1887
Volume 27, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

Allochthonous salt structures and associated primary and secondary minibasins are exposed in Neoproterozoic strata of the eastern Willouran Ranges, South Australia. Detailed geologic mapping using high‐quality airborne hyperspectral remote‐sensing data and satellite imagery, combined with a qualitative structural restoration, are used to elucidate the evolution of this complex, long‐lived (>250 Myr) salt system. Field observations and interpretations at a resolution unobtainable from seismic or well data provide a means to test published models of allochthonous salt emplacement and associated salt‐sediment interaction derived from subsurface data in the northern Gulf of Mexico. Salt diapirs and sheets are represented by megabreccias of nonevaporite lithologies that were originally interbedded with evaporites that have been dissolved and/or altered. Passive diapirism began shortly after deposition of the Callanna Group layered evaporite sequence. A primary basin containing an expulsion‐rollover structure and megaflap is flanked by two vertical diapirs. Salt flowed laterally from the diapirs to form a complex, multi‐level canopy, now partly welded, containing an encapsulated minibasin and capped by suprasalt basins. Salt and minibasin geometries were modified during the Late Cambrian–Ordovician Delamerian Orogeny (. 500 Ma). Small‐scale structures such as subsalt shear zones, fractured or mixed ‘rubble zones’ and thrust imbricates are absent beneath allochthonous salt and welds in the eastern Willouran Ranges. Instead, either undeformed strata or halokinetic drape folds that include preserved diapir roof strata are found directly below the transition from steep diapirs to salt sheets. Allochthonous salt first broke through the diapir roofs and then flowed laterally, resulting in variable preservation of the subsalt drape folds. Lateral salt emplacement was presumably on roof‐edge thrusts or, because of the shallow depositional environment, via open‐toed advance or extrusive advance, but without associated subsalt deformation.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12067
2014-05-20
2024-03-28
Loading full text...

Full text loading...

References

  1. Ala, M.A. (1974) Salt diapirism in Southern Iran. Am. Assoc. Pet. Geol. Bull., 58, 1758–1770.
    [Google Scholar]
  2. Alexander, R.J., Bjerstedt, T.W. & Moate, S.L. (2005) Edge‐Sigsbee folds, Gulf of Mexico, U.S.A. In: Seismic Interpretation of Contractional Fault‐Related Folds (Ed. by ShawJ.H. , ConnorsC. & SuppeJ. ) Am. Assoc. Pet. Geol. Stud. Geol., 53, 2.20–2.21.
    [Google Scholar]
  3. Backé, G., Baines, G., Giles, D., Preiss, W. & Alesci, A. (2010) Basin geometry and salt diapirs in the Flinders Ranges, South Australia: insights gained from geologically constrained modelling of potential field data. Mar. Pet. Geol., 27, 650–665.
    [Google Scholar]
  4. Belperio, A.P. (1986) Stratigraphy and sedimentology of the Precambrian Skillogalee Dolomite, Northern Flinders Ranges. Geol. Surv. S. Aust. Eighth Aust. Geol. Convent., 15, 29.
    [Google Scholar]
  5. Belperio, A.P. (1987) Stratigraphic sections measured in Adelaidean (Burra Group) rocks in the Willouran Ranges, CURDIMURKA area. South Australia Department of Mines and Energy Report Book, 87/56, 58 p.
  6. Belperio, A.P. (1990) Palaeoenvironmental interpretations of the Late Proterozoic Skillogalee Dolomite in the Willouran Ranges, South Australia. In: The Evolution of a Late Precambrian‐Early Paleozoic Rift Complex: The Adelaide Geosyncline (Ed. by JagoJ.B. & MooreP.S. ) Geol. Soc. S. Aust. Spec. Publ., 16, 85–104.
    [Google Scholar]
  7. von der Borch, C.C. (1980) Evolution of late Proterozoic to early Paleozoic Adelaide foldbelt, Australia: comparisons with post‐Permian rifts and passive margins. Tectonophysics, 70, 115–134.
