1887
Volume 27, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Located on the southern margin of the Lhasa terrane in southern Tibet, the Xigaze forearc basin records Cretaceous to lower Eocene sedimentation along the southern margin of Asia, prior to and during the initial stages of continental collision with the Tethyan Himalaya in the Early Eocene. We present new measured stratigraphic sections, totalling 4.5 km stratigraphic thickness, from a 60 km E–W segment of the western portion of the Xigaze forearc basin, northeast of the Lopu Kangri Range (29.8007° N, 84.91827° E). In addition, we apply U–Pb detrital zircon geochronology to constrain the provenance and maximum depositional ages of investigated strata. Stratigraphic ages range between . 88 and . 54 Ma and sedimentary facies indicate a shoaling‐upward trend from deep‐marine turbidites to fluvial deposits. Depositional environments of coeval Cretaceous strata along strike include deep‐marine distal turbidites, slope‐apron debris‐flow deposits and marginal marine carbonates. This along‐strike variability in facies suggests an irregular paleogeography of the Asian margin prior to collision. Paleocene–Eocene strata are composed of shallow marine carbonates with abundant foraminifera such as and and transition into fluvial deposits dated at . 54 Ma. Sandstone modal analyses, conglomerate clast compositions and detrital zircon U–Pb geochronology indicate that forearc detritus in this region was derived solely from the Gangdese magmatic arc to the north. In addition, U–Pb detrital zircon age spectra within the upper Xigaze forearc stratigraphy are similar to those from Eocene foreland basin strata south of the Indus‐Yarlung suture near Sangdanlin, suggesting