1887
Volume 26, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

The Tarim Basin in western China formed the easternmost margin of a shallow epicontinental sea that extended across Eurasia and was well connected to the western Tethys during the Paleogene. Climate modelling studies suggest that the westward retreat of this sea from Central Asia may have been as important as the Tibetan Plateau uplift in forcing aridification and monsoon intensification in the Asian continental interior due to the redistribution of the land‐sea thermal contrast. However, testing of this hypothesis is hindered by poor constraints on the timing and precise palaeogeographic dynamics of the retreat. Here, we present an improved integrated bio‐ and magnetostratigraphic chronological framework of the previously studied marine to continental transition in the southwest Tarim Basin along the Pamir and West Kunlun Shan, allowing us to better constrain its timing, cause and palaeoenvironmental impact. The sea retreat is assigned a latest Lutetian–earliest Bartonian age (. 41 Ma; correlation of the last marine sediments to calcareous nannofossil Zone CP14 and correlation of the first continental red beds to the base of magnetochron C18r). Higher up in the continental deposits, a major hiatus includes the Eocene–Oligocene transition (. 34 Ma). This suggests the Tarim Basin was hydrologically connected to the Tethyan marine Realm until at least the earliest Oligocene and had not yet been closed by uplift of the Pamir–Kunlun orogenic system. The westward sea retreat at . 41 Ma and the disconformity at the Eocene–Oligocene transition are both time‐equivalent with reported Asian aridification steps, suggesting that, consistent with climate modelling results, the sea acted as an important moisture source for the Asian continental interior.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12054
2014-03-05
2020-04-09
Loading full text...

Full text loading...