    [Google Scholar]
  8. Bull, S., Selley, D., Broughton, D., Hitzman, M., Cailteux, J., Large, R. & McGoldrick, P. (2011) Sequence and carbon isotopic stratigraphy of the Neoproterozoic Roan Group strata of the Zambian copperbelt. Precambr. Res., 190, 70–89.
    [Google Scholar]
  9. Burns, K.L., Stephansson, O. & White, J.R. (1977) The Flinders Ranges breccias of South Australia‐diapirs or decollement?J. Geol. Soc. London, 134, 363–384. doi: 10.1144/gsjgs.134.3.0363.
    [Google Scholar]
  10. Cailteux, J. & Kampunzu, A.B. (1995) The Katangan tectonic breccias in the Shaba province (Zaire) and their genetic significance. In: Late Proterozoic Belts in Central and Southwestern Africa (Ed. by WendorffM. & TackL. ) Annales Sciences Géologiques, 101, 63–76, Musée Royal de l'Afrique Centrale, Tervuren, Belgium.
    [Google Scholar]
  11. Coats, R.P. (1964) The geology and mineralization of the Blinman dome diapir. Geol. Surv. S. Aust. Rep. Invest., 26, 52.
    [Google Scholar]
  12. Coats, R.P. (1965) Diapirism in the Adelaide Geosyncline. APEA J., 5, 98–102.
    [Google Scholar]
  13. Coats, R.P. & Preiss, W.V. (1987) Stratigraphy of the Callanna group. In: The Adelaide Geosyncline‐Later Proterozoic Stratigraphy, Sedimentation, Paleontology, and Tectonics (Ed. by PreissW.V. ) Geol. Soc. Aust. Bull., 53, 43–71.
    [Google Scholar]
  14. Dalgarno, C.R. & Johnson, J.E. (1968) Diapiric structures and Late Precambrian‐Early Cambrian sedimentation in Flinders Ranges, South Australia. In: Diapirs and Diapirism (Ed. by BraunsteinJ. & O'BrienG.D. ) Am. Assoc. Pet. Geol. Mem., 8, 301–314.
    [Google Scholar]
  15. Diegel, F.A., Karlo, J.F., Schuster, D.C., Shoup, R.C. & Tauvers, P.R. (1995) Cenozoic structural evolution and tectono‐stratigraphic framework of the northern Gulf Coast continental margin. In: Salt Tectonics: a Global Perspective (Ed. by JacksonM.P.A. , RobertsD.G. & SnelsonS. ) AAPG Mem., 65, 109–151.
    [Google Scholar]
  16. D'onfro, P. (1988) Mechanics of salt tongue formation with examples from Louisiana slope. Am. Assoc. Pet. Geol. Bull., 72, 175.
    [Google Scholar]
  17. Dooley, T.P., Hudec, M.R. & Jackson, M.P.A. (2012) The structure and evolution of sutures in allochthonous salt. Am. Assoc. Pet. Geol. Bull., 96, 1045–1070.
    [Google Scholar]
  18. Drexel, J.F. & Preiss, W.V. (1995) The geology of South Australia, volume 2, the phanerozoic. S. Aust. Geol. Surv. Bull., 54, 347.
    [Google Scholar]
  19. Drexel, J.F., Preiss, W.V. & Parker, A.J. (1993) The Geology of South Australia, Volume 1, The Precambrian. S. Aust. Geol. Surv. Bull., 54, 242.
    [Google Scholar]
  20. Dyson, I.A. (1996) A new model for diapirism in the Adelaide Geosyncline. Divis. Miner. Energy Resour. S. Aust. (MESA) J., 3, 41–48.
    [Google Scholar]
  21. Dyson, I.A. (1998) The ‘Christmas tree diapir’ and salt glacier at Pinda Springs, central Flinders Ranges. Divis. Miner. Energy Resour. S. Aust. (MESA) J, 10, 40–43.
    [Google Scholar]
  22. Dyson, I.A. (2004) Geology of the eastern Willouran Ranges – evidence for earliest onset of salt tectonics in the Adelaide Geosyncline. Divis. Miner. Energy Resour. S. Aust. (MESA) J., 35, 48–56.
