stable isotope constraints on the transport of water to the Andes between 22 degrees and 26 degrees S during the last glacial cycle. Palaeogeogr. Palaeoclimatol. Palaeoecol., 194, 299–231.
    [Google Scholar]
  43. Gore, P.J.W. (1989) Towards a model of open‐ and closed basin deposition in ancient lacustrine sequences: the Newark Supergroup (Triassic‐Jurassic), eastern North America. Palaeogeogr. Palaeoclimatol. Palaeoecol., 70, 29–52.
    [Google Scholar]
  44. Hampton, B.A. & Horton, B.K. (2007) Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia. Sedimentology, 54, 1121–1148.
    [Google Scholar]
  45. Hanselman, J.A., Bush, M.B., Gosling, W.D., Collins, A. & Knox, C. (2011) A 370,000‐year record of vegetation and fire history around Lake Titicaca (Bolivia/Peru). Palaeogeogr. Palaeoclimatol. Palaeoecol., 305, 201–214.
    [Google Scholar]
  46. Hardie, L.A., Smoot, J.P. & Eugster, H.P. (1978) Saline lakes and their deposits: a sedimentological approach. In: Modern and Ancient Lake Sediments (Ed. by A.Matter & M.Tucker ) IAS Spec., 2, 7–41.
    [Google Scholar]
  47. Hastenrath, S. & Kutzbach, J. (1985) Late Pleistocene climate and water budget of the South American Altiplano. Quatern. Res., 24, 249–256.
    [Google Scholar]
  48. Horton, B.K. (1998) Sediment accumulation on top of the Andean orogenic wedge: Oligocene to late Miocene basins of the Eastern Cordillera, southern Bolivia. Geol. Soc. Am. Bull., 110, 1174–1192.
    [Google Scholar]
  49. Horton, B.K. (2012) Cenozoic evolution of hinterland basins in the Andes and Tibet. In: Recent Advances in Tectonics of Sedimentary Basins (Ed. by C.J.Busby & A.Azor ), pp. 427–444. Wiley‐Blackwell, Oxford.
    [Google Scholar]
  50. Horton, B. K. & Schmitt, J. G. (1996) Sedimentology of a lacustrine fan‐delta system, Miocene Horse Camp Formation, Nevada, USA. Sedimentology, 43, 133–155.
    [Google Scholar]
  51. Hua, Q. & Barbetti, M. (2004) Review of tropospheric bomb 14C data for carbon cycle modeling 43 and age calibration purposes. Radiocarbon, 46, 1273–1298.
    [Google Scholar]
  52. Igarzábal, A.P. (1978) La Laguna de Pozuelos y su Ambiente Salino. Acta Geol. Lilloana, 15, 80–103.
    [Google Scholar]
  53. Jordan, T.E., Schlunegger, F. & Cardozo, N. (2001) Unsteady and spatially variable evolution of the Neogene Andean Bermejo foreland basin, Argentina. J. S. Am. Earth Sci., 14, 775–798.
    [Google Scholar]
  54. Kanner, L.C., Burns, S.J., Cheng, H. & Edwards, R.L. (2012) High‐Latitude forcing of the South American summer monsoon during the Last Glacial. Science, 335, 570–573.
    [Google Scholar]
  55. Katz, B.J. (1983) Limitations of ‘‘Rock‐Eval’’ pyrolysis for typing organic matter. Org. Geochem., 4, 195–199.
    [Google Scholar]
  56. Katz, B.J. (1995) Factors controlling the development of lacustrine petroleum source rocks: an update. In: Paleogeography, Paleoclimate, and Source Rocks (Ed. by A.‐Y.Huc ) AAPG Mem., 40, 61–79.
    [Google Scholar]
  57. Keen, K.L. & Shane, L.C.K. (1990) A continuous record of Holocene eolian activity and vegetation change at Lake Ann, east‐central Minnesota. Geol. Soc. Am. Bull., 102, 1646–1657.
    [Google Scholar]
  58. Lang, S.C., Payenberg, T.H.D., Reilly, M.R.W., Hicks, T., Benson, J. & Kassan, J. (2004) Modern analogues for dryland sandy fluviallacustrine deltas and terminal splay reservoirs. J. Aust. Petrol. Explor. Assoc., 44, 329–356.
    [Google Scholar]
  59. Latorre, C., Betancourt, J.L., Rylander, K.A. & Quade, J. (2002) Vegetation invasions into the absolute desert: a 45 000 yr rodent midden record from the Calama–Salar de Atacama basins, northern Chile (lat 22°–24°S). Geol. Soc. Am. Bull., 114 (3), 349–366.
    [Google Scholar]
  60. Legates, D.R. & Willmott, C.J. (1990a) Mean seasonal and spatial variability in gauge‐corrected, global precipitation. Int. J. Climatol., 10, 111–127.
    [Google Scholar]
  61. Legates, D.R. & Willmott, C.J. (1990b) Mean seasonal and spatial variability in global surface air temperature. Theoret. Appl. Climatol., 41, 11–21.
    [Google Scholar]
  62. Lindbo, D.L., Stolt, M.H. & Vepraskas, M.J. (2010) Redoximorphic features. In: Interpretation of Micromorphological Features of Soils and Regoliths (Ed by G.Stoops , V.Marcelino & F.Mees ), pp. 129–147. Elsevier, Amsterdam, the Netherlands.
    [Google Scholar]
  63. Liutkus, C.M. & Ashley, G.M. (2003) Sedimentology and stratigraphy of an ancient freshwater lake‐margin wetland, Olduvai Gorge, Tanzania. J. Sed. Res., 73, 691–705.
    [Google Scholar]
  64. Lowe, D. R. (1982) Sediment gravity flows. II. Depositional models with special reference to the deposits of high‐density turbidity currents. J. Sed. Petrol., 52, 279–297.
