1887
Volume 27, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The Pennsylvanian marine foreland basin of the Cantabrian Zone (NW Spain) is characterized by the unique development of kilometre‐size and hundred‐metre‐thick carbonate platforms adjacent to deltaic systems. During Moscovian time, progradational clastic wedges fed by the orogen comprised proximal alluvial conglomerates and coal‐bearing deltaic sequences to distal shelfal marine deposits associated with carbonate platforms (Escalada Fm.) and distal clay‐rich submarine slopes. A first phase of carbonate platform development (Escalada I, upper Kashirian‐lower Podolskian) reached a thickness of 400 m, nearly 50 km in width and developed a distal high‐relief margin facing a starved basin, nearly 1000‐m deep. Carbonate slope clinoforms dipped up to 30° and consisted of microbial boundstone, pinching out downslope into calciturbidites, argillaceous spiculites and breccias. The second carbonate platform (Escalada II, upper Podolskian‐lower Myachkovian) developed beyond the previous platform margin, following the basinward progradation of siliciclastic deposits. Both carbonate platforms include: (1) a lower part composed of siliciclastic‐carbonate cyclothems characterized by coated‐grain and ooid grainstones; and (2) a carbonate‐dominated upper part, composed of tabular and mound‐shaped wackestone and algal‐microbial boundstone strata alternating at the decametre scale with skeletal and coated‐grain grainstone beds. Carbonate platforms initiated in distal sectors of the foreland marine shelf during transgressions, when terrigenous sediments were stored in the proximal part, and developed further during highstands of 3rd‐order sequences in a high‐subsidence context. During the falling stage and lowstand systems tracts, deltaic systems prograded across the shelf burying the carbonate platforms. Key factors involved in the development of these unique carbonate platforms in an active foreland basin are: (1) the large size of the marine shelf (approaching 200 km in width); (2) the subsidence distribution pattern across the marine shelf, decreasing from proximal shoreline to distal sectors; (3) Pennsylvanian glacio‐eustacy affecting carbonate lithofacies architecture; and (4) the environmental conditions optimal for fostering microbial and algal carbonate factories.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12068
2014-05-24
2024-03-29
Loading full text...

Full text loading...

References

  1. Alonso, J.L., Marcos, A. & Suárez, A. (2006) Structure and organization of the Porma mélange: progressive denudation of a submarine nappe toe by gravitational collapse. Am. J. Sci., 306, 32–65.
    [Google Scholar]
  2. Alonso, J.L., Marcos, A. & Suárez, A. (2009) Palaeogeographic inversion resulting from large out of sequence breaching thrusts: the León Fault (Cantabrian Zone, NW Iberia). A new picture of the external Variscan Thrust Belt in the Ibero‐Armorican Arc. Geol. Acta, 7, 451–473.
    [Google Scholar]
  3. Álvarez‐Marrón, J. & Pérez‐Estaún, A. (1988) Thin‐skinned tectonics in the Ponga region Cantabrian Zone (NW Spain). Geol. Rundsch., 77, 539–550.
    [Google Scholar]
  4. Álvarez‐Marrón, J., Heredia, N. & Pérez‐Estaún, A. (1989) Síntesis cartográfica de la Región del Ponga. Trabajos de Geología, 18, 127–135.
    [Google Scholar]
  5. Antoshkina, A.I. (1998) Organic buildups and reefs on the Paleozoic carbonate platform margin, Pechora Urals, Russia. Sediment. Geol., 118, 187–211.
    [Google Scholar]
  6. Bahamonde, J.R. & Colmenero, J.R. (1993) Análisis estratigráfico del Carbonífero medio y superior del Manto del Ponga (Zona Cantábrica). Trabajos de Geología, 19, 155–193.
    [Google Scholar]
  7. Bahamonde, J.R., Colmenero, J.R. & Vera, C. (1997) Growth and demise of late Carboniferous carbonate platforms in the eastern Cantabrian Zone, Asturias, northwestern Spain. Sediment. Geol., 110, 99–122.
