1887
Volume 27, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

Radical grain size changes between two main units of a sedimentary megacycle in a foreland basin are commonly interpreted to result from changes in tectonic activity or climate in the adjacent mountain range. In central Nepal, the Cenozoic Siwalik molasse deposits exposed in the frontal Himalayan folds are characterized by such a radical grain size transition. Locally gravel deposits completely replace sands in vertical succession over approximately a hundred metres, the median grain size () displaying a sharp increase by a factor of . 100. Such a rapid gravel‐sand transition (GST) is also observed in present‐day river channels about 8–20 km downstream from the outlet of the Siwalik Range. The passage from gravel‐bed channel reaches (proximal alluvial fans) to sand‐bed channel reaches (distal alluvial fans) occurs within a few kilometres on the Gangetic Plain in central Nepal, and the ratio between the two types of channels equals . 100. We propose that the dramatic and remarkably similar increase in grain size observed in the Neogene Siwalik series and along modern rivers in the Gangetic foreland basin, results from a similar hydraulic process, i.e. a grain sorting process during the selective deposition of the sediment load. The sudden appearance of gravels in the upper Siwalik series would be related to the crossing of this sorting transition during progressive southward migration of the gravel front, in response to continuous Himalayan orogen construction. And as a consequence, the GST would be diachronous by nature. This study demonstrates that an abrupt change in grain size does not necessarily relate to a change in tectonic or climatic forcing, but can simply arise from internal adjustment of the piedmont rivers to the deposition and run out of coarse bedload. It illustrates, in addition, the genesis of quartz‐rich conglomerates in the Himalayan foreland through gravel selective deposition associated with differential weathering, abrasion processes and sediment recycling during thrust wedge advance and shortening of the foreland basin.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12071
2014-05-24
2024-04-19
Loading full text...

Full text loading...

