1887
Volume 26, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Interpretation of long‐offset 2D depth‐imaged seismic data suggests that outer continental margins collapse and tilt basinward rapidly as rifting yields to seafloor spreading and thermal subsidence of the margin. This collapse post‐dates rifting and stretching of the crust, but occurs roughly ten times faster than thermal subsidence of young oceanic crust, and thus is tectonic and pre‐dates the ‘drift stage’. We term this middle stage of margin development ‘outer margin collapse’, and it accords with the exhumation stage of other authors. Outer continental margins, already thinned by rifting processes, become hanging walls of crustal‐scale half grabens associated with landward‐dipping shear zones and zones of low‐shear strength magma at the base of the thinned crust. The footwalls of the shear zones comprise serpentinized sub‐continental mantle that commonly becomes exhumed from beneath the embrittled continental margin. At magma‐poor margins, outer continental margins collapse and tilt basinward to depths of about 3 km subsea at the continent–ocean transition, often deeper than the adjacent oceanic crust (accreted later between 2 and 3 km). We use the term ‘collapse’ because of the apparent rapidity of deepening (<3 Myr). Rapid salt deposition, clastic sedimentation (deltaic), or magmatism (magmatic margins) may accompany collapse, with salt thicknesses reaching 5 km and volcanic piles 1525 km. This mechanism of rapid salt deposition allows mega‐salt basins to be deposited on end‐rift unconformities at global sea level, as opposed to deep, air‐filled sub‐sea depressions. Outer marginal collapse is ‘post‐rift’ from the perspective of faulting in the continental crust, but of tectonic, not of thermal, origin. Although this appears to be a global process, the Gulf of Mexico is an excellent example because regional stratigraphic and structural relations indicate that the pre‐salt rift basin was filled to sea level by syn‐rift strata, which helps to calibrate the rate and magnitude of collapse. We examine the role of outer marginal detachments in the formation of East India, southern Brazil and the Gulf of Mexico, and how outer marginal collapse can migrate diachronously along strike, much like the onset of seafloor spreading. We suggest that backstripping estimates of lithospheric thinning (beta factor) at outer continental margins may be excessive because they probably attribute marginal collapse to thermal subsidence.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12059
2014-03-10
2020-04-05
Loading full text...

Full text loading...

References

  1. Burke, K. (1975) Atlantic evaporites formed by evaporation of water spilled from Pacific, Tethyan, and Southern oceans. Geology, 3, 613–616.
    [Google Scholar]
  2. Diegel, E.A., Schuster, D.C., Karlo, J.F., Shoup, R.C. & Tauvers, P.R. (2001) Cenozoic Structural Evolution and Tectono‐Stratigraphic Framework of the Northern Gulf Coast Continental Margin. Search and Discovery, Article #30006.
  3. Dobson, L.M. & Buffler, R.T. (1997) Seismic stratigraphy and geologic history of Jurassic rocks, northeastern Gulf of Mexico. Am. Assoc. Pet. Geol. Bull., 81, 100–120.
    [Google Scholar]
  4. Driscoll, N.W. & Karner, G.D. (1998) Lower crustal extension across the Northern Carnarvon Basin, Australia: evidence for an eastward dipping detachment. J. Geophys. Res., 103(B3), 4975–4991.
    [Google Scholar]
  5. Freitas, J.T.R. (2006) Ciclos deposicionais evaporíticos da Bacia de Santos: uma análise cicloestratigráfica a partir de dados de 2 poços e de traços de sismica. MSc Thesis, Universidade Federal do Rio Grande do Sul, Instituto de Geociencias, Porta Alegre, Brazil.
  6. Geoffroy, L. (2005) Volcanic passive margins. Geoscience, 337, 1395–1408.
    [Google Scholar]
  7. Grow, J.A., Hutchinson, D.R., Klitgord, K., Dillon, W.P. & Schlee, J.S. (1983) Representative multichannel seismic profiles over the U.S. Atlantic Margin. In: Seismic Expression of Structural Styles. AAPG, Studies in Geology Series 15, volume 2 (Ed by A.Bally ), pp. 1–19. APAG ‐ American Association of Petroleum Geologists, Tulsa, OK.
    [Google Scholar]
  8. Hames, W.E., McHone, J.G., Renne, P. & Ruppel, C. (2003) The Central Atlantic magmatic province: insights from fragments of Pangea. American Geophysical Union, Geophysical Monograph series, 137, 267.
    [Google Scholar]
  9. Handford, C.R. (1991) Marginal marine halite: sabkhas and Salinas. In: Evaporites, Petroleum and Mineral Resources (Ed. by J.L.Melvin ), pp. 1–66. Elsevier, Amsterdam.