    [Google Scholar]
  65. Maidana, N., Vigna, M. & Mascitti, V. (1998) Ficoflora de la Laguna de Pozuelos (Jujuy, Argentina), I: Bacillariophyceae. Bol. Soc. Argentina Bot., 33, 171–179.
    [Google Scholar]
  66. Maldonado, A., Betancourt, J.L., Latorre, C. & Villagran, C. (2005) Pollen analyses from a 50,000‐yr rodent midden series in the southern Atacama Desert (25°30′S). J. Quatern. Sci., 20, 493–507.
    [Google Scholar]
  67. Mascitti, V. & Castañera, M.B. (2006) Foraging Depth of flamingos in Single‐species and Mixed species Flocks at Laguna de Pozuelos, Argentina. Waterbirds, 29 (3), 328–334.
    [Google Scholar]
  68. Mayle, F. E. & Power, M.J. (2008) Impact of a drier Early‐Mid‐Holocene climate upon Amazonian forests, Philos. Trans. R. Soc., Ser. B, 363, 1829–1838.
    [Google Scholar]
  69. McGeehin, J., Burr, G. S., Jull, A. J. T., Reines, D., Gosse, J., Davis, P. T., Muhs, D. & Southon, J. R. (2001) Stepped‐combustion 14C dating of sediment: a comparison with established techniques. Radiocarbon, 43, 255–261.
    [Google Scholar]
  70. Mcglue, M.M., Lezzar, K.L., Cohen, A.S., Russell, J.M., Tiercelin, J.‐J., Felton, A.A., Mbede, E. & Nkotagu, H.H. (2008) Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. J. Paleolimnol., 40, 635–653.
    [Google Scholar]
  71. Mcglue, M. M., Ellis, G. S., Cohen, A. S. & Swarzenski, P. W. (2012a) Playa‐lake sedimentation and organic matter accumulation in an Andean piggyback basin: the recent record from the Cuenca de Pozuelos, North‐west Argentina. Sedimentology, 59, 1237–1256.
    [Google Scholar]
  72. Mcglue, M.M., Silva, A., Zani, H., Corradini, F.A, Parolin, M., Abel, E., Cohen, A.S., Assine, M.L., Ellis, G.S., Kuerten, S., Gradella, F. & Rasbold, G.G. (2012b) Lacustrine records of Holocene flood pulse dynamics in the Upper Paraguay River watershed (Pantanal wetlands, Brazil). Quatern. Res., 78, 285–294.
    [Google Scholar]
  73. Mcpherson, J.G., Shanmugam, G. & Moiola, R.J. (1987) Fan deltas and braid deltas: varieties of coarse‐grained deltas. Geol Soc Am Bull, 99, 331–340.
    [Google Scholar]
  74. Meyers, P.A. & Teranes, J.L. (2001) Sediment organic matter. In: Tracking Environmental Change Using Lake Sediments Volume 2, Physical and Geochemical Methods (Ed. by W.M.Last & J.P.Smol ), pp. 239–269. Kluwer Academic Publishers, Dordrecht, the Netherlands.
    [Google Scholar]
  75. Mirande, V. & Tracanna, B.C. (2009) Estructura y controles abioticos del fitoplancton en humedales de altura. Ecología austral, 19, 119–128.
    [Google Scholar]
  76. Nester, P.L., Gayo, E., Latorre, C., Jordan, T.E. & Blanco, N. (2007) Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene. Proc. Natl Acad. Sci. USA, 104 (50), 19724–19729.
    [Google Scholar]
  77. Núñez, L.A., Grosjean, M. & Cartajena, I. (2002) Human occupations and climate change in the Puna de Atacama. Science, 298, 821–824.
    [Google Scholar]
  78. Olsen, P.E. (1990) Tectonic, climatic, and biotic modulation of lacustrine ecosystems—examples from Newark Supergroup of eastern North America. In: Lacustrine Basin Exploration (Ed. by B.J.Katz ) AAPG Mem., 50, 209–224.
    [Google Scholar]
  79. Passey, Q. R., Bohacs, K. M., Esch, W. L., Klimentidis, R. & Sinha, S. (2010) From oil‐prone source rock to gas‐producing shale reservoir: geologic and petrophysical characterization of unconventional shale‐gas reservoirs. Soc. Petrol. Eng. Pap., 131350, 1–29.
    [Google Scholar]
  80. Pierson, T.C. & Costa, J.E. (1987) A rheologic classification of subaerial sediment‐water flows. Geol. Soc. Am. Rev. Eng. Geol., 7, 1–12.
    [Google Scholar]
  81. Pietras, J.T. & Carroll, A.R. (2006) High‐resolution stratigraphy of an underfilled lake basin: Wilkins Peak Member, Eocene Green River Formation, Wyoming, U.S.A. J. Sed. Res., 76, 1197–1214.
    [Google Scholar]
  82. Pietras, J.T., Carroll, A.R., Singer, B.S. & Smith, M.E. (2003) 10 k.y. depositional cyclicity in the early Eocene: stratigraphic and 40Ar/39Ar evidence from the lacustrine Green River Formation. Geology, 31, 593–597.
    [Google Scholar]
  83. Placzek, C., Quade, J. & Patchett, P.J. (2006) Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change. Geol. Soc. Am. Bull., 118, 515–532.
    [Google Scholar]
  84. Placzek, C., Quade, J., Betancourt, J.L., Patchett, P.J., Rech, J. A., Latorre, C., Matmon, A., Holmgren, C. & English, N. B. (2009) Climate in the dry central Andes over geologic, millennial, and interannual timescales. Ann. Mo. Bot. Gard., 96, 386–397.
    [Google Scholar]
  85. Plummer, P.S. & Gostin, V.A. (1981) Shrinkage cracks: desiccation or syneresis?J. Sed. Petrol., 51, 1147–1156.