    [Google Scholar]
  23. Dyson, I.A. (2005) Evolution of allochthonous salt systems during development of a divergent margin: the Adelaide Geosyncline of South Australia. In: Petroleum Systems of Divergent Continental Margin Basins, 25th Annual Gulf Coast Section SEPM Foundation Bob F. Perkins Research Conference (CD ROM) (Ed. by P.J.Post , N.C.Rosen , D.L.Olson , S.L.Palmes , K.T.Lyons & G.B.Newton ), pp. 541–573. Gulf Coast Section SEPM Foundation, Houston, TX.
    [Google Scholar]
  24. Fletcher, R.C., Hudec, M.R. & Watson, I.A. (1995) Salt glacier and composite sediment‐salt glacier models for the emplacement and early burial of allochthonous salt sheets. In: Salt Tectonics: a Global Perspective (Ed. by JacksonM.P.A. , RobertsD.G. & SnelsonS. ) AAPG Mem., 65, 77–108.
    [Google Scholar]
  25. Flinch, J.F., Bally, A.W. & Wu, S. (1996) Emplacement of a passive‐margin evaporitic allochthon in the Betic Cordillera of Spain. Geology, 24, 67–70.
    [Google Scholar]
  26. Foden, J., Elburg, M.A., Dougherty‐Page, J. & Burtt, A. (2006) The timing and duration of the Delamerian orogeny: correlation with the Ross orogen and implications for Gondwana assembly. J. Geol., 114, 189–210.
    [Google Scholar]
  27. Forbes, B.G. (1980) Three sections measured in Lower Adelaidean (Proterozoic) rocks, Southeastern CURDIMURKA area. Department of Mines and Energy South Australia Report Book, 79/159, 36 p.
  28. Forbes, B.G. (1990) Geology of the Willouran Ranges. In: The Evolution of a Late Precambrian‐Early Paleozoic Rift Complex: the Adelaide Geosyncline (Ed. by JagoJ.B. & MooreP.S. ) Geol. Soc. S. Aust. Spec. Publ., 16, 68–84.
    [Google Scholar]
  29. Forbes, B.G. & Coats, R.P. (1963) Wilpoorinna, South Australia. Geological Survey of South Australia Geological Atlas Series Map, scale 1:63 360, 1 sheet.
  30. Forbes, B.G., Coats, R.P., Webb, B.P. & Horwitz, R.C. (2009) Marree, South Australia. Geological Survey of South Australia Geological Atlas Series Map, 6538, scale 1:100 000, 1 sheet.
  31. Ge, H., Jackson, M.P.A. & Vendeville, B.C. (1997) Kinematics and dynamics of salt tectonics driven by progradation. Am. Assoc. Pet. Geol. Bull., 81, 398–423.
    [Google Scholar]
  32. Giles, K.A. & Lawton, T.F. (2002) Halokinetic sequence stratigraphy adjacent to the El Papalote diapir, northeastern Mexico. Am. Assoc. Pet. Geol. Bull., 86, 823–840.
    [Google Scholar]
  33. Giles, K.A. & Rowan, M.G. (2012) Concepts in halokinetic‐sequence deformation and stratigraphy. In: Salt Tectonics, Sedimentation and Prospectivity (Ed. by AlsopG.I. , ArcherS.G. , HartleyA.J. , GrantN.T. & HodgkinsonR. ) Geol. Soc. Lond. Spec. Publ., 363, 7–31.
    [Google Scholar]
  34. Graham, R., Jackson, M., Pilcher, R. & Kilsdonk, B. (2012) Allochthonous salt in the sub‐Alpine fold–thrust belt of Haute Provence, France. In: Salt Tectonics, Sedimentation and Prospectivity (Ed. by AlsopG.I. , ArcherS.G. , HartleyA.J. , GrantN.T. & HodgkinsonR. ) Geol. Soc. Lond. Spec. Publ., 363, 595–615.