    [Google Scholar]
  10. Hinz, K. (1981) A hypothesis on terrestrial catastrophes: wedges of very thick oceanward dipping layers beneath passive continental margins–their origin and paleoenvironmental significance. Geologisches Jahrbuch, Reihe E, Geophysik, 22, 3–28.
    [Google Scholar]
  11. Hoffmann, H.J. & Reston, T.J. (1992) The nature of the S reflector beneath the Galicia Bank rifted margin: preliminary results from pre‐stack depth migration. Geology, 20, 1091–1094.
    [Google Scholar]
  12. Hudec, M., Norton, I., Jackson, M.P.A. & Peel, F. (2013) Jurassic evolution of the Gulf of Mexico Salt Basin. Am. Assoc. Pet. Geol. Bull., 97, 1683–1710. doi:10.1306/04011312073
    [Google Scholar]
  13. Huismans, R.S. & Beaumont, C. (2008) Complex rifted continental margins explained by dynamical models of depth‐dependent lithospheric extension. Geology, 36(2), 163–166.
    [Google Scholar]
  14. Huismans, R. & Beaumont, C. (2011) Depth dependent extension, two‐stage break up and cratonic underplating at rifted margins. Nature, 5, 74–79.
    [Google Scholar]
  15. Imbert, P. & Philippe, Y. (2005) The Mesozoic opening of the Gulf of Mexico; Part 2, integrating seismic and magnetic data into a general opening model: Gulf Coast Section of the Society of Economic and Paleontological Mineralogists Foundation. Annual Bob F. Perkins Research Conference, 25th, pp. 1151–1189.
  16. Karner, G.D. & Gamboa, L.A.P. (2007) Timing and origin of the South Atlantic pre‐salt sag basins and their capping evaporites. In: Evaporites through Space and Time (Ed by SchreiberB.C. , LugliS. & BabelM. ) Geol. Soc. London Spec. Publ., 285, 15–35.
    [Google Scholar]
  17. Khalil, S. & Mcclay, K.R. (2004) Structural Control on Miocene Sediment‐input Sites, Northwestern Red Sea, Egypt. Proceedings of the 7th Conference of Geology of Sinai for Development, Suez Canal University, pp. 299–317.
  18. Kusznir, N.J. & Karner, G.D. (2007) Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: application to the Woodlark, Newfounland and Iberia margins. In: Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup (Ed by KarnerG.D. , ManatschalG. & PinherioL.M. ) Geol. Soc. London Spec. Publ., 282, 389–419.
    [Google Scholar]
  19. Lemoine, M. (1975) Mesozoic Sedimentation and Tectonic Evolution of the Briançonnais Zone in the Western Alps – Possible Evidence for an Atlantic‐type Margin between the European Craton and the Tethys. International Sedimentology Congress, Nice, Theme, 4, 211–216.
    [Google Scholar]
  20. Lister, G.S., Etheridge, M.A. & Symonds, P.A. (1986) Detachment faulting and the evolution of passive continental margins. Geology, 14, 246–250.
    [Google Scholar]
  21. Manatschal, G. & Lavier, L. (2010) The role of detachment faults during crustal thinning, mantle exhumation and continental breakup at magma‐poor margins. Conference contribution AGU‐Chapman Conference on Detachments in Oceanic Lithosphere, Argos, Cyprus.
  22. Manatschal, G., Müntener, O., Lavier, L.L., Minshull, T.A. & Péron‐Pinvidic, G. (2007) Observations from the Alpine Tethys and Iberia‐Newfoundland margins pertinent to the interpretation of continental breakup. In: Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup (Ed by KarnerG.D. , ManatschalG. & PinheiroL.M. ) Geol. Soc. London Spec. Publ., 282, 291–324.
    [Google Scholar]
  23. Marzoli, A., Bertrand, H., Knight, K.B., Cirilli, S., Buratti, N., Vérati, C., Nomade, S., Renne, P.R., Youbi, N., Martini, R., Allenbach, K., Neuwerth, R., Rapaille, C., Zaninetti, L. & Bellieni, G. (2004) Synchrony of the Central Atlantic magmatic province and the Triassic‐Jurassic boundary climatic and biotic crisis. Geology, 32, 973–976.
    [Google Scholar]
  24. Meijer, P.T. & Krijgsman, W. (2005) A quantitative analysis of the desiccation and re‐filling of the Mediterranean during the Messinian Salinity Crisis. Earth Planet. Sci. Lett., 240, 510–520.