References

  1. Abels, H.A., Dupont‐Nivet, G., Xiao, G., Bosboom, R.E. & Krijgsman, W. (2011) Step‐wise Asian paleoenvironmental changes preceding the Eocene–Oligocene Transition (Eot) in the terrestrial Xining Basin, China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 399–412.
    [Google Scholar]
  2. Aigner, T., Brandenburg, A., van Vliet, A., Lawrence, D. & Westrich, J. (1990) Stratigraphic modelling of epicontinental basins: two applications. Sed. Geol., 69, 167–190.
    [Google Scholar]
  3. Akhmetiev, M.A. (2007) Paleocene and Eocene floras of Russia and adjacent regions: climatic conditions of their development. Paleontol. J., 41, 1032–1039.
    [Google Scholar]
  4. Akhmetiev, M.A. & Beniamovski, V.N. (2006) The Paleocene and Eocene in the Russian part of West Eurasia. Stratigr. Geol. Correl., 14, 49–72.
    [Google Scholar]
  5. Allen, M.B. & Armstrong, H.A. (2008) Arabia‐Eurasia collision and the forcing of mid‐Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol., 265, 52–58.
    [Google Scholar]
  6. Amidon, W.H. & Hynek, S.A. (2010) Exhumational history of the north central Pamir. Tectonics, 29, TC5017.
    [Google Scholar]
  7. Báldi, T. (1984) The terminal Eocene and Early Oligocene events in Hungary and the separation of an anoxic, cold paratethys. Eclogae Geol. Helv., 77, 1–27.
    [Google Scholar]
  8. Bershaw, J., Garzione, C.N., Schoenbohm, L., Gehrels, G. & Tao, L. (2012) Cenozoic evolution of the Pamir Plateau based on stratigraphy, zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (West China). J. Asian Earth Sci., 44, 136–148.
    [Google Scholar]
  9. Böhm, J.
    (ed.) (1903) Über Cretaceische Und Eocäne Versteinerungen Aus Fergana. Durch Asien. Reimer, Berlin.
    [Google Scholar]
  10. Boos, W.R. & Kuang, Z. (2010) Dominant control of the South Asian Monsoon by orographic insulation versus plateau heating. Nature, 463, 218–223.
    [Google Scholar]
  11. Bosboom, R.E., Dupont‐Nivet, G., Houben, A.J.P., Brinkhuis, H., Villa, G., Mandic, O., Stoica, M., Zachariasse, W.‐J., Guo, Z. & Li, C. (2011) Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 385–398.
    [Google Scholar]
  12. Bosboom, R.E., Dupont‐Nivet, G., Grothe, A., Brinkhuis, H., Villa, G., Mandic, O., Bougeois, L., Stoica, M., Kouwenhoven, T., Aminov, J., Rajabov, N., Mamadjanov, Y., Oymahmadov, I. & Ormukov, C. (2013) Early Paratethys Paleogeography in Central Asia (Sw Tajikistan, S Kyrgyzstan and Nw China) During the Paleogene. Darius Programme Central Asia Workshop, 2013 February 26–27, Bone, Germany.
  13. Bown, P. (2005) Paleogene calcareous nannofossils from the Kilwa and Lindi areas of coastal Tanzania: Tanzania drilling project sites 1 to 10. J. Nannoplankton Res., 27, 21–95.
    [Google Scholar]
  14. Bown, P.R. & Young, J.R. (1998) Introduction. In: Calcareous Nannofossil Biostratigraphy: British Micropalaeontology Society Series (Ed. by P.R.Bown ), pp. 1–15. Chapman and Hall, London.
    [Google Scholar]
  15. Brinkhuis, H. (1994) Late Eocene to Early Oligocene dinoflagellate cysts from the Priabonian type‐area (Northeast Italy): biostratigraphy and paleoenvironmental interpretation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 107, 121–163.
    [Google Scholar]
  16. Brinkhuis, H. & Biffi, U. (1993) Dinoflagellate cyst stratigraphy of the Eocene/Oligocene transition in central Italy. Mar. Micropaleontol., 22, 131–183.
    [Google Scholar]
  17. Budd, D.A. & Harris, P.M., eds. (1990) Carbonate‐Siliciclastic Mixtures. Sepm Reprint Series Number 14. SEPM, Tulsa, Oklahoma.
    [Google Scholar]
  18. Burtman, V.S. (2000) Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir–Tien Shan transition zone for the Cretaceous and Palaeogene. Tectonophysics, 319, 69–92.
    [Google Scholar]
  19. Burtman, V.S. & Molnar, P. (1993) Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Geol. Soc. Am. Spec. Pap., 281, 76.
    [Google Scholar]
  20. Burtman, V.S., Skobelev, S.F. & Molnar, P. (1996) Late Cenozoic slip on the Talas‐Ferghana Fault, the Tien Shan, central Asia. Geol. Soc. Am. Bull., 108, 1004–1021.
    [Google Scholar]
  21. Clark, M.K., Farley, K.A., Zheng, D., Wang, Z. & Duvall, A.R. (2010) Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U‐Th)/He Ages. Earth Planet. Sci. Lett., 296, 78–88.