    [Google Scholar]
  8. Bahamonde, J.R., Vera, C. & Colmenero, J.R. (2000) A steep‐fronted Carboniferous carbonate platform: clinoformal geometry and lithofacies (Picos de Europa Region, NW Spain). Sedimentology, 47, 645–664.
    [Google Scholar]
  9. Bahamonde, J.R., Merino‐Tomé, O.A. & Heredia, N. (2007) Pennsylvanian microbial boundstone‐dominated carbonate shelf developed in a distal foreland margin (Picos de Europa Province, NW Spain). Sediment. Geol., 198, 167–193.
    [Google Scholar]
  10. Barba, P. & Colmenero, J.R. (1994) Estratigrafía y sedimentología de la sucesión Westfaliense del borde sureste de la Cuenca Carbonífera Central (Zona Cantábrica, N. de España). Studia Geologica Salamanticensia, 30, 139–204.
    [Google Scholar]
  11. Barba, P., Heredia, N. & Villa, E. (1991) Estratigrafía y edad del Grupo Lena en el sector Lois‐Ciguera (Cuenca Carbonífera Central, NO de España). Rev. Soc. Geol. España, 4, 61–77.
    [Google Scholar]
  12. Barnolas, A. & Teixel, A. (1994) Platform sedimentation and collapse in a carbonate‐dominated margin of a foreland basin (Jaca basin, Eocene, southern Pyrenees). Geology, 22, 1107–1110.
    [Google Scholar]
  13. Boardman, D.R. & Heckel, P.H. (1989) Glacial‐eustatic sea‐level curve for early Late Pennsylvanian sequence in north‐central Texas and biostratigraphic correlation with curve for Midcontinent North America. Geology, 17, 802–805.
    [Google Scholar]
  14. Bosence, D. (2005) A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic. Sediment. Geol., 175, 49–87.
    [Google Scholar]
  15. Braga, J.C., Martı́n, J.M. & Riding, R. (1995) Controls on microbial dome fabric development along a carbonate–siliciclastic shelf‐basin transect, Miocene, SE Spain. Palaios, 10, 347–361.
    [Google Scholar]
  16. Burchette, T. (1993) Mishrif Formation (Cenomanian‐Turonian), Southern Arabian Gulf: carbonate platform growth along a cratonic basin margin. In: Cretaceous Carbonate Platforms (Ed. by SimoJ.A.T. , ScottR.W. & MasseJ.P. ) Mem. Am. Ass. Petrol. Geol., 56, 185–199.
    [Google Scholar]
  17. Chen, X. & Webster, G.D. (1994) Sedimentology, tectonic control and evolution of a Lower Mississippian carbonate ramp with offshore bank, central Wyoming to eastern Idaho and northeastern Utah, U.S.A. In: Pangea: Global Environments and Resources (Ed. by EmbryA.F. , BeauchampB. & GlassD.J. ) Mem. Can. Soc. Petrol. Geol., 17, 557–587.
    [Google Scholar]
  18. Colmenero, J.R. & Bahamonde, J.R. (1986) Análisis estratigráfico y sedimentológico de la cuenca estefaniense de Sebarga (Región de Mantos, Zona Cantábrica). Trabajos de Geología, 16, 103–119.
    [Google Scholar]
  19. Colmenero, J.R., Fernández, L.P., Moreno, C., Bahamonde, J.R., Barba, P., Heredia, N. & González, F. (2002) Carboniferous. In: The Geology of Spain (Ed. by GibbonsW. & MorenoT. ) Geol. Soc., London, 93–116.
    [Google Scholar]
  20. Corrochano, D., Barba, P. & Colmenero, J.R. (2012a) Glacioeustatic cyclicity of a Pennsylvanian carbonate platform in a foreland basin setting: an example from the Bachende Formation of the Cantabrian Zone (NW Spain). Sediment. Geol., 245–246, 76–93.