    [Google Scholar]
  35. Hannah, P.T. (2009) Outcrop analysis of an allochthonous salt canopy and salt system, eastern Willouran Ranges, South Australia. MSc thesis, New Mexico State University, Las Cruces.
  36. Harrison, J.C. & Jackson, M.P.A. (2014) Exposed evaporite diapirs and minibasins above a canopy in central Sverdrup Basin, Axel Heiberg Island, Arctic Canada. Basin Res., 26, 567–596.
    [Google Scholar]
  37. Harrison, H.L. & Patton, B. (1995) Translation of salt sheets by basal shear. In: Salt, Sediment and Hydrocarbons. Gulf Coast Section Society of Economic Paleontologists and Mineralogists 16th Annual Research Conference (Ed. by C.J.Travis , H.Harrison , M.R.Hudec , B.C.Vendeville , F.J.Peel & B.F.Perkins ), pp. 99–107. Gulf Coast Section SEPM Foundation, Houston, TX.
    [Google Scholar]
  38. Harrison, H., Kuhmichel, L., Heppard, P., Milkov, A.V., Turner, J.C. & Greeley, D. (2004) Base of salt structure and stratigraphy‐Data and models from Pompano field, VK 989/990, Gulf of Mexico. In: Salt Sediment Interactions and Hydrocarbon Prospectivity: Concepts, Applications and Case Studies for the 21st Century. Gulf Coast Society of Economic Paleontologists and Mineralogists Foundation, 24th Bob F. Perkins Research Conference Proceedings (CD‐ROM) (Ed. by P.J.Post , D.L.Olson , K.T.Lyons , S.L.Palmes , P.F.Harrison & N.C.Rosen ), pp. 243–270. Gulf Coast Section SEPM Foundation, Houston, TX.
    [Google Scholar]
  39. Hart, W., Jaminski, J. & Albertin, M. (2004) Recognition and exploration significance of supra‐salt stratal carapaces. In: Salt Sediment Interactions and Hydrocarbon Prospectivity: Concepts, Applications and Case Studies for the 21st Century. Gulf Coast Society of Economic Paleontologists and Mineralogists Foundation, 24th Bob F. Perkins Research Conference Proceedings (CDROM) (Ed. by P.J.Post , D.L.Olson , K.T.Lyons , S.L.Palmes , P.F.Harrison & N.C.Rosen ), pp. 166–199. Gulf Coast Section SEPM Foundation, Houston, TX.
    [Google Scholar]
  40. Hearon, T.E.IV (2008) Geology and tectonics of salt diapirs and allochthonous salt sheets in the eastern Willouran Ranges, South Australia. MSc thesis, New Mexico State University, Las Cruces.
  41. Hearon, T.E.IV, Lawton, T.F. & Hannah, P.T. (2010a) Subdivision of the upper Burra Group in the eastern Willouran Ranges, South Australia. Divis. Miner. Energy Resour. S. Aust. (MESA) J, 59, 36–46.
    [Google Scholar]
  42. Hearon, T.E.IV, Rowan, M.G., Kernen, R.A. & Trudgill, B.T. (2010b) Lateral salt emplacement at the Christmas tree diapir, Pinda Springs, South Australia. AAPG Annual Convention and Exhibition, April 11–14, 2010, New Orleans, Louisiana, 19, 105–106.
    [Google Scholar]
  43. Howard, P.F. (1951) The basic igneous rocks of the Blinman dome. Trans. R. Soc. S. Aust., 74, 165–188.
    [Google Scholar]
  44. Hudec, M.R. & Jackson, M.P.A. (2006) Advance of allochthonous salt sheets in passive margins and orogens. Am. Assoc. Pet. Geol. Bull., 90, 1535–1564.
    [Google Scholar]
  45. Hudec, M.R. & Jackson, M.P.A. (2009) The interaction between spreading salt canopies and their peripheral thrust systems. J. Struct. Geol., 31, 1114–1129.
    [Google Scholar]
  46. Hudec, M.R. & Jackson, M.P.A. (2011) The salt mine: a digital atlas of salt tectonics: The University of Texas at Austin, Bureau of Economic Geology, Udden Book Series No. 5. Am. Assoc. Pet. Geol. Mem., 99, 305.