    [Google Scholar]
  22. Coutand, I., Strecker, M.R., Arrowsmith, R., Hilley, G., Thiede, R.C., Korjenkov, A. & Omuraliev, M. (2002) Late Cenozoic tectonic development of the intramontane Alai Valley, (Pamir‐Tien Shan Region, Central Asia): an example of intracontinental deformation due to the Indo‐Eurasia Collision. Tectonics, 21, 3‐1–3‐19.
    [Google Scholar]
  23. Cowgill, E. (2010) Cenozoic right‐slip faulting along the eastern margin of the Pamir salient, northwestern China. Geol. Soc. Am. Bull., 122, 145–161.
    [Google Scholar]
  24. Deenen, M.H.L., Langereis, C.G., van Hinsbergen, D.J.J. & Biggin, A.J. (2011) Geomagnetic secular variation and the statistics of palaeomagnetic directions. Geophys. J. Int., 186, 509–520.
    [Google Scholar]
  25. Dequan, Y., Xiaochun, Z., Yimin, Y., Fan, Y., Shiben, Z., Zhongxiong, J., Yichen, W., Zhencheng, S., Shizhong, Y., Xiulan, Z., Hou, S., Hongde, L., Wensong, T., Xueting, G. & Chuanben, Z. (1996) Tertiary in Petroliferous Regions of China. Petroleum Industry Press, Beijing.
    [Google Scholar]
  26. Dercourt, J.
    , Ricou, L.E. & Vrielynck, B. (eds.) (1993) Atlas Tethys Paleoenvironmental Maps. Commision for the Geological Map of the World, Paris.
    [Google Scholar]
  27. Desio, A. & Martina, E. (1975) Some stratigraphical sequences of Katagan and surrounding regions. In: Geology of Central Badakhshan: Italian Expeditions to the Karakorum (K2), and Hindu Kushvol. III/3 (Ed. by A.Desio ,), pp. 94–155. Brill, Leiden.
    [Google Scholar]
  28. Ducasse, O., Guernet, C. & Ambareau, Y. (1985) Paléogène. In: Atlas Des Ostracodes De France (Ed. by H.J.Oertli ) Mém., 9, 257–311.
    [Google Scholar]
  29. Dupont‐Nivet, G., Krijgsman, W., Langereis, C.G., Abels, H.A., Dai, S. & Fang, X. (2007) Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature, 445, 635–638.
    [Google Scholar]
  30. Dupont‐Nivet, G., Hoorn, C. & Konert, M. (2008) Tibetan uplift prior to the Eocene‐Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geology, 36, 987–990.
    [Google Scholar]
  31. Edgar, K.M., Wilson, P.A., Sexton, P.F. & Suganuma, Y. (2007) No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature, 448, 908–911.
    [Google Scholar]
  32. Fensome, R.A. & Williams, G.L. (2004) The Lentin and Williams Index of Fossil Dinoflagellates. American Association of Stratigraphic Palynologists Foundation Contr. Ibutions Series, Salt Lake City.
    [Google Scholar]
  33. Fisher, R.A. (1953) Dispersion on a sphere. Proc. Roy. Soc. London Ser. A Math. Phys. Sci., 217, 295–305.
    [Google Scholar]
  34. Gao, Z., Chen, K. & Wei, J. (2000) The Lithostratigraphic Dictionary of China. China University of Geosciences Press, Wuhan.
    [Google Scholar]
  35. Garzione, C., Ikari, M.J. & Basu, A.R. (2005) Source of Oligocene to Pliocene sedimentary rocks in the Linxia basin in northeastern Tibet from Nd isotopes: implications for tectonic forcing of climate. Geol. Soc. Am. Bull., 117, 1156–1166.
    [Google Scholar]
  36. Gasson, E., Siddall, M., Lunt, D.J., Rackham, O.J.L., Lear, C.H. & Pollard, D. (2012) Exploring uncertainties in the relationship between temperature, ice volume, and sea level over the past 50 million years. Rev. Geophys., 50, 1–35.
    [Google Scholar]
  37. Gomes‐Rodrigues, H., Marivaux, L. & Vianey‐Liaud, M. (2012) Expansion of open landscapes in Northern China during the Oligocene induced by dramatic climate changes: paleoecological evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol., 358–360, 62–71.
    [Google Scholar]
  38. Gorizdro, S.F. (1913) Material for the Tertiary Turkestan Fauna Study: Trudy I. Petrogradskago Obshestva Estestvoispitatelei. Otd. geol. i min, 37, 1–57.
    [Google Scholar]
  39. Gradstein, F.M., Ogg, J.G., Schmitz, M. & Ogg, G. (2012) The geologic Time Scale 2012. Elsevier, Cambridge University Press, Cambridge.
    [Google Scholar]
  40. Graham, S.A. (1987) Tectonic controls on petroleum occurrence in central California. In: Cenozoic Basin Development of Coastal California (Ed. by R.V.Ingersoll & W.G.Ernst ) Rubey, VI, 47–63.
    [Google Scholar]