    [Google Scholar]
  21. Corrochano, D., Barba, P. & Colmenero, J.R. (2012b) Transgressive–regressive sequence stratigraphy of Pennsylvanian Donezella bioherms in a foreland basin (Lena Group, Cantabrian Zone, NW Spain). Facies, 58, 457–476.
    [Google Scholar]
  22. Crampton, S.L. & Allen, P.A. (1995) Recognition of forebulge unconformities associated with early stage foreland basin development: example from the North Alpine foreland basin. AAPG Bull., 79, 1495–1514.
    [Google Scholar]
  23. Davydov, V.I., Korn, D. & Schmitz, M.D. (2012) The Carboniferous period. In: The Geologic Time Scale 2012 (v. 2) (Ed. by GradsteinF.M. , OggJ.G. , SmitzM.D. , OggG.M. ), pp. 603–650. Elsevier, Amsterdam.
    [Google Scholar]
  24. Decelles, P.G. & Giles, K.A. (1996) Forelands basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  25. Della Porta, G. (2003) Depositional anatomy of a Carboniferous high‐rising carbonate platform (Cantabrian Mountains, NW Spain). PhD thesis, Vrije Universiteit, Amsterdam249pp.
  26. Della Porta, G., Kenter, J.A.M., Immenhauser, A. & Bahamonde, J.R. (2002) Lithofacies character and architecture across a Pennsylvanian inner‐platform transect (Sierra de Cuera, Asturias, Spain). J. Sediment. Res., 72, 898–916.
    [Google Scholar]
  27. Della Porta, G., Kenter, J.A.M., Bahamonde, J.R., Immenhauser, A. & Villa, E. (2003) Microbial boundstone dominated carbonate slope (Upper Carboniferous, N Spain): microfacies, lithofacies distribution and stratal geometry. Facies, 49, 175–208.
    [Google Scholar]
  28. Della Porta, G., Kenter, J.A.M. & Bahamonde, J.R. (2004) Depositional facies and stratal geometry of an Upper Carboniferous prograding and aggrading high‐relief carbonate platform (Cantabrian Mountains, NW Spain). Sedimentology, 51, 267–295.
    [Google Scholar]
  29. Dorobek, S.L. (1995) Synorogenic carbonate platforms and reefs in foreland basins; controls on stratigraphic evolution and platform/reef morphology. In: Stratigraphic Evolution of Foreland Basins (Ed. by DorobeckS.L. & RossG.M. ) SEPM Spec. Publ. 52, 127–147.
    [Google Scholar]
  30. Eichmüller, K. (1985) Die Valdeteja Fm: Aufbau und Geschichte einer oberkarbonischen Karbonatplattform (Kantabrisches Gebirge, Nordspanien). Facies, 13, 45–155.
    [Google Scholar]
  31. Eichmüller, K. (1986) Some upper Carboniferous (Namurian‐Westphalian) lithostratigraphic units in northern Spain. Results and implications for an environmental interpretation. Bol. Geol. Min. España, 97, 590–607.
    [Google Scholar]
  32. Eros, J.M., Montañez, I.P., Osleger, D.A., Davydov, V.I., Nemyrovska, T.I., Poletaev, V.I. & Zhykalyak, M.V. (2012) Sequence stratigraphy and onlap history of the Donets Basin, Ukraine: insight into Carboniferous icehouse dynamics. Palaeogeog. Palaeoclim. Palaeoecol., 313–314, 1–25.
    [Google Scholar]
  33. Fernández, L.P. (1990) Estratigrafía, sedimentología y paleogeografía de la Región de Riosa, Quirós y Teverga‐San Emiliano. Unpublished PhD Thesis, Universidad de Oviedo, Spain.