    [Google Scholar]
  47. Humphris, C.C.Jr (1978) Salt movement on continental slope, northern Gulf of Mexico. In: Framework, Facies, and Oil‐trapping Characteristics of the Upper Continental Margin (Ed. by BoumaA.H. , MooreG.T. & ColemanJ.M. ) Am. Assoc. Petr. Geol. Stud. Geol., 7, 69–86.
    [Google Scholar]
  48. Humphris, C.C.Jr (1979) Salt movement on the continental slope, northern Gulf of Mexico. Am. Assoc. Pet. Geol. Bull., 63, 782–798.
    [Google Scholar]
  49. Jackson, M.P.A. & Harrison, J.C. (2006) An allochthonous salt canopy on Axel Heiberg Island, Sverdrup Basin, Arctic Canada. Geology, 34, 1045–1048.
    [Google Scholar]
  50. Jackson, M.P.A. & Hudec, M.R. (2004) A new mechanism for advance of allochthonous salt sheets. In: Salt Sediment Interactions and Hydrocarbon Prospectivity: Concepts, Applications and Case Studies for the 21st Century. Gulf Coast Society of Economic Paleontologists and Mineralogists Foundation, 24th Bob F. Perkins Research Conference Proceedings (CD‐ROM) (Ed. by P.J.Post , D.L.Olson , K.T.Lyons , S.L.Palmes , P.F.Harrison & N.C.Rosen ), pp. 220–242. Gulf Coast Section SEPM Foundation, Houston, TX.
    [Google Scholar]
  51. Jackson, M.P.A. & Talbot, C.J. (1991) A glossary of salt tectonics: The University of Texas at Austin. Bur. Econ. Geol. Geol. Circ., 91‐4, 44.
    [Google Scholar]
  52. Jackson, M.P.A., Warin, O.N., Woad, G.M. & Hudec, M.R. (2003) Neoproterozoic allochthonous salt tectonics during the Lufilian orogeny in the Katangan copper belt, Central Africa. Geol. Soc. Am. Bull., 115, 314–330.
    [Google Scholar]
  53. Jenkins, R.J.F. (1990) The Adelaide Fold Belt: tectonic reappraisal. In: The Evolution of a Late Precambrian‐Early Paleozoic Rift Complex: The Adelaide Geosyncline (Ed. by JagoJ.B. & MooreP.S. ) Geol. Soc. S. Aust. Spec. Publ., 16, 396–420.
    [Google Scholar]
  54. Kendall, B., Creaser, R.A. & Selby, D. (2006) Re‐Os geochronology of post glacial black shales in Australia: constraints on the timing of ‘Sturtian’ glaciation. Geology, 34, 729–732.
    [Google Scholar]
  55. Kent, P.E. (1979) The emergent Hormuz salt plugs of southern Iran. J. Pet. Geol., 2, 117–144.
    [Google Scholar]
  56. Kernen, R.A., Giles, K.A., Rowan, M.G., Lawton, T.F. & Hearon, T.E. (2012) Depositional and halokinetic‐sequence stratigraphy of the Neoproterozoic Wonoka Formation adjacent to Patawarta allochthonous salt sheet, Central Flinders Ranges, South Australia. In: Salt Tectonics, Sedimentation and Prospectivity (Ed. by AlsopG.I. , ArcherS.G. , HartleyA.J. , GrantN.T. & HodgkinsonR. ) Geol. Soc. Lond. Spec. Publ., 363, 81–105.
    [Google Scholar]
  57. Kilby, R.E., Diegel, F.A. & Styzen, M.J. (2008) Age of sediments encasing allochthonous salt in the Gulf of Mexico: clues to emplacement history. AAPG Annual Convention and Exhibition, April 20–23, 2008, San Antonio, Texas17, 109.
    [Google Scholar]
  58. Krieg, G.W., Rogers, P.A., Callen, R.A., Freeman, P.J., Alley, N.F. & Forbes, B.G. (1991) Curdimurka, South Australia, explanatory notes, 1:250 000 geological series. Geol. Surv. S. Aust. Rep., SH53‐8, 60.