  41. Graham, S.A., Chamberlain, C.P., Yue, Y.J., Ritts, B.D., Hanson, A.D., Horton, T.W., Waldbauer, J.R., Poage, M.A. & Feng, X. (2005) Stable isotope records of Cenozoic climate and topography, Tibetan Plateau and Tarim Basin. Am. J. Sci., 305, 101–118.
    [Google Scholar]
  42. Guo, X. (1991) An approach to the depositional environment of the Cretaceous Kizilsu Group: the lowermost marine horizon of the Cretaceous in the western Tarim Basin. Acta Geol. Sinica, 2, 188–198.
    [Google Scholar]
  43. Hao, Y.C. & Zeng, X.L. (1984) On the evolution of the West Tarim Gulf from Mesozoic to Cenozoic in terms of characteristics of foraminiferal fauna. Acta Micropalaeontol. Sinica, 1, 1–13.
    [Google Scholar]
  44. Hendrix, M.S., Graham, S.A., Carroll, A.R., Sobel, E.R., Mcknight, C.L., Schulein, B.J. & Wang, Z. (1992) Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: evidence from Mesozoic Strata of the north Tarim, South Junggar, and Turpan Basins, Northwest China. Geol. Soc. Am. Bull., 104, 53–79.
    [Google Scholar]
  45. van Hinsbergen, D.J.J., Lippert, P.C., Dupont‐Nivet, G., McQuarrie, N., Doubrovine, P.V., Spakman, W. & Torsvik, T.H. (2012) Greater India Basin hypothesis and a two‐stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci., 109, 7659–7664.
    [Google Scholar]
  46. Hoorn, C., Straathof, J., Abels, H.A., Yadong, X., Utescher, T. & Dupont‐Nivet, G. (2012) Late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeogr. Palaeoclimatol. Palaeoecol., 344–345, 16–38.
    [Google Scholar]
  47. Houben, A.J.P., Bijl, P.K., Guerstein, G.R., Sluijs, A. & Brinkhuis, H. (2011) Malvinia escutiana, a new biostratigraphically important Oligocene dinoflagellate cyst from the Southern Ocean. Rev. Palaeobot. Palynol., 165, 175–182.
    [Google Scholar]
  48. Iakovleva, A.I. & Heilmann‐Clausen, C. (2010) Eocene dinoflagellate cyst biostratigraphy of research borehole 011‐Bp, Omsk Region, southwestern Siberia. Palynology, 34, 195–232.
    [Google Scholar]
  49. Jia, C.
    , Wei, G. , Wang, L. , Jia, D. & Guo, Z. (eds.) (1997) Tectonic Characteristics and Petroleum, Tarim Basin, China. Petroleum Industry Press, Beijing.
    [Google Scholar]
  50. Jia, C., Zhang, S. & Wu, S. (2004) Stratigraphy of the Tarim Basin and Adjacent Areas. Science Press, Beijing.
    [Google Scholar]
  51. Jin, X., Wang, J., Chen, B. & Ren, L. (2003) Cenozoic depositional sequences in the piedmont of the west Kunlun and their paleogeographic and tectonic implications. J. Asian Earth Sci., 21, 755–765.
    [Google Scholar]
  52. Johnson, C.L., Hudson, S.M., Rowe, H.D. & Efendiyeva, M.A. (2009) Geochemical constraints on the Palaeocene–Miocene evolution of eastern Azerbaijan, with implications for the South Caspian Basin and eastern Paratethys. Basin Res., 22, 733–750.
    [Google Scholar]
  53. Jolivet, M., Brunel, M., Seward, D., Xu, Z., Yang, J., Roger, F., Tapponnier, P., Malavieille, J., Arnaud, N. & Wu, C. (2001) Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau: fission‐track constraints. Tectonophysics, 343, 111–134.
    [Google Scholar]
  54. Katz, M.E., Miller, K.G., Wright, J.D., Wade, B.S., Browning, J.V., Cramer, B.S. & Rosenthal, Y. (2008) Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nat. Geosci., 1, 329–334.
    [Google Scholar]
  55. Keen, M.C. (1978) The Tertiary‐ Paleogene. In: A Stratigraphical Index of British Ostracoda (Ed. by R.H.Bate , E.Robinson ), pp. 385–449. Seel House Press, Liverpool.
    [Google Scholar]
  56. Keij, A.J. (1957) Eocene and Oligocene Ostracoda of Belgium. Mémoires Institut Royal des Sciences Naturelles de Belgique), Brussels.
    [Google Scholar]
  57. Kent‐Corson, M.L., Ritts, B.D., Zhuang, G., Bovet, P.M., Graham, S.A. & Page Chamberlain, C. (2009) Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth Planet. Sci. Lett., 282, 158–166.
    [Google Scholar]
  58. Kirschvink, J.L. (1980) The least‐square line and plane and the analysis of paleomagnetic data. Geophys. J. Roy. Astron. Soc., 62, 699–718.
    [Google Scholar]
  59. Kominz, M.A., Browning, J.V., Miller, K.G., Sugarman, P.J., Mizintseva, S. & Scotese, C.R. (2008) Late Cretaceous to Miocene Sea‐Level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis. Basin Res., 20, 211–226.
    [Google Scholar]