    [Google Scholar]
  25. Mello, M.R., De Azambuia Filho, N.C., Bender, A.A., Barbanti, S.M., Mohriak, W., Schmitt, P. & De Jesus, C.L.C. (2013) The Namibian and Brazilian southern South Atlantic petroleum systems: are they comparable analogues? In: Conjugate Divergent Margins (Ed. by MohriakW. , Danforth, A. , Post, P.J. , Brown, D.E. , Tari, G.C. , Nemčok, M. & SinhaS.T. ) Geol. Soc. London Spec. Publ., 369, 249–266.
    [Google Scholar]
  26. Miranda‐Madrigal, E. (2011) Interpretación Geológica e Implicaciones Petroleras de un Sector del Golfo de Méxio Profundo Aledaño al Borde NW de la Plataforma de Yucatán. MS Thesis, Universidad Autónoma de Nuevo León, 180 pp.
  27. Mohn, G., Manatschal, G., Beltrando, M., Masini, E. & Kusznir, N. (2012) Necking of continental crust in magma‐poor rifted margins: evidence from the fossil Alpine Tethys margins. Tectonics, 31, TC1012, doi: 10.1029/2011TC002961
    [Google Scholar]
  28. Montaron, B. & Tapponnier, P. (2010) A Quantitative Model for Salt Deposition in Actively Spreading Basins. Search and Discovery (from an oral presentation at American Association of Petroleum Geologists, Rio de Janiero, November 2009).
  29. Mount, V., Dull, K. & Mentemeier, S. (2007) Structural style and evolution of traps in the Paleogene Play, deepwater Gulf of Mexico. In: Proceedings 27th GCSSEPM Bob F. Perkins Research Conference, Houston, TX (Ed. by L.Kennan , J.Pindell & N.Rosen ), pp. 54–80.
    [Google Scholar]
  30. Mutter, J.C., Talwani, M. & Stoffa, P.L. (1982) Origin of seaward dipping reflectors in oceanic crust off the Norwegian margin by sub‐aerial seafloor spreading. Geology, 10, 353–357.
    [Google Scholar]
  31. Nagel, T.J. & Buck, R. (2007) Control of rheological stratification on rifting geometry: a symmetric model resolving the upper plate paradox. Int. J. Earth Sci., 96, 1047–1057.
    [Google Scholar]
  32. Nemčok, M., Sinha, S.T., Stuart, C.J., Welker, C., Choudhuri, M., Sharma, S.P., Misra, A.A., SINHA, N. & Venkatraman, S. (2013) East Indian margin evolution and crustal architecture: integration of deep reflection seismic interpretation and gravity modeling (Ed. by MohriakW. , Danforth, A. , Post, P.J. , Brown, D.E. , Tari, G.C. , Nemčok, M. & SinhaS.T. ). Geol. Soc. London Spec. Publ. 369, 477–496.
    [Google Scholar]
  33. Ochoa‐Camarillo, H., Buitrón‐Sánchez, B.E. & Silva‐Pineda, A. (1999) Redbeds of the Huayacocotla Anticlinorium, State of Hildalga, East‐central Mexico. In: Mesozoic Sedimentary and Tectonic History of North‐central Mexico (Ed. by C.Bartolini , J.L.Wilson & T.F.Lawton ) Geol. Soc. Am. Spec. Paper, 340, 59–74.
    [Google Scholar]
  34. Peel, F., Travis, C.J. & Hossack, J. (1995) Genetic structural provinces and salt tectonics of the Cenozoic offshore U.S. Gulf of Mexico: a preliminary analysis. In: Salt Tectonics: A Global Perspective (Ed. by M.P.A.Jackson , D.G.Roberts & S.Snelson ) Am. Assoc. Pet. Geol. Mem., 65, 153–175.
    [Google Scholar]
  35. Péron‐Pindivic, G. & Manatschal, G. (2009) The final riftng evolution at deep magma‐poor passive margins from Iberia‐Newfounland: a new point of view. International Journal of Earth Science, 98, 1581–1597.
    [Google Scholar]
  36. Perón‐Pinvidic, G. & Manatschal, G. (2007) From microcontinents to extensional allocththons: witness of how continents rift and break apart. Petroleum Geoscience, 16, 189–197.
    [Google Scholar]
  37. Pindell, J.L. (1985) Alleghanian reconstruction and the subsequent evolution of the Gulf of Mexico, Bahamas, and Proto‐Caribbean Sea. Tectonics, 4, 1–39.