    [Google Scholar]
  86. Potter, P.E., Maynard, J.B. & Depetris, P.J. (2005) Mud and Mudstones. Springer, New York.
    [Google Scholar]
  87. Quade, J., Rech, J.A., Betancourt, J.L., Latorre, C., Quade, B., Rylander, K.A. & Fisher, T. (2008) Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quatern. Res., 69, 343–360.
    [Google Scholar]
  88. Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Mccormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., Van der Plicht, J. & Weyhenmeyer, C.E. (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0‐50,000 years cal BP. Radiocarbon, 51, 1111–1150.
    [Google Scholar]
  89. Rigsby, C.A., Bradbury, J.P., Baker, P.A., Rollins, S.M. & Warren, M.R. (2005) Late Quaternary palaeolakes, rivers and wetlands on the Bolivian Altiplano and their palaeoclimatic implications. J. Quatern. Sci., 20, 671–691.
    [Google Scholar]
  90. Roberts, S.M., Spencer, R.J. & Lowenstein, T.K. (1994) Late Pleistocene saline lacustrine sediments, Badwater Basin, Death Valley, California. In: Lacustrine Reservoirs and Depositional Systems (Ed. by A.J.Lomando , B.C.Schreiber & P.M.Harris ), SEPM Core Workshop, 19, 61–103.
    [Google Scholar]
  91. Rosen, M.R. (1994) The importance of groundwater in playas: a review of playa classifications and sedimentology and hydrology of playas. In: Paleoclimate and Basin Evolution of Playa Systems (Ed. by M.R.Rosen ), Geol. Soc. Am. Spec. Pap., 289, 1–18.
    [Google Scholar]
  92. Sadler, M. (1981) Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol., 89, 569–584.
    [Google Scholar]
  93. Schultz, A.W. (1984) Subaerial debris flow deposition in the Upper Paleozoic Cutler Formation, western Colorado. J. Sed. Petrol., 54, 759–772.
    [Google Scholar]
  94. Sinha, R. & Friend, P. F. (1994) River systems and their sediment flux, Indo‐Gangetic plains, Northern Bihar, India. Sedimentology, 41, 825–845.
    [Google Scholar]
  95. Smith, G. A. (1986) Coarse‐grained nonmarine volcaniclastic sediment: terminology and depositional process. Geol. Soc. Am. Bull., 97, 1–10.
    [Google Scholar]
  96. Smith, M.E., Singer, B. & Carroll, A.R. (2003) 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming. Geol. Soc. Am. Bull., 115, 549–565.
    [Google Scholar]
  97. Smoot, J.P. (1983) Depositional subenvironments in an arid closed basin; Wilkins Peak Member of the Green River Formation (Eocene), Wyoming, U.S.A. Sedimentology, 30, 801–827.
    [Google Scholar]
  98. Smoot, J.P. (1985) The closed‐basin hypothesis and its use in facies analysis of the Newark Supergroup. US Geol. Surv. J. Res., 1176, 4–10.
    [Google Scholar]
  99. Smoot, J.P. (1991) Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup, eastern North America. Palaeogeogr. Palaeoclimatol. Palaeoecol., 84, 369–423.
    [Google Scholar]
  100. Smoot, J.P. & Lowenstein, T.K. (1991) Depositional environments of non‐marine evaporites. In: Evaporites, Petroleum and Mineral Resources (Ed by J.L.Melvin ), Dev. Sedimentol., 50, 189–347.
    [Google Scholar]
  101. Sohn, Y.K., Rhee, C.W. & Kim, B.C. (1999) Debris flow and hyperconcentrated flood‐flow deposits in an alluvial fan, northwestern part of the Cretaceous Yongdong Basin, central Korea. J. Geol., 107, 111–132.
    [Google Scholar]
  102. Sylvestre, F., Servant, M., Servant‐Vildary, S., Causse, C., Fournier, M. & Ybert, J.P. (1999) Lake‐level chronology on the southern Bolivian Altiplano (18–23°S) during late‐Glacial time and the early Holocene. Quatern. Res., 51, 281–300.
    [Google Scholar]
  103. Talbot, M.R. (2001) Nitrogen isotopes in palaeolimnology. In: Tracking Environmental Change Using Lake Sediments, Volume 2, Physical and Geochemical Methods (Ed by W.M.Last & J.Smol ), pp. 401–439. Kluwer Academic Publishers, Dordrecht, the Netherlands.
    [Google Scholar]
  104. Teller, J.T. & Last, W.M. (1990) Paleohydrological indicators in playas and salt lakes, with examples from Canada, Australia, and Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol., 76, 215–240.
    [Google Scholar]
  105. Turnbridge, I.P. (1984) Facies for a sandy ephemeral stream and clay playa complex; the Middle Devonian Trentishoe Formation of North Devon, UK. Sedimentology, 31, 697–715.
    [Google Scholar]
  106. Zaleha, M. (2006) Sevier orogenesis and nonmarine basin filling: implications of new stratigraphic correlations of Lower Cretaceous strata throughout Wyoming, USA. Geol. Soc. Am. Bull., 118, 886–896.
    [Google Scholar]
  107. Zhou, J. & Lau, K.‐M. (1998) Does a monsoon climate exist over South America?J. Clim., 11, 1020–1040.
    [Google Scholar]
/content/journals/10.1111/bre.12025
Loading
/content/journals/10.1111/bre.12025
Loading