    [Google Scholar]
  59. Lemon, N.M. (1985) Physical modeling of sedimentation adjacent to diapirs and comparison with late Precambrian Oratunga breccia body in Central Flinders Ranges, South Australia. Am. Assoc. Pet. Geol. Bull., 69, 1327–1338.
    [Google Scholar]
  60. Mackay, W.G. (2011) Structure and sedimentology of the Curdimurka Subgroup, northern Adelaide Fold Belt, South Australia. PhD thesis, University of Tasmania, Hobart, TAS.
  61. Mawson, D. & Sprigg, R.C. (1950) Subdivision of the Adelaide system. Aust. J. Sci., 13, 69–72.
    [Google Scholar]
  62. McGuinness, D.B. & Hossack, J.R. (1993) The development of allochthonous salt sheets as controlled by the rates of extension, sedimentation and salt supply. In: Rates of Geological Processes. Gulf Coast Section Society of Economic Paleontologists and Mineralogists 14th Annual Research Conference (Ed. by J.M.Armentrout , R.Bloch , H.C.Olson & B.F.Perkins ), pp. 127–139. Gulf Coast Section SEPM Foundation, Houston, TX.
    [Google Scholar]
  63. Mendis, P.J. (2002) The origin of the geological structures diapirs, grabens and barite veins in the Flinders Range, South Australia. PhD Thesis. University of Adelaide, Adelaide, SA.
  64. Moores, E.M. (1991) Southwest U.S.‐East Antarctic (SWEAT) connection: a hypothesis. Geology, 19, 425–428.
    [Google Scholar]
  65. Mount, T.J. (1975) Diapirs and diapirism in the Adelaide ‘Geosyncline’, South Australia. PhD Thesis, University of Adelaide, Adelaide, SA.
  66. Murrell, B. (1977) Stratigraphy and tectonics across the Torrens Hinge Zone between Andamooka and Marree, South Australia. PhD Thesis. University of Adelaide, Adelaide, SA.
  67. Nelson, T.H. & Fairchild, L.H. (1989) Emplacement and evolution of salt sills in northern Gulf of Mexico. Am. Assoc. Pet. Geol. Bull., 73, 395.
    [Google Scholar]
  68. Orange, D.L., Williams, M., Hart, W., Thomson, J., Buddin, T., Angell, M.M., Brand, J.R. & Berger, W.J.III (2004) Slumps and salt tectonics at the Mad Dog and Atlantis Fields. In: Salt Sediment Interactions and Hydrocarbon Prospectivity: Concepts, Applications and Case Studies for the 21st Century. Gulf Coast Society of Economic Paleontologists and Mineralogists Foundation, 24th Bob F. Perkins Research Conference Proceedings (CDROM) (Ed. by P.J.Post , D.L.Olson , K.T.Lyons , S.L.Palmes , P.F.Harrison & N.C.Rosen ), pp. 1108–1137. Gulf Coast Section SEPM Foundation, Houston, TX.
    [Google Scholar]
  69. Parker, A.J., Cowley, W.M. & Thomson, B.P. (1990) The Torrens Hinge Zone and Spencer Shelf with particular reference to early Adelaidean volcanism. In: The Evolution of a Late Precambrian‐Early Paleozoic Rift Complex: The Adelaide Geosyncline (Ed. by JagoJ.B. & MooreP.S. ) Geol. Soc. S. Aust. Spec. Publ., 16, 129–148.
    [Google Scholar]
  70. Paul, E., Flötmann, T. & Sandiford, M. (1999) Structural geometry and controls on basement‐involved deformation in the northern Flinders Ranges, Adelaide Fold Belt, South Australia. Aust. J. Earth Sci., 46, 343–354.
    [Google Scholar]
  71. Pilcher, R., Kilsdonk, B. & Trude, J. (2011) Primary basins and their boundaries in the deep‐water northern Gulf of Mexico: origin, trap types and petroleum system implications. Am. Assoc. Pet. Geol. Bull., 95, 219–240.
