1887
Volume 27, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

We attribute changes in the morphology of relay ramp channels (increased slope and decreased width) to variations in displacement rate on ramp‐adjacent normal faults. We map the faults and fluvial channels associated with four sites in different stages of fault interaction and linkage on the Volcanic Tableland, a Late Pleistocene ash‐flow tuff in east‐central California. Because these channels are inactive today, we estimate downstream changes in channel width and depth using HEC‐RAS, a one‐dimensional open channel flow model. Our results show that channel slope must be greater than about 0.05 before there are substantial decreases in width or substantial increases in depth. Displacement rate increases during interaction between segments results in the increases in channel slope and decreases in channel width. Moreover, our data show that these changes begin to occur during the very early stages of fault interaction, well before the fault geometry would indicate ongoing or imminent linkage.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12072
2014-05-24
2024-03-29
Loading full text...

Full text loading...

References

  1. Amos, C.B. & Burbank, D.W. (2007) Channel width response to differential uplift. J. Geophys. Res., 112, F02010.
    [Google Scholar]
  2. Arcement, G.J. & Schneider, V.R. (1989) Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains. U.S. Geol.Surv. Water‐Supply Pap. 2339, U.S. Geological Survey. Reston, VA.
    [Google Scholar]
  3. Attal, M., Tucker, G.E., Whittaker, A.C., Cowie, P.A. & Roberts, G.P. (2008) Modeling fluvial incision and transient landscape evolution: influence of dynamic channel adjustment. J. Geophys. Res., 113, F03013.
    [Google Scholar]
  4. Bateman, P.C. (1965) Geology and Tungsten Mineralization of the Bishop District, CA. U.S. Geol. Surv. Prof. Pap. 470, Reston, VA.
    [Google Scholar]
  5. Cartwright, J.A., Trudgill, B.D. & Mansfield, C.S. (1995) Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands grabens of SE Utah. J. Struct. Geol., 17, 1319–1326.
    [Google Scholar]
  6. Commins, D., Gupta, S. & Cartwright, J. (2005) Deformed streams reveal growth and linkage of a normal fault array in the Canyonlands graben, Utah. Geology, 33, 645–648.
    [Google Scholar]
  7. Cowie, P.A. (1998) A healing‐reloading feedback control on the growth rate of seismogenic faults. J. Struct. Geol., 20, 1075–1087.
    [Google Scholar]
  8. Cowie, P.A. & Scholz, C.H. (1992) Physical explanation for the displacement‐length relationship of faults using a post‐yield fracture mechanics model. J. Struct. Geol., 14, 1133–1148.
    [Google Scholar]
  9. Cowie, P.A., Gupta, S. & Dawers, N.H. (2000) Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Res., 12, 241–261.
    [Google Scholar]
  10. Cowie, P.A., Attal, M., Tucker, G.E., Whittaker, A.C., Naylor, M., Ganas, A. & Roberts, G.P. (2006) Investigation of the surface process response to fault interaction and linkage using a numerical modeling approach. Basin Res., 18, 231–266.
    [Google Scholar]
  11. Dawers, N.H. & Anders, M.H. (1995) Displacement‐length scaling and fault linkage. J. Struct. Geol., 17, 607–614.
    [Google Scholar]
  12. Dawers, N.H. & Underhill, J.R. (2000) The role of fault interaction and linkage in controlling synrift stratigraphic sequences: Late Jurassic, Stratfjord East Area, Northern North Sea. Am. Assoc. Petrol Geo. Bull., 84, 45–64.
    [Google Scholar]
  13. Dawers, N.H., Anders, M.H. & Scholz, C.H. (1993) Growth of normal faults: displacement‐length scaling. Geology, 21, 1107–1110.
    [Google Scholar]
  14. Densmore, A.L., Dawers, N.H., Gupta, S., Allen, P.A. & Gilpin, R. (2003) Landscape evolution at extensional relay zones. J. Geophy. Res., 108, B5.
    [Google Scholar]
  15. Dixon, T.H., Norabuena, E. & Hotaling, L. (2003) Paleoseismology and global positioning system: earthquake‐cycle effects and geodetic versus geologic fault slip rates in the Eastern California Shear Zone. Geology, 31, 55–58.
    [Google Scholar]
  16. Dokka, R.K. & Travis, C.J. (1990a) Late Cenozoic strike‐slip faulting in the Mojave Desert, California. Tectonics, 9, 311–340.
    [Google Scholar]
  17. Dokka, R.K. & Travis, C.J. (1990b) Role of the eastern California shear zone in accommodating Pacific‐North American plate motion. Geophys. Res. Lett., 17, 1323–1326.
    [Google Scholar]
  18. Duvall, A., Kirby, E. & Burbank, D. (2004) Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. J. Geophys. Res., 109, F03002.
    [Google Scholar]
  19. Ferrill, D.A., Stamatakos, J.A. & Sims, D. (1999) Normal fault corrugation: implications for growth and seismicity of active normal faults. J. Struct. Geol., 21, 1027–1038.
    [Google Scholar]
  20. Finnegan, N.J., Roe, G., Montcomery, D.R. & Hallet, B. (2005) Controls on the channel width of rivers: implications for modeling fluvial incision of bedrock. Geology, 33, 229–232.
    [Google Scholar]
  21. Gilbert, C.M. (1938) Welded tuff in eastern California. Geol. Soc. Am. Bull., 49, 1829–1862.
    [Google Scholar]