Data & Media loading...

Supplements

Crossplot of sedimentation rate (mm year−1) versus log time (years). Recent sedimentation rate data derived from radioisotopes are from McGlue . (2012a). Long‐term sedimentation rates were calculated using basal 14C ages and a constant rate of accumulation over the length of the dated interval (i.e. not including coarse‐grained basal units that lack direct age control). Compaction is assumed to be negligible. Average lacustrine sedimentation rate adapted from Cohen (2003). Late Quaternary rates suggest a punctuated stratal record, which is compatible with facies observations in Unit II.

IMAGE

Shuttle Radar Topography Mission digital elevation model of tropical and sub tropical South America, illustrating the locations of several palaeolake basins mentioned in the text. 1, Salar de Hombre Muerto, Argentina. 2, Salar de Atacama, Chile. 3, Pozuelos Basin, Argentina. 4, Oligocene wedge‐top basins, Bolivia (Horton, 1998). 5, Salar de Uyuni, Bolivia. 6, Rio Desaguadero valley, Bolivia. 7, Lake Titicaca, Peru/Bolivia.

IMAGE

Summary of core locations, lengths, and age ranges used in this study.

WORD

Radiocarbon geochronology of cores collected from the Pozuelos Basin.

WORD

Lithofacies encountered in Cores 2A, 3A, 4A and 6A. Note that elemental data for Facies B (marked by *) includes values previously published in McGlue . (2012a).

WORD

 

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error