References

  1. Allen, P.A., Armitage, J.J., Carter, A., Duller, R.A., Michael, N.A., Sinclair, H.D.Whitchurch, A.L. & Whittaker, A.C. (2013) The Qs problem: sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60(1), 102–130.
    [Google Scholar]
  2. Appel, E., Rosler, W. & Corvinus, G. (1991) Magnetostratigraphy of the Miocene‐Pliocene Surai Khola Siwalik in west Nepal. Geophys. J. Int., 105, 191–198.
    [Google Scholar]
  3. Armitage, J.J., Duller, R.A., Whittaker, A.C. & Allen, P.A. (2011) Transformation of tectonic and climatic signals from source to sedimentary archive. Nat. Geosci., 4(4), 231–235.
    [Google Scholar]
  4. Attal, M. & Lavé, J. (2006) Changes of bedload characteristics along the Marsyandi River (central Nepal): Implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts. In: Tectonics, Climate, and Landscape Evolution. (Ed. by WillettS.D. , HoviusN. , BrandonM.T. & FisherD. ) Geol. Soc. Am. Spec. Paper 398, 143–171.
    [Google Scholar]
  5. Bernet, M., van der Beek, P.A., Pik, R., Huyghe, P., Mugnier, J.L., Labrin, E. & Szulc, A. (2006) Miocene to Recent exhumation of the central Himalaya determined fromcombined detrital zircon fission‐track and U/Pb analysis of Siwalik sediments, western Nepal. Basin Res., 18, 393–412.
    [Google Scholar]
  6. Brozović, N. & Burbank, D.W. (2000) Dynamic fluvial systems and gravel progradation in the Himalayan foreland. Geol. Soc. Am. Bull., 112, 394–412.
    [Google Scholar]
  7. Burbank, D.W., Beck, R.A., Raynolds, R.G.H., Hobbs, R. & Tahirkheli, R.A.K. (1988) Thrusting and gravel progradation in foreland basins ‐ a test of post‐thrusting gravel dispersal. Geology, 16, 1143–1146.
    [Google Scholar]
  8. Charreau, J., Gumiaux, C., Avouac, J.P., Augier, R., Chen, Y., Barrier, L., Gilder, S., Dominguez, S., Charles, N. & Wang, Q. (2009) The Neogene Xiyu Formation, a diachronous prograding gravel wedge at front of the Tianshan: climatic and tectonic implications. Earth Planet. Sci. Lett., 287, 298–310.
    [Google Scholar]
  9. Cox, R., Gutmann, E.D. & Hines, P.G. (2002) Diagenetic origin for quartz‐pebble conglomerates. Geology, 30, 323–326.
    [Google Scholar]
  10. Cui, Y.T. & Parker, G. (1998) The arrested gravel front: stable gravel‐sand transitions in rivers ‐ Part 2: general numerical solution. J. Hydraul. Res., 36(2), 159–182.
    [Google Scholar]
  11. Dal Cin, R. (1968) Climatic significance of roundness and percentage of quartz in conglomerates. J. Sediment. Petrol., 38, 1094–1099.
    [Google Scholar]
  12. DeCelles, P.G. & DeCelles, P.C. (2001) Rates of shortening, propagation, underthrusting, and flexural wave migration in continental orogenic systems. Geology, 29(2), 135–138.
    [Google Scholar]
  13. DeCelles, P.G., Gehrels, G.E., Quade, J., Ojha, T.P., Kapp, P.A. & Upreti, B.N. (1998) Neogene foreland basin deposits, erosional unroofing, and kinematic history of the Himalayan fold‐thrust belt, Nepal. Geol. Soc. Am. Bull., 110, 2–21.
    [Google Scholar]
  14. Delcaillau, B. (1992) Les Siwalik de l'Himalaya du Népal Oriental ‐ Fonctionnement et évolution d'un piédmont: Mémoires et documents de Géographie, Editions du CNRS, 206 pp.
  15. Diplas, P. & Sutherland, A.J. (1988) Sampling techniques for gravel sized sediments. J. Hydraul. Eng.‐ASCE, 114, 484–501.
    [Google Scholar]
  16. Dubille, M. (2008) Transport solide et abrasion dans les rivières à fond rocheux, PhD Thesis manuscript, Université Grenoble I.
  17. Duller, R.A., Whittaker, A.C., Fedele, J.J., Whitchurch, A.L., Springett, J., Smithells, R., Fordyce, S. & Allen, P.A. (2010) From grain size to tectonics. J. Geophys. Res., 115(F3), F03022.
    [Google Scholar]
  18. Fang, X.M., Yan, M.D., Van der Voo, R., Rea, D.K., Song, C.H., Pares, J.M., Gao, J.P., Nie, J.S. & Dai, S. (2005) Late Cenozoic deformation and uplift of the NE Tibetan plateau: evidence from high‐resolution magneto stratigraphy of the Guide Basin, Qinghai Province, China. Geol. Soc. Am. Bull., 117, 1208–1225.
    [Google Scholar]
  19. Fedele, J.J. & Paola, C. (2007) Similarity solutions for fluvial sediment fining by selective deposition. J. Geophys. Res, 112, F02038.