  60. Kraatz, B.P. & Geisler, J.H. (2010) Eocene‐Oligocene transition in central Asia and its effects on mammalian evolution. Geology, 38, 111–114.
    [Google Scholar]
  61. Kutzbach, J.E., Geutter, P.J., Ruddiman, W.F. & Prell, W.L. (1989) Sensitivity of climate to late Cenozoic uplift in southern Asia and the Amercian West: numerical experiments. J. Geophys. Res., 94, 18,393–318,407.
    [Google Scholar]
  62. Lan, X. (1997) Paleogene bivalve communities in the western Tarim Basin and their paleoenvironmental implications. Paleoworld, 7, 137–157.
    [Google Scholar]
  63. Lan, X. & Wei, J. (eds.) (1995) Late Cretaceous‐Early Tertiary Marine bivalve fauna from the Western Tarim Basin. Chinese Science Publishing House, Beijing.
    [Google Scholar]
  64. Lear, C.H., Bailey, T.R., Pearson, P.N., Coxall, H.K. & Rosenthal, Y. (2008) Cooling and ice growth across the Eocene‐Oligocene transition. Geology, 36, 251–254.
    [Google Scholar]
  65. Lord, A.R., Whittacker, J.E. & King, C. (2009) Paleogene. In: Ostracods in British Stratigraphy (Ed. by J.E.Whitaker & M.B.Hart ), pp. 374–409. The Micropaleontological Society, Special Publications, London.
    [Google Scholar]
  66. Mao, S. & Norris, G. (1988) Late Cretaceous‐Early Tertiary Dinoflagellates and Acritarchs from the Kashi Area, Tarim Basin, Xinjiang Province, China. Royal Ontario Museum, Toronto.
    [Google Scholar]
  67. Martini, E. (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Proceedings 2nd International Conference Planktonic Microfossils (Ed. by A.Farinacci ) Roma, 2, 739–785.
    [Google Scholar]
  68. McFadden, P.L. & McElhinny, M.W. (1988) The combined analysis of remagnetization circles and direct observations in palaeomagnetism. Earth Planet. Sci. Lett., 87, 161–172.
    [Google Scholar]
  69. McFadden, P.L. & McElhinny, M.W. (1990) Classification of the reversal test in palaeomagnetism. Geophys. J. Int., 103, 725–729.
    [Google Scholar]
  70. Meng, Z., Deng, Y., Ding, Z., Li, Y. & Sun, D. (1998) New paleomagnetic results from Ceno‐Mesozoic volcanic rocks along southern rim of the Tarim Basin, China. Sci. China Ser. D Earth Sci. (English edition), 41, 91–104.
    [Google Scholar]
  71. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie‐Blick, N. & Pekar, S.F. (2005) The phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  72. Mourik, C.A.V. & Brinkhuis, H. (2005) The Massignano Eocene–Oligocene golden spike section revisited. Stratigraphy, 2, 13–30.
    [Google Scholar]
  73. Mullender, T.A.T., van Velzen, A.J. & Dekkers, M. (1993) Continuous drift correction and separate identification of ferromagnetic and paramagnetic contribution in thermomagnetic runs. Geophys. J. Int., 114, 663–672.
    [Google Scholar]
  74. Okada, H. & Bukry, D. (1980) Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphic zonation (Bukry 1973, 1975). Mar. Micropaleontol., 5, 321–325.
    [Google Scholar]
  75. Passier, H.F., de Lange, G.J. & Dekkers, M.J. (2001) Magnetic properties and geochemistry of the active oxidation front and the youngest sapropel in the eastern Mediterranean sea. Geophys. J. Int., 145, 604–614.
    [Google Scholar]
  76. Pekar, S.F., Christie‐Blick, N., Kominz, M.A. & Miller, K.G. (2002) Calibration between eustatic estimates from backstripping and oxygen isotopic records for the Oligocene. Geology, 30, 903.
    [Google Scholar]
  77. Pietrzeniuk, E. (1969) Taxonomische Und Biostratigraphishe Untersuchungen an Ostracoden Des Eozän 5 Im Norden Der Deutschen Demokratischen Republik. Paläontologische Abhandlungen Abteilung A: Paläozoologie, Berlin.
    [Google Scholar]
  78. Pirkenseer, C. & Berger, J.P. (2011) Paleogene Ostracoda from the Southern Upper Rhine Graben: Taxonomy, Palaeogeoecology and Palaeobiogeography. Palaeontographica, Abteilung A, 295, 1–149.
    [Google Scholar]
  79. Popov, S., Rögl, F., Rozanov, A.Y., Steininger, F.F., Shcherba, I.G. & Kovac, M. (2004) Lithological–Paleogeographic maps of Paratethys 10 Maps Late Eocene to Pliocene. Cour. Forsch. Senckenb., 250, 1–42.
    [Google Scholar]
  80. Popov, S.V., Sychevskaya, E.K., Akhmetiev, M.A., Zaporozhets, N.I. & Golovina, L.A. (2008) Stratigraphy of the maikop group and pteropoda beds in northern azerbaijan. Stratigr. Geol. Correl., 16, 664–677.