  22. Gilpin, R. (2003) Interaction between stream development and propagating extensional faults. Unpublished PhD Thesis, University of Edinburgh, Scotland.
  23. Goethals, M.M., Niedermann, S., Hetzel, R. & Fenton, C.R. (2009) Determining the impact of faulting on the rate of erosion in a low‐relief landscape: a case study using in situ produced 21Ne on active normal faults in the Bishop Tuff, California. Geomorphology, 103, 401–413.
    [Google Scholar]
  24. Gupta, S., Cowie, P.A., Dawers, N.H. & Underhill, J.R. (1998) A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault‐array evolution. Geology, 26, 595–598.
    [Google Scholar]
  25. Hack, J.T. (1957) Studies of Longitudinal Stream Profiles in Virginia and Maryland. U.S. Geol. Surv. Prof. Pap., 294‐B, Reston, VA.
    [Google Scholar]
  26. Kirby, E. & Whipple, K.X. (2012) Expression of active tectonics in erosional landscapes. J. Struct. Geol., 44, 54–75.
    [Google Scholar]
  27. Lienkaemper, J.J., Pezzopane, S.K., Clark, M.M. & Rymer, M.J. (1987) Fault fractures formed in association with the 1986 Chalfant Valley, California, earthquake sequence: preliminary report. Bull. Seismol. Soc. Am., 77, 297–305.
    [Google Scholar]
  28. Miller, M.M., Johnson, D.J., Dixon, T.H. & Dokka, R.K. (2001) Refined kinematics of the Eastern California Shear Zone from GPS observations, 1993‐1998. J. Geophys. Res., 103, 2245–2263.
    [Google Scholar]
  29. Peacock, D.C.P. & Sanderson, D.J. (1991) Displacements, segment linkage and relay ramps in normal fault zones. J. Struct. Geol., 13, 721–733.
    [Google Scholar]
  30. Phillips, J.D. & Lutz, J.D. (2008) Profile convexities in bedrock and alluvial streams. Geomorphology, 102, 554–566.
    [Google Scholar]
  31. Pinter, N. (1995) Faulting on the Volcanic Tableland, Owens Valley, California. J. Geol., 103, 73–83.
    [Google Scholar]
  32. Pinter, N. & Keller, E.A. (1995) Geomorphological analysis of neotectonic deformation, northern Owens Valley, California. Geol. Rund., 84, 200–212.
    [Google Scholar]
  33. Pinter, N., Keller, E.A. & West, R.B. (1994) Relative dating of terraces of the Owens River, Northern Owens Valley, California, and correlation with moraines of the Sierra Nevada. Quat. Res., 42, 266–276.
    [Google Scholar]
  34. Sarna‐Wojcicki, A.M., Pringle, M.S. & Wijbrans, J. (2000) New 40Ar/39Ar Age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama‐Brunhes boundary. J. Geophys. Res., 105, 21431–21443.
    [Google Scholar]
  35. Trudgill, B. & Cartwright, J. (1994) Relay‐ramp forms and normal‐fault linkage, Canyonlands National Park, Utah. Geol. Soc. Am. Bull., 106, 1143–1157.
    [Google Scholar]
  36. Turowski, J.M., Lague, D., Crave, A. & Hovius, N. (2006) Experimental channel response to tectonic uplift. J. Geophys. Res., 111, doi:10.1029/2005JF000306.
    [Google Scholar]
  37. Turowski, J.M., Lague, D. & Hovius, N. (2007) Cover effect in bedrock abrasion: a new derivation and its implications for the modeling of bedrock channel morphology. J. Geophys. Res., 112, doi:10.1029/2006JF000697.
    [Google Scholar]
  38. United States Army Corps of Engineers, Hydrologic Engineering Center
    United States Army Corps of Engineers, Hydrologic Engineering Center (2010) HEC‐RAS River Analysis System: User's Manual, Applications Guide, Hydraulic Reference Manual. United States Army Corps of Engineers: Institute for Water Resources, Davis, CA. http://www.hec.usace.army.mil/software/hec-ras/documentation.aspx
    [Google Scholar]
  39. Whipple, K.X. (2004) Bedrock rivers and the geomorphology of active orogens. Ann. Rev. Earth Planet. Sci., 32, 151–185.
    [Google Scholar]
  40. Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E. & Roberts, G.P. (2007a) Bedrock channel adjustment to tectonic forcing: implications for predicting river incision rates. Geology, 35, 103–106.
    [Google Scholar]
  41. Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E. & Roberts, G.P. (2007b) Contrasting transient and steady‐state rivers crossing active normal faults: new field observations from the central Apennines, Italy. Basin Res., 19, 529–556.
    [Google Scholar]
  42. Whittaker, A.C., Attal, M., Cowie, P.A., Tucker, G.E. & Roberts, G.P. (2008) Decoding temporal and spatial patterns of fault uplift using transient river long profiles. Geomorphology, 100, 506–526.
    [Google Scholar]
  43. Willemse, E.J.M., Pollard, D.D. & Aydin, A. (1996) Three‐dimensional analyses of slip distributions on normal fault arrays with consequences for fault scaling. J. Struct. Geol., 18, 295–309.
    [Google Scholar]
  44. Wilson, C.J.N. & Hildreth, W. (1997) The Bishop Tuff: new insights from eruptive stratigraphy. J. Geol., 105, 407–439.
    [Google Scholar]
  45. Wobus, C.W., Tucker, G.E. & Anderson, R.S. (2006) Self‐formed bedrock channels. Geophys. Res. Lett., 33, doi:10.1029/2006GL027182.
    [Google Scholar]
  46. Yanites, B.J. & Tucker, G.E. (2010) Controls and limits on bedrock channel geometry. J. Geophys. Res., 115, F04019.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12072
Loading
/content/journals/10.1111/bre.12072
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error