  34. Fernández, L.P. (1993) La Formación San Emiliano (Carbonífero de la Zona Cantábrica, NO de España): Estratigrafía y extensión lateral. Algunas implicaciones paleogeográficas. Trabajos de Geología, 19, 97–122.
    [Google Scholar]
  35. Fernández, L.P., Bahamonde, J.R., Barba, P., Colmenero, J.R., Heredia, N., Rodríguez‐Fernández, L.R., Salvador, C.I., Sánchez de Posada, L.C., Villa, E., Merino‐Tomé, O.A. & Motis, K. (2004) La sucesión sinorogénica de la Zona Cantábrica. In: Geología de España (Ed. by VeraJ.A. ), pp. 34–42. Sociedad Geológica España, Madrid.
    [Google Scholar]
  36. Fernández‐García, L.M. (2006) Estratigrafía, sedimentología y arquitectura estratigráfica de las calizas de Pando (Moscoviense de la Unidad del Pisuerga‐Carrión, Zona Cantábrica). Unpublished MSc Thesis, Universidad de Oviedo, Spain.
  37. Flemings, P.B. & Jordan, T.E. (1989) A synthetic stratigraphic model of foreland basin development. J. Geophys. Res., 94, 3851–3866.
    [Google Scholar]
  38. Flemings, P.B. & Jordan, T.E. (1990) Stratigraphic modeling of foreland basins: interpreting thrust deformation and lithosphere rheology. Geology, 18, 430–434.
    [Google Scholar]
  39. Golonka, J., Ross, M.I. & Scotese, C.R. (1994) Phanerozoic paleoclimatic modeling maps. In: Pangea: Global Environment and Resources (Ed. by EmbryA.F. , BeauchampB. & GlassD.J. ) Can. Soc. Petrol. Geol. Mem., 17, 1–47.
    [Google Scholar]
  40. Grotzinger, J.P. & Knoll, A.H. (1995) Anomalous carbonate precipitates. Is the Precambrian the key to the Permian. Palaios, 10, 578–596.
    [Google Scholar]
  41. Gutiérrez‐Alonso, G., Fernández‐Suárez, J., Weil, A.B., Murphy, J.B., Nance, R.D., Corfu, F. & Johnston, S.T. (2008) Self‐subduction of the Pangaean global plate. Nat. Geosci., 1, 549–553.
    [Google Scholar]
  42. Heckel, P.H. (1986) Sea‐level curve for Pennsylvanian eustatic marine transgressive‐regressive depositional cycles along Midcontinent outcrop belt, North America. Geology, 14, 330–334.
    [Google Scholar]
  43. Heckel, P.H. (1994) Evaluation of evidence for glacioeustatic control over marine Pennsylvanian cyclothems in North America and consideration of possible tectonic Events. In: Tectonic and Eustatic Controls on Sedimentary Cycles (Ed. by DennisonJ.M. & EttensohnF.R. ) Spec. Publ. SEPM, 4, 65–87.
    [Google Scholar]
  44. Heckel, P.H. (2002) Genetic stratigraphy and conodont biostratigraphy of upper Desmoinesian‐Missourian (Pennsylvanian) cyclothem succession in Midcontinent North America. In: The Carboniferous and Permian of the World (Ed. by HillsL.V. , HendersonC.M. & BamberE.W. ) Can. Soc. Petrol. Geol. Memoir, 19, 99–119.
    [Google Scholar]
  45. Hensen, C., Dingle, P. & Schäfer, P. (1995) Primary and diagenetic mud mound genesis in the San Emiliano Formation of the Cármenes syncline (Wesphalian B/C, Cantabrian Mts., N. Spain). Facies, 32, 31–36.
    [Google Scholar]
  46. Hillgärtner, H. & Strasser, A. (2003) Quantification of high‐frequency sea‐level fluctuations in shallow‐water carbonates; an example from the Berriasian‐Valanginian (French Jura). Palaeogeog. Palaeoclim. Palaeoecol., 200, 43–63.