    [Google Scholar]
  81. Popov, S.V., Antipov, M.P., Zastrozhnov, A.S., Kurina, E.E. & Pinchuk, T.N. (2010) Sea‐level fluctuations on the northern shelf of the eastern paratethys in the Oligocene–Neogene. Stratigr. Geol. Correl., 18, 200–224.
    [Google Scholar]
  82. Prell, W.L. & Kutzback, J.E. (1992) Sensitivity of the indian monsoon to forcing parameters and implications for its evolution. Nature, 360, 647–652.
    [Google Scholar]
  83. Quan, C., Liu, Y.S.C. & Utescher, T. (2011) Paleogene evolution of precipitation in northeastern china supporting the middle eocene intensification of the East Asian monsoon. Palaios, 26, 743–753.
    [Google Scholar]
  84. Quan, C., Liu, Y.‐S.C. & Utescher, T. (2012) Paleogene temperature gradient, seasonal variation and climate evolution of northeast China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 313–314, 150–161.
    [Google Scholar]
  85. Ramstein, G., Fluteau, F., Besse, J. & Joussaume, S. (1997) Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature, 386, 788–795.
    [Google Scholar]
  86. Reading, H.G.
    (ed.) (2006) Sedimentary Environments: Processes Facies and Stratigraphy. Blackwell Publishing Inc., Oxford.
    [Google Scholar]
  87. Ritts, B.D., Yue, Y., Graham, S.A., Sobel, E.R., Abbink, O.A. & Stockli, D. (2008) From sea level to high elevation in 15 million years:uplift history of the northern Tibetan Plateau margin in the Altun Shan. Am. J. Sci., 308, 657–678.
    [Google Scholar]
  88. Robinson, A.G., Rudat, J.H., Banks, C.J. & Wiles, R.L.F. (1996) Petroleum geology of the black sea. Mar. Petrol. Geol., 13, 195–223.
    [Google Scholar]
  89. Robinson, D.M., Dupont‐Nivet, G., Gehrels, G.E. & Zhang, Y. (2003) The Tula Uplift, northwestern China; evidence for regional tectonism of the northern Tibetan Plateau during late Mesozoic–early Cenozoic time. Geol. Soc. Am. Bull., 115, 35–47.
    [Google Scholar]
  90. Rögl, F. (1999) Short note: Mediterranean and Paratethys. facts and hypotheses of an Oligocene to Miocene Paleogeography (short overview). Geol. Carpath., 50, 339–349.
    [Google Scholar]
  91. Ruddiman, W.F. & Kutzbach, J.E. (1989) Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J. Geophys. Res., 94, 18,409–18,427.
    [Google Scholar]
  92. Rusu, A. (1985) Oligocene events in Transylvania (Romania) and the first separation of Paratethys. DS Inst. Geol. Geofiz., 72–73, 207–223.
    [Google Scholar]
  93. Rusu, A., Brotea, D. & Melinte, M.C. (2004) Biostratigraphy of the bartonian deposits from Gilău area (NW Transylvania, Romania). Acta Palaeontol. Romaniae, 4, 441–454.
    [Google Scholar]
  94. Schulz, H.‐M., Bechtel, A. & Sachsenhofer, R.F. (2005) The birth of the Paratethys during the Early Oligocene: from Tethys to an ancient Black Sea analogue?Global Planet. Change, 49, 163–176.
    [Google Scholar]
  95. Sheldon, E. (2002) Palaeogene nannofossil biostratigraphy of the Kangâmiut‐1 and Nukik‐2 wells, offshore West Greenland. Mar. Petrol. Geol., 20, 1031–1041.
    [Google Scholar]
  96. Sobel, E.R. & Dumitru, T.A. (1997) Thrusting and exhumation around the margins of the western Tarim basin during the India‐Asia collision. J. Geophys. Res., 102, 5043–5063.
    [Google Scholar]
  97. Stenzel, H.B. (1971) Oysters. In: Treatise on Invertebrate Paleontology (Ed. by R.C.Moore ), pp. 953–1224. Vol. 3. Geological Society of America, Boulder, CO and University of Kansas Press, Lawrence, KS.
    [Google Scholar]
  98. Sun, X. & Wang, P. (2005) How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 222, 181–222.
    [Google Scholar]
  99. Szczechura, J. (1977) Ostracods from the Upper Eocene of East Poland. Acta Palaeontol. Pol., 22, 55–92.
    [Google Scholar]
  100. Tang, T., Yang, H., Lan, X., Yu, C., Xue, Y., Zhang, Y., Hu, L., Zhong, S. & Wei, J. (1989) Marine Late Cretaceous and Early Tertiary stratigraphy and Petroleum Geology in Western Tarim Basin, China. Science Press, Beijing.
    [Google Scholar]
  101. Tang, T., Xue, Y. & Yu, C. (1992) Characteristics and Sedimentary Environments of the Late Cretaceous to Early Tertiary Marine Strata in the Western Tarim, China. Science Press, Beijing.
    [Google Scholar]