    [Google Scholar]
  20. Ferguson, R.I. (2003) Emergence of abrupt gravel to sand transitions along rivers through sorting processes. Geology, 31, 159–162.
    [Google Scholar]
  21. Flemings, P.B. & Jordan, T.E. (1989) A synthetic stratigraphic model of foreland basin development. J. Geophys. Res., 94B, 3851–3866.
    [Google Scholar]
  22. Gautam, P. & Rosler, W. (1999) Depositional chronology and fabric of Siwalik group sediments in Central Nepal from magnetostratigraphy and magnetic anisotropy. J. Asian Earth Sci., 17, 659–682.
    [Google Scholar]
  23. Gupta, S. (1997) Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin. Geology, 25(1), 11–14.
    [Google Scholar]
  24. Harrison, T.M., Copeland, P., Hall, S.A., Quade, J., Burner, S., Ojha, T.P. & Kidd, W.S.F. (1993) Isotopic preservation of Himalayan Tibetan uplift, denudation, and climatic histories of 2 molasse deposits. J. Geol., 101, 157–175.
    [Google Scholar]
  25. Herail, H. & Mascle, G. (1980) Les Siwaliks du Népal Central: structure et géomorphologie d'un piedmont en cours de déformation. Bull. Assoc. des Géogr. Fr., 471, 259–267.
    [Google Scholar]
  26. Herman, F., Copeland, P., Avouac, J.‐P., Bollinger, L., Mahéo, G., Le Fort, P., Rai, S., Foster, D., Pêcher, A., Stuwe, K. & Henry, P. (2010) Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J. Geophys. Res., 115, B06407.
    [Google Scholar]
  27. Hubbard, M.S. & Harrison, T.M. (1989) 40Ar/39Ar constraints on deformation and metamorphism in the Main Central thrust zone and Tibetan slab, eastern Nepal Himalaya. Tectonics, 8, 865–880.
    [Google Scholar]
  28. Jones, L.S. & Humphrey, N.F. (1997) Weathering‐controlled abrasion in a coarse‐grained, meandering reach of the Rio Grande: implications for the rock record. Geol. Soc. Am. Bull., 109, 1080–1088.
    [Google Scholar]
  29. Kellerhals, R. & Bray, D.I. (1971) Sampling procedures for coarse fluvial sediments. J. Hyd. Eng. Div. ASCE, 97, 1165–1180.
    [Google Scholar]
  30. Knighton, A.D. (1999) The gravel–sand transition in a disturbed catchment. Geomorphology, 27, 325–341.
    [Google Scholar]
  31. Lavé, J. & Avouac, J.P. (2000) Active folding of fluvial terraces across the Siwalik Hills. Himalayas of central Nepal. , J. Geophys. Res., 105, 5735–5770.
    [Google Scholar]
  32. Lupker, M., France‐Lanord, C., Galy, V., Lavé, J., Gaillardet, J., Gajurel, A.P., Guilmette, C., Rahman, M., Singh, S.K. & Sinha, R. (2012) Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochim. Cosmochim. Acta, 84, 410–432.
    [Google Scholar]
  33. Lupker, M., France‐Lanord, C., Lavé, J., Bouchez, J., Galy, V., Métivier, F., Gaillardet, J., Lartiges, B. & Mugnier, J.L. (2011) A Rouse‐based method to integrate the chemical composition of river sediments: application to the Ganga basin. J. Geophys. Res., 116, F04012.
    [Google Scholar]
  34. Lyon‐Caen, H. & Molnar, P. (1985) Gravity‐anomalies, flexure of the Indian plate, and the Structure, support and evolution of the Himalaya and Ganga basin. Tectonics, 4, 513–538.
    [Google Scholar]
  35. Mezaki, S. & Yabiku, M. (1984) Channel morphology of the Kali Gandaki and the Narayani rivers in central Nepal. J. Nepal Geol. Soc., 4, 161–176.
    [Google Scholar]
  36. Milan, D.J., Heritage, G.L., Large, A.R.G. & Brunsdon, C.F. (1999) Influence of particle shape and sorting upon sample size estimates for a coarse‐grained upland stream. Sed. Geol., 129, 85–100.
    [Google Scholar]
  37. Mugnier, J.L., Huyghe, P., Leturmy, P. & Jouanne, F. (2004) Episodicity and rates of thrust sheet motion in Himalaya (western Nepal), In: (Ed. McClayK.R. ) Thrust Tectonics and Hydrocarbon Systems. Amer. Assoc. Petrol. Geol. Mem. 82, 91–114.
    [Google Scholar]
  38. Najman, Y. (2006) The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins. Earth Sci. Rev., 74, 1–72.
    [Google Scholar]
  39. Naylor, M. & Sinclair, H.D. (2007) Punctuated thrust deformation in the context of doubly vergent thrust wedges: Implications for the localization of uplift and exhumation. Geology, 35, 559–562.