    [Google Scholar]
  72. Preiss, W.V. (1982) Supergroup classification in the Adelaide Geosyncline. R. Soc. S. Aust. Transac., 106, 81–83.
    [Google Scholar]
  73. Preiss, W.V. (1987) The Adelaide Geosyncline‐late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. Geol. Surv. S. Aust. Bull., 53, 438.
    [Google Scholar]
  74. Preiss, W.V. (1993a) Delamerian orogeny. In: The Geology of South Australia, Volume 1, the Precambrian (Ed. by DrexelJ.F. , PreissW.V. & ParkerA.J. ) S. Aust. Geol. Surv. Bull., 54, 45–61.
    [Google Scholar]
  75. Preiss, W.V. (1993b) Neoproterozoic. In: The Geology of South Australia, Volume 1, The Precambrian (Ed. by DrexelJ.F. , PreissW.V. & ParkerA.J. ) S. Aust. Geol. Surv. Bull., 54, 171–203.
    [Google Scholar]
  76. Preiss, W.V. (2000) The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambr. Res., 100, 21–63.
    [Google Scholar]
  77. Preiss, W.V. (2006) Old Boolcoomata Conglomerate Member of the Benda Siltstone: Neoproterozoic glacial sedimentation in terrestrial and marine environments in an active basin. Divis. Miner. Energy Resour. S. Aust. J, 41, 15–23.
    [Google Scholar]
  78. Reyner, M.L. (1955) The geology of the Peake and Denison Region. Geol. Surv. S. Aust. Rep. Invest., 6, 23.
    [Google Scholar]
  79. Reyner, M.L. & Pitman, R.K. (1955) The geology of the serle military sheet. Geol. Surv. S. Aust. Rep. Invest., 5, 17.
    [Google Scholar]
  80. Ringenbach, J.C., Salel, J.F., Kergaravat, C., Ribes, C., Bonnel, C. & Callot, J.P. (2012) Salt tectonics in the Sivas Basin, Turkey: outstanding seismic analogues from outcrops. First Break, 31, 93–101.
    [Google Scholar]
  81. Rowan, M.G. (1995) Structural styles and evolution of allochthonous salt, central Louisiana outer shelf and upper slope. In: Salt Tectonics: a Global Perspective (Ed. by JacksonM.P.A. , RobertsD.G. & SnelsonS. ) Am. Assoc. Pet. Geol. Mem., 65, 199–228.
    [Google Scholar]
  82. Rowan, M.G. & Inman, K.F. (2011) Salt‐related deformation recorded by allochthonous salt rather than growth strata. Gulf Coast Assoc. Geol. Soc. Transac., 61, 379–390.
    [Google Scholar]
  83. Rowan, M.G. & Vendeville, B.C. (2006) Foldbelts with early salt withdrawal and diapirism: physical model and examples from the northern Gulf of Mexico and the Flinders Ranges, Australia. Mar. Pet. Geol., 23, 871–891.
    [Google Scholar]
  84. Rowan, M.G., Lawton, T.F., Giles, K.A. & Ratliff, R.A. (2003) Near‐salt deformation in La Popa basin, Mexico, and the northern Gulf of Mexico: a general model for passive diapirism. Am. Assoc. Pet. Geol. Bull., 87, 733–756.
    [Google Scholar]
  85. Rowan, M.G., Giles, K.A., Lawton, T.F., Hearon, T.E.IV & Hannah, P.T. (2010) Salt‐sediment interaction during advance of allochthonous salt. AAPG Annual Convention and Exhibition, April 11–14, 2010, New Orleans, Louisiana, 19, 220.
    [Google Scholar]
  86. Rowlands, N.R., Drummond, A.J., Jarvis, D.M., Warin, O.N., Kitch, R.B. & Chuck, R.G. (1978) Gitological aspects of some Adelaidean stratiform copper deposits. Miner. Sci. Eng., 10, 258–277.
    [Google Scholar]
  87. Rowlands, N.R., Blight, P.G., Jarvis, D.H. & von der Borch, C.C. (1980) Sabkha and playa lake environments in late Proterozoic grabens, Willouran Ranges, South Australia. Geol. Soc. Aust. J., 27, 55–68.
    [Google Scholar]
  88. Scheibner, E. (1973) A plate tectonic model of the Paleozoic tectonic history of New South Wales. Geol. Soc. Aust. J., 20, 405–426.
    [Google Scholar]
  89. Schuster, D.C. (1995) Deformation of allochthonous salt and evolution of related salt‐structural systems, eastern Louisiana Gulf Coast. In: Salt Tectonics: a Global Perspective (Ed. by JacksonM.P.A. , RobertsD.G. & SnelsonS. ) Am. Assoc. Pet. Geol. Mem., 65, 177–198.
    [Google Scholar]
  90. Selley, D., Broughton, D., Scott, R., Hitzman, M., Bull, S., Large, R., McGoldrick, P., Croaker, M., Pollington, N. & Barra, F. (2005) A new look at the geology of the Zambian Copperbelt. In: Economic Geology 100th Anniversary Volume (Ed. by J.W.Hedenquist , J.F.H.Thompson , R.J.Goldfarb & J.P.Richards ), pp. 965–1000. Society of Economic Geologists, Littleton, Colorado.
    [Google Scholar]
  91. Sprigg, R.C. (1949) Thrust structures of the Witchelina area, South Australia. Trans. R. Soc. S. Aust., 9, 39–54.
    [Google Scholar]
  92. Sprigg, R.C. (1952) Sedimentation in the Adelaide Geosyncline and the formation of a continental terrace. In: Sir Douglas Mawson Anniversary Volume (Ed. by M.F.Glaessner & E.A Rudd ), pp. 153–159. University of Adelaide, Adelaide, SA.
    [Google Scholar]
  93. Spry, A.N. (1952) Basic igneous rocks of the Worumba region, South Australia. Trans. R. Soc. S. Aust., 75, 97–114.
    [Google Scholar]
  94. Talbot, C.J. (1995) Molding of salt diapirs by stiff overburden. In: Salt Tectonics: a Global Perspective (Ed. by JacksonM.P.A. , RobertsD.G. & SnelsonS. ) AAPG Mem., 65, 61–75.
    [Google Scholar]
  95. Thomson, B.P., Coats, R.P., Mirams, R.C., Forbes, B.G., Dalgarno, C.R. & Johnson, J.E. (1964) Precambrian rock groups in the Adelaide Geosyncline, a new subdivision. Geol. Surv. S. Aust. Q. Geol. Notes, 9, 19.
    [Google Scholar]
  96. Webb, B.P. (1960) Diapiric structures in the Flinders Ranges, South Australia. Aust. J. Sci., 22, 390–391.
    [Google Scholar]
  97. Worrall, D.M. & Snelson, S. (1989) Evolution of the northern Gulf of Mexico, with emphasis on Cenozoic growth faulting and the role of salt. In: The geology of North America‐An overview (Ed. by BallyA. & PalmerA. ) Geol. Soc. Am., A, 97–138.
    [Google Scholar]
  98. Wu, S.A., Bally, A.W. & Cramez, C. (1990) Allochthonous salt, structure and stratigraphy of the northeastern Gulf of Mexico, Part II: structure. Mar. Pet. Geol., 7, 334–370.
    [Google Scholar]
  99. Yielding, C.A., Travis, C.J., Ekstrand, E.J., Urban, D.M., May, M.T. & Boyd, J.D. (1995) Salt tectonics and depositional architecture of the continental slope, northeastern Gulf of Mexico. In: Salt, Sediment and Hydrocarbons. Gulf Coast Section Society of Economic Paleontologists and Mineralogists 16th Annual Research Conference (Ed. by C.J.Travis , H.Harrison , M.R.Hudec , B.C.Vendeville , F.J.Peel & B.F.Perkins ), pp. 307–308. Gulf Coast Section SEPM Foundation, Houston, TX.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12067
Loading
/content/journals/10.1111/bre.12067
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error