  102. Thomas, J.‐C., Chauvin, A., Gapais, D., Bazhenov, M.L., Perroud, H., Cobbold, P.R. & Burtman, V.S. (1994) Paleomagnetic evidence for cenozoic block rotations in the Tadjik depression (Central Asia). J. Geophys. Res., 99, 15141–15160.
    [Google Scholar]
  103. Tian, Z., Chai, G. & Kang, Y. (1989) Tectonic evolution of the Tarim Basin. In: Chinese Sedimentary Basins (Ed. by X.Zhu ), Sed. Basins World, 1, 33–42.
    [Google Scholar]
  104. Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. (2005) Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436, 341–346.
    [Google Scholar]
  105. Tripati, A.K., Eagle, R.A., Morton, A., Dowdeswell, J.A., Atkinson, K.L., Bahé, Y., Dawber, C.F., Khadun, E., Shaw, R.M.H. & Shorttle, O. (2008) Evidence for glaciation in the Northern hemisphere back to 44 Ma from Ice‐Rafted Debris in the Greenland Sea. Earth Planet. Sci. Lett., 265, 112–122.
    [Google Scholar]
  106. Varol, Q. (1998) Palaeogene. In: Calcareous Nannofossil Biostratigraph Y British Micropal (Ed. by P.R.Brown ), pp. 200–224. Chapman & Hall/Kluwer Academic, New York.
    [Google Scholar]
  107. Villa, G., Fioroni, F., Pea, L., Bohaty, S. & Persico, D. (2008) Middle Eocene–Late Oligocene climate variability: calcareous nannofossil response at Kerguelen Plateau, Site 748. Mar. Micropaleontol., 69, 173–192.
    [Google Scholar]
  108. Vincent, S.J., Allen, M.B., Ismail‐Zadeh, A.D., Flecker, R., Foland, K.A. & Simmons, M.D. (2005) Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. GSA Bull., 117, 1513–1533.
    [Google Scholar]
  109. Vyalov, O.S. (1937) Sur La Clasification Des Ostreides Et Leur Valeur Stratigraphique, Intern . Congr. Zool., Lisbonne, 1627–1638.
    [Google Scholar]
  110. Wang, C., Hong, H., Li, Z., Yin, K., Xie, J., Liang, G., Song, B., Song, E. & Zhang, K. (2012) The Eocene–Oligocene climate transition in the Tarim Basin, Northwest China: evidence from clay mineralogy. Appl. Clay Sci., 74, 10–19.
    [Google Scholar]
  111. Yang, Y. & Liu, M. (2002) Cenozoic deformation of the Tarim Plate and the implications for mountain building in the Tibetan Plateau and the Tian Shan. Tectonics, 21, 1059.
    [Google Scholar]
  112. Yang, H., Jiang, X. & Lin, S. (1995) Late Cretaceous‐ Early Tertiary Ostracod Fauna from Western Tarim Basin, South Xinjiang, China. Science Press, Beijing.
    [Google Scholar]
  113. Yang, H.J., Shen, J.W., Zhang, L.J., Li, M., Huang, Z.B. & Wang, Y. (2012) Serpulids and their paleoecology of the Paleogene Kalatar formation in southwest Tarim Basin of China. Sci. China Earth Sci., 55, 1087–1100.
    [Google Scholar]
  114. Yeşilyurt, N., Tunoğlu, C. & Ertekin, İ. (2009) Ostracoda assemblage and environmental interpretation of the Bartonian–Priabonian Seydiler Formation (Kastamonu‐Northern Turkey). Geol. Bull. Turk., 52, 20–85.
    [Google Scholar]
  115. Yin, A. & Harrison, M.T. (2000) Geologic Evolution of the Himalayan‐Tibetan orogen. Annu. Rev. Earth Planet. Sci., 28, 211–280.
    [Google Scholar]
  116. Yin, A., Rumelhart, P.E., Butler, R.F., Cowgill, E., Harrison, T.M., Foster, D.A., Ingersoll, R.V., Zang, Q., Zhou, X.‐Q., Wang, X.‐F., Hanson, A. & Raza, A. (2002) Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geol. Soc. Am. Bull., 114, 1257–1295.
    [Google Scholar]
  117. Zachos, J.C., Dickens, G.R. & Zeebe, R.E. (2008) An early Cenozoic perspective on greenhouse warming and carbon‐cycle dynamics. Nature, 451, 279–283.
    [Google Scholar]
  118. Zhang, Z., Wang, H., Guo, Z. & Jiang, D. (2007) What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?Palaeogeogr. Palaeoclimatol. Palaeoecol., 245, 317–331.
    [Google Scholar]
  119. Zhang, Z., Flatøy, F., Wang, H., Bethke, I., Bentsen, M. & Guo, Z. (2012) Early Eocene Asian climate dominated by desert and steppe with limited monsoons. J. Asian Earth Sci., 44, 24–35.
    [Google Scholar]
  120. Zheng, J., He, X. & Liu, S. (1999) Dictionary of Chinese Stratigraphy‐Tertiary. Geology Press, Beijing.
    [Google Scholar]
  121. Zhong, S. (1992) Calcareous Nannofossils from the Upper Cretaceous and Lower Tertiary in the Western Tarim Basin, South Xinjiang, China. Chinese Science Publishing House, Beijing.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12054
Loading
/content/journals/10.1111/bre.12054
Loading