    [Google Scholar]
  40. Newell, A.J., Tverdokhlebov, V.P. & Benton, M.J. (1999) Interplay of tectonics and climate on a transverse fluvial system. Upper Permian, Southern Uralian Foreland Basin, Russia. Sed. Geol., 127, 11–29.
    [Google Scholar]
  41. Ojha, T.P., Butler, R.F., DeCelles, P.G. & Quade, J. (2009) Magnetic polarity stratigraphy of the Neogene foreland basin deposits of Nepal. Basin Res., 21(1), 61–90.
    [Google Scholar]
  42. Pandey, M.R., Tandukar, R.P., Avouac, J.P., Lavé, J. & Massot, J.P. (1995) Interseismic strain accumulation on the Himalayan Crustal Ramp (Nepal). Geophys. Res. Lett., 22, 751–754.
    [Google Scholar]
  43. Paola, C. & Martin, J.M. (2012) Mass‐balance effects in depositional systems. J. Sediment. Res., 82(6), 435–450.
    [Google Scholar]
  44. Paola, C., Heller, P.L. & Angevine, C.L. (1992) The large‐scale dynamics of grain‐size variation in alluvial basins, 1: Theory. Basin Res., 4(2), 73–90.
    [Google Scholar]
  45. Parker, G. & Cui, Y.T. (1998) The arrested gravel front: stable gravel‐sand transitions in rivers ‐ Part 1: simplified analytical solution. J. Hydraul. Res., 36(1), 75–100.
    [Google Scholar]
  46. Patriat, P. & Achache, J. (1984) India‐Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311, 615–621.
    [Google Scholar]
  47. Peizhen, Z., Molnar, P. & Downs, W.R. (2001) Increased sedimentation rates and grain sizes 2‐4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897.
    [Google Scholar]
  48. Robinson, R.A.J. & Slingerland, R.L. (1998) Origin of fluvial grain‐size trends in a foreland basin: the Pocono Formation on the Central Appalachian Basin. J. Sediment. Res. A Sediment. Petrol. Process., 68(3), 473–486.
    [Google Scholar]
  49. Sambrook Smith, G.H. & Ferguson, R.I. (1995) The gravel sand transition along river channels. J. Sediment. Res. A Sediment. Petrol. Process., 65, 423–430.
    [Google Scholar]
  50. Schelling, D. & Arita, K. (1991) Thrust tectonics, crustal shortening, and the structure of the far eastern Nepal Himalaya. Tectonics, 10, 851–862.
    [Google Scholar]
  51. Simpson, G.D. (2006) Modelling interactions between fold–thrust belt deformation, foreland flexure and surface mass transport. Basin Res., 18(2), 125–143.
    [Google Scholar]
  52. Sinclair, H.D., Coakley, B.J., Allen, P.A. & Watts, A.B. (1991) Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: an example from the central Alps, Switzerland. Tectonics, 10, 599–620.
    [Google Scholar]
  53. Sinha, R., Jain, V., Babu, G.P. & Ghosh, S. (2005) Geomorphic characterization and diversity of the fluvial systems of the Gangetic Plains. Geomorphology, 70, 207–225.
    [Google Scholar]
  54. Tamrakar, N. & Khakurel, D. (2012) Lithologic and morphometric characteristics of the Chure River Basin, Central Nepal. Bull. Dept. Geol., Tribhuvan Univ., Nepal, 15, 35–48.
    [Google Scholar]
  55. Tokuoka, T., Takayasu, K., Yoshida, M. & Hisatomi, K. (1986) The Churia (Siwalik) Group of the Arung Khola area, West Central Nepal: Memoirs of the Faculty of Science, Shimane University, 20(special issue) 135–210.
  56. Whittaker, A.C., Duller, R.A., Springett, J., Smithells, R.A., Whitchurch, A.L. & Allen, P.A. (2011) Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply. Geol. Soc. Am. Bull., 123(7–8), 1363–1382.
    [Google Scholar]
  57. Wilcock, P.R. (1998) Two‐fraction model of initial sediment motion in gravel‐bed rivers. Science, 280, 410–412.
    [Google Scholar]
  58. Yatsu, E. (1955) On the longitudinal profile of the graded river. Am. Geophys. Union Trans., 36(1955), 655–663.
    [Google Scholar]
  59. Zheng, H.B., Powell, C.M., An, Z.S., Zhou, J. & Dong, G.R. (2000) Pliocene uplift of the northern Tibetan Plateau. Geology, 28, 715–718.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12071
Loading
/content/journals/10.1111/bre.12071
Loading

Data & Media loading...

Supplements

. Channel width and elevation profiles of the four studied Himalayan rivers.

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error