    [Google Scholar]
  47. Izart, A., Stephenson, R., Battista Vai, G., Vachard, D., Le Nindre, Y., Vaslet, D., Fauvel, P.J., Su, P., Kossovaya, O., Chen, Z., Maslo, A. & Stovba, S. (2003) Sequence stratigraphy and correlation of late Carboniferous and Permian in the CIS, Europe, Tethyan area, North Africa, Arabia, China, Gondwanaland and the USA. Palaeogeogr. Palaeoclim. Palaeoecol., 196, 59–84.
    [Google Scholar]
  48. Julivert, M. (1960) Estudio geológico de la Cuenca de Beleño (Valles altos del Sella, Ponga, Nalón y Esla). Bol. Geol. Min. España, 71, 1–346.
    [Google Scholar]
  49. Julivert, M. (1971) Décollement tectonics in the Variscan Cordillera of the northwest Spain. Am. J. Sci., 270, 1–29.
    [Google Scholar]
  50. Kenter, J.A.M., Hoeflaken, F., Bahamonde, J.R., Bracco Gartner, G.L., Keim, L. & Besems, R.E. (2003) Anatomy and lithofacies of an intact and seismic‐scale Carboniferous carbonate platform (Asturias, NW Spain): Analogs of hydrocarbon reservoirs in the Pricaspian basin (Kazakhstan). In: Palaeozoic Carbonates of the Commonwealth of Independent States (CIS): Subsurface Reservoirs and Outcrop Analogues (Ed. by ZempolichW.G. & CookH.E. ) SEPM Spec. Pub., 74, 181–203.
    [Google Scholar]
  51. Kenter, J.A.M., Harris, P.M. & Della Porta, G. (2005) Steep microbial boundstone‐dominated platform margins – examples and implication. Sediment. Geol., 178, 5–30.
    [Google Scholar]
  52. Leyva, F., Granados, L.F., Solovieva, M.N., Laveine, J.P., Lys, M., Loboziak, S., Martínez‐Díaz, C., Brousmiche, C., Candilier, A.M., García, A. & Esnaola, J.M. (1985) La estratigrafía del Carbonífero Medio en la zona de Campo de Caso‐Tanes (Sector Central de la Región de Mantos). In: X Congress International de Stratigraphie et de Géologie du Carbonifère, Compte Rendu (Ed. by EscobedoJ.L. , GranadosL.F. , MeléndezB. , PignatelliB. , ReyR. & WagnerR.H. ) Madrid, 1, 249–268.
    [Google Scholar]
  53. Luterbacher, H.P., Eichenseer, H., Betzler, C.H. & van den Hurk, A.M. (1991) Carbonate‐siliciclastic depositional systems in the Paleogene of the South Pyrenean foreland basin: a sequence‐stratigraphic approach. In: Sedimentation, Tectonic and Eustasy (Ed by MacdonaldD.I.M. ) Spec. Publ. Int. Ass. Sediment. 12, 391–407.
    [Google Scholar]
  54. Marcos, A. & Pulgar, F.J. (1982) An approach to the tectonostratigraphic evolution of Cantabrian thrust and fold belt, Variscan Cordillera of NW Spain. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, Hannover, 163, 256–260.
    [Google Scholar]
  55. Martin, L.G., Montañez, I.P. & Bishop, J.W. (2012) A paleotropical carbonate‐dominated archive of Carboniferous icehouse dynamics, Bird Spring Fm., Southern Great Basin, USA. Palaeogeog. Palaeoclim. Palaeoecol., 329–330, 64–82.
    [Google Scholar]
  56. Martínez‐Catalán, J.R., Arenas, R., Díaz‐García, F. & Abati, J. (1997) Variscan accretionary complex of NW Iberia: terrane correlation and succession of tectonothermal events. Geology, 25, 1103–1106.