Data & Media loading...

Supplements

. Plates showing the most important species of calcareous nannofossils recognized. (1, 2) , X nicols (KZ‐B'‐094'); (3) , X nicols (KZ‐B'000'); (4) X nicols (KZ‐B'‐094'), X nicols; (5, 6) , X nicols (KZ‐B'000'); (7, 10) X nicols (AT‐B02); (8, 9) , X nicols (AT‐B02); (11) sp., X nicols (AT‐B02); (12) sp. >5 mm, X nicols (ATB02).

PDF

. Plates showing light photomicrographs of key dinoflagellate cysts species, green algae and pollen recognized. The bar for scale applies to all photographed specimens, apart from 13. (1) (AT‐B02); (2) Fragment of (KY‐B09); (3) (KY‐B07); cpx (KY‐B07); (5) spp. (KY‐B07); (6) (KZ‐B'‐087′); (7) sp. (KY‐B07); (8) (AT‐B37); (9) spp. (AT‐B37); (10) (KY‐B09).

PDF

. Continued from Fig. S2a. (11) spp. (KY‐B07); (12) (KY‐B07); (13) Fragment of (KY‐B07); (14) (AT‐B02); (15) (AT‐B37); (16) (AT‐B37); (17) (KY‐B07); (18) (KY‐B07); (19) spp. (AT‐B37); (20) spp. (KY‐B07); (21) Tasmaniceae (prasinophyte algae) (AT‐B37); (22) pollen (KY‐B07). (23) Pollen sp. (AT‐B02).

PDF

. Mollusk content of examined samples. c, common; f, frequent; r, rare; x, present, brackets for uncertain identification.

WORD

. Range chart of recognized calcareous nannofossils. The numbers correspond to counted specimens in 400 Fields of view at 100×. Dark grey cells correspond to barren samples and white to fossiliferous marine samples.

WORD

. Range chart of recognized palynomorphs. Dark‐shaded cells correspond to barren, light‐shaded to almost barren and nonshaded to fossiliferous marine samples.

WORD

. Declination and inclination of ChRM directions in (IS) and tilt‐corrected (TC) coordinates for the Kezi (KZ) section. MAD is the mean angular deviation. ChRM directions obtained by great circle analysis are indicated by # and forced line‐fits by *. Directions rejected by a 45° cut‐off angle (Deenen ., 2011) are printed in bold.

WORD

. Declination and inclination of ChRM directions in (IS) and tilt‐corrected (TC) coordinates for the Aertashi (AT) section. MAD is the mean angular deviation. ChRM directions obtained by great circle analysis are indicated by # and forced line‐fits by *. Directions rejected by a 45° cut‐off angle (Deenen ., 2011) are printed in bold.

WORD
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error