    [Google Scholar]
  38. Pindell, J.L. (2002) How deep was the Late Jurassic Gulf of Mexico?Offshore Magazine, 62, 60, 62, 63, 100.
    [Google Scholar]
  39. Pindell, J. & Heyn, T. (2011) Rapid subsidence at outer continental margins and SDR packages during the rift‐drift transition: the roles of landward dipping faults and “magmatic detachment”. AAPG Annual Convention and Exhibition, April 10–13, 2011, Houston, Texas, Search and Discovery Article #90124.
  40. Pindell, J. & Kennan, L. (2007) Rift models and the salt‐cored marginal wedge in the northern Gulf of Mexico: implications for deep water Paleogene Wilcox deposition and basinwide maturation. In: Proceedings, Gulf Coast Section of the Society of Economic and Paleontological Mineralogists Foundation (Ed. by J.Pindell & N.Rosen ) Annual Bob F. Perkins Research Conference, 27th, pp. 146–186.
    [Google Scholar]
  41. Pindell, J. & Kennan, L. (2009) Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In: The Origin and Evolution of the Caribbean Plate (Ed. by K.H.James , M.A.Lorente & J.L.Pindell ) Geol. Soc. London Spec. Publ., 328, 1–54.
    [Google Scholar]
  42. Reston, T.J. & McDermott, K. (2011) Successive detachment faults and mantle unroofing at magma poor rifted margins. Geology, 39, 1071–1074.
    [Google Scholar]
  43. Reston, T.J. & Pérez‐Gussinyé, M. (2007) Lithospheric extension from rifting to continental breakup at magma‐poor margins: rheology, serpentinisation and symmetry. International Journal of Earth Science, 96, 189–197.
    [Google Scholar]
  44. Reston, T.J., Krawczy, C.M. & Laeschen, D. (1996) The S reflector west of Galicia (Spain): evidence from pre‐stack depth migration for detachment faulting during v‐continental breakup. Journal Geophysical Research: Solid Earth, 101(B4), 8075–8091.
    [Google Scholar]
  45. Salvador, A. (1991) Origin and development of the Gulf of Mexico Basin. In: The Gulf of Mexico Basin: The Geology of North America, (Ed. by A.Salvador ) Geol. Soc. Am. J, 389–444.
    [Google Scholar]
  46. Sheridan, R.E., Musser, D.L., Glover, L.III, Talwani, M., Ewing, J., Holbrook, W.S., Purdy, G.M., Hawman, R. & Smithson, S. (1993) Deep seismic reflection data of EDGE U.S. Mid‐Atlantic continental margin experiment: Implications for Appalachian sutures and Mesozoic rifting and magmatic underplating. Geology, 21, 563–567.
    [Google Scholar]
  47. Tucholke, B.E., Sawyer, D.S. & Sibuet, J.‐C. (2007) Breakup of the Newfoundland‐Iberia Rift. In: Imaging, Mapping, and Modelling Continental Lithosphere Extension and Breakup (Ed. by G.D.Karner , G.Manatschal & L.M.Pinheiro ) Geol. Soc. London Spec. Publ., 282, 9–46.
    [Google Scholar]
  48. Warren, J.K. (2006) Evaporites: Sediments, Resources, and Hydrocarbons. Springer‐Verlag, 1035pp. Berlin, Heidelberg.
    [Google Scholar]
  49. Whitmarsh, R.B., Dean, S.M., Minshull, T.A. & Tompkins, M. (2000) Tectonic implications of exposure of lower continental crust beneath the Iberia Abyssal Plain, northeast Atlantic Ocean: geophysical evidence. Tectonics, 19, 919–942.
    [Google Scholar]
  50. Whitmarsh, R.B., Miles, P.R., Sibuet, J.‐C. & Louvel, V. (1996) Geological and geophysical implications of deep‐tow magnetometer observations near Sites 897, 898, 899, 900, and 901 on the west Iberia continental margin. In: Proc. ODP, Sci. Results, Vol. 149 (Ed. by WhitmarshR.B. , SawyerD.S. , KlausA. & MassonD.G. ), pp. 665–674. Ocean Drilling Program, College Station, TX.
  51. van Wijk, J.W. & Cloetingh, S.A.P.L. (2002) Basin migration caused by slow lithospheric extension. Earth Planet. Sci. Lett., 198, 275–288.
    [Google Scholar]
  52. Younes, A. & McClay, K.R. (2002) Development of accommodation zones in the Gulf of Suez‐Red Sea Rift, Egypt. Am. Assoc. Pet. Geol. Bull., 86, 1003–1028.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12059
Loading
/content/journals/10.1111/bre.12059
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error