    [Google Scholar]
  57. Martínez‐García, E., Rodríguez‐Arango, R. & Villa, E. (1985) The unconformable marine Kasimovian strata of the Sellaño basin. An. Fac. Ciênc. Porto. Suppl., 64, 35–40.
    [Google Scholar]
  58. Matte, P. (2001) The Variscan collage and orogeny (480 ± 290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova, 13, 122–128.
    [Google Scholar]
  59. Maynard, J.R. & Leeder, M.R. (1992) On the periodicity and magnitude of Late Carboniferous glacio‐eustatic sea‐level changes. J. Geol. Soc. London, 149, 303–311.
    [Google Scholar]
  60. Merino‐Tomé, O.A., Bahamonde, J.R., Fernández, L.P. & Colmenero, J.R. (2007) Facies architecture and cyclicity of an Upper Carboniferous carbonate ramp developed in a Variscan piggy‐back basin (Cantabrian Mountains, NW Spain). In: Sedimentary Processes, Environments and Basins: a Tribute to Peter Friend (Ed. by NicholsG. , WilliansE. & PaolaC. ) Spec. Publ. Int. Ass. Sediment., 38, 183–217.
    [Google Scholar]
  61. Merino‐Tomé, O.A., Bahamonde, J.R., Colmenero, J.R., Heredia, N., Villa, E. & Farias, P. (2009a) Emplacement of the imbricate system of the Cuera Unit and the Picos de Europa Province in the core of the Ibero‐Armorican Arc (N Spain). New precisions on the timing of the arc closure. Geol. Soc. Am. Bull., 112, 729–751.
    [Google Scholar]
  62. Merino‐Tomé, O.A., Bahamonde, J.R., Samankassou, E. & Villa, E. (2009b) The influence of terrestrial run off on marine biotic communities: an example from a thrust‐top carbonate ramp (Upper Pennsylvanian foreland basin, Picos de Europa, NW Spain). Palaeogeog. Palaeoclim. Palaeoecol., 278, 1–23.
    [Google Scholar]
  63. Merino‐Tomé, O.A., Suárez‐Rodríguez, A., Alonso, J.L., González‐Menéndez, L., Heredia, N. & Marcos‐Vallaure, A. (2011) Mapa Geológico Digital Continuo, E. 1:50.000, Principado de Asturias (Zonas: 1100‐1000‐1600). In: GEODE. Mapa Geológico Digital Continuo de España. Sistema de Información Geológica Continua: SIGECO. IGME (Ed. by NavasJ. ). http://cuarzo.igme.es/sigeco.default.htm.
    [Google Scholar]
  64. Motis, K., Fernández, L.P. & Heredia, N. (2001) Estratigrafía, sedimentología y significado tectonoestratigráfico de la Formación Calizas de Panda (Moscoviense superior, sector occidental de la Región del Pisuerga‐Carrión, Zona Cantábrica, NO España). Studia Geologica Salamanticensia, 37, 141–180.
    [Google Scholar]
  65. Pérez‐Estaún, A., Bastida, F., Alonso, J.L., Marquínez, J., Aller, J., Álvarez‐Marrón, J., Marcos, A. & Pulgar, J.A. (1988) A thin‐skinned tectonics model for an arcuate fold and thrust belt: the Cantabrian Zone (Variscan Ibero‐Armorican Arc). Tectonics, 7, 517–537.
    [Google Scholar]
  66. Pigram, D.J., Davies, P.J., Feary, D.A. & Symonds, P.A. (1989) Tectonic controls on carbonate platform evolution in southern Papua New Guinea: passive margin of foreland basin. Geology, 17, 199–202.
    [Google Scholar]
  67. Proust, J.N., Chuvashov, B.I., Vennin, E. & Boisseau, T. (1998) Carbonate platform drowning in a foreland setting: the mid‐Carboniferous platform in Western Urals Russia). J. Sediment. Res., 68, 327–346.
    [Google Scholar]
  68. Purser, B.H. (1973) Sedimentation around bathymetric highs in the southern Persian Gulf. In: The Persian Gulf‐Holocene Carbonate Sedimentation and Diagenesis in Shallow Water Epicontinental Sea (Ed. by PurserB.H. ), pp. 157–177. Springer‐Verlag, New York.
    [Google Scholar]
  69. Read, J.F. (1980) Carbonate ramp to basin transitions and foreland basin evolution, Middle Ordovician, Virginia Appalachians. AAPG Bull., 64, 1575–1612.
    [Google Scholar]
  70. Read, J.F. (1985) Carbonate platform facies models. AAPG Bull., 69, 1–21.
    [Google Scholar]
  71. Read, J.F. (1998): Phanerozoic carbonate ramps from greenhouse, transitional and ice‐house worlds: clues from field and modelling studies. In: Carbonate Ramps (Ed. by WrightV.P. & BurchetteT.P. ) Spec. Publ. Geol. Soc. London, 149, 107–135.
    [Google Scholar]
  72. Riding, R.E. (1979) Donezella bioherms in the Carboniferous of the southern Cantabrian Mountains, Spain. Cent. Rech. Explor. Prod. Elf‐Aquit. Bull., 3, 787–794.
    [Google Scholar]
  73. Salvador, C.I. (1993) La sedimentación durante el Westfaliense en una cuenca de antepaís (Cuenca Carbonífera Central de Asturias, N de España). Trabajos de Geología, 19, 195–264.
    [Google Scholar]
  74. Samankassou, E. (2001) Internal structure and depositional environment of Late Carboniferous mounds from the San Emiliano Formation, Cármenes Syncline, Cantabrian Mountains, Northern Spain. Sediment. Geol., 145, 235–252.
    [Google Scholar]
  75. Sanz‐López, J., Blanco‐Ferrera, S., García‐López, S. & Sánchez de Posada, L.C. (2006) The mid‐Carboniferous Boundary in Norterhn Spain: dificultéis for correlation of the global stratotype section and point. Riv. Ital. Paleontol. Stratigr., 112, 3–22.
    [Google Scholar]
  76. Schlager, W. (1992) Sedimentology and Sequence Stratigraphy of Reefs and Carbonate Platforms. Am. Ass. Petrol. Geol. continuing course Note series, 4, 71pp.
    [Google Scholar]
  77. Sinclair, H.D., Coakley, B.J., Allen, P.A. & Watts, A.B. (1991) Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: an example from the central Alps, Switzerland. Tectonics, 10, 599–620.
    [Google Scholar]
  78. Sinclair, H.D., Sayer, Z.R. & Tucker, M.E. (1998) Carbonate sedimentation during early foreland basin subsidence: the Eocene succession of the French Alps. Spec. Publ. Geol. Soc. London, 149, 205–227.
    [Google Scholar]
  79. Sjerp, N. (1967) The geology of the San Isidro‐Porma area (cantabrian Mountains, Spain). Leidse Geol. Meded, 39, 55–128.
    [Google Scholar]
  80. Soreghan, G.S. & Giles, K.A. (1999) Facies character and stratal responses to accommodation in Pennsylvanian bioherms, Western Orogrande Basin, New Mexico. J. Sediment. Res., 69, 893–908.
    [Google Scholar]
  81. Stevens, C.H. & Stone, P. (2007) The Pennsylvanian‐early Permian Bird Spring carbonate shelf, southern California: fusulinid biostratigraphy, paleogeographic evolution, and tectonic implications. Spec. Paper GSA, 429, 82.
    [Google Scholar]
  82. Stevens, C.H., Kligman, D. & Belasky, P. (1995) Development of the Mississippian carbonate platform in southern Nevada and eastern California on the eastern margin of the Antler foreland basin. In: Stratigraphic Evolution of Foreland Basins (Ed. by DorobeckS.L. & RossG.M. ) Spec. Publ. SEPM, 52, 175–186.
    [Google Scholar]
  83. Stewart, S.A. (1995) Paleomagnetic analysis of fold kinematics and implications for geological models of the Cantabrian/Asturian arc, north Spain. J. Geophys. Res., 100, 20079–20094.
    [Google Scholar]
  84. Tabor, N.J. & Poulsen, C.J. (2008) Paleoclimate across the Late Pennsylvanian‐Early Permian tropical paleolatitudes: a review of climate indicators, their distribution, and relation to paleophysiographic climate factors. Palaeogeog. Palaeoclim. Palaeoecol., 268, 293–310.
    [Google Scholar]
  85. Tankard, A.J. (1986) On the depositional response to thrusting and lithospheric flexure: examples from the Appalachian and Rocky Mountain basins. In: Foreland Basins (Ed. by AllenP.A. & HomewoodP. ) Spec. Publ. Int. Ass. Sediment., 8, 369–392.
    [Google Scholar]
  86. Van Ginkel, A.C. (1965) Carboniferous fusulinids from the Cantabrian Mountains (Spain). Leidse Geol. Meded, 34, 1–217.
    [Google Scholar]
  87. Van Ginkel, A.C. (1987) Systematic and biostratigraphy of fusulinids of the Lena Formation (Carboniferous) near Puebla de Lillo (León, NW Spain). Proc. Koninklijke Nederlandse Akademie van Weternschappen, Serie B, 90, 189–276.
    [Google Scholar]
  88. Van Loon, A.J. (1972) A prograding deltaic complex in the upper Carboniferous of the Cantabrian Mountains (Spain): the Prioro‐Tejerina basin. Leidse Geol. Meded, 48, 1–81.
    [Google Scholar]
  89. Veevers, J.J. & Powell, C.M. (1987) Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive–regressive depositional sequences in Euramerica. Geol. Soc. Am. Bull., 98, 475–487.
    [Google Scholar]
  90. Villa, E. (1995) Fusulináceous carboníferos del este de Asturias (N de España). Bioestratigraphie du Paleozoique, 13, pp. 261. Univ. Claude Bernard‐Lyon I, Lyon.
    [Google Scholar]
  91. Villa, E. & Heredia, N. (1988) Aportaciones al conocimiento del Carbonífero de la Región de mantos y de la Cuenca Carbonífera Central (Cordillera Cantábrica, NO de España). Bol. Geol. Min. España, 99, 757–769.
    [Google Scholar]
  92. Weil, A.B., Van der Voo, R., van der Pluijm, B.A. & Parés, J.M. (2000) The formation of an orocline by multiphase deformation: a paleomagnetic investigation of the Cantabria‐Asturias Arc (northern Spain). J. Struct. Geol., 22, 735–756.
    [Google Scholar]
  93. Weil, A.B., Van der Voo, R. & van der Pluijm, B.A. (2001) Oroclinal bending and evidence against the Pangea megashear: the Cantabria‐Asturias arc (northern Spain). Geology, 29, 991–994.
    [Google Scholar]
  94. Wright, V.P. (1992) Speculations on the controls on cyclic peritidal carbonates: ice‐house versus greenhouse eustatic controls. Sediment. Geol., 76, 1–5.
    [Google Scholar]
  95. Wright, V.P. & Burchette, T.P. (1996) Shallow‐water carbonate sediments. In: Sedimentary Environments: Processes, Facies and Stratigraphy (Ed. by ReadingH.G. ), pp. 325–394. Blackwell Science, Oxford.
    [Google Scholar]
  96. Yong, L., Allen, P.A., Densmore, A.L. & Qlang, X. (2003) Evolution of the Logmen Shan foreland basin (western Sichuan, China) during the Late Triassic Indosinian orogeny. Basin Res., 15, 117–138.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12068
Loading
/content/journals/10.1111/bre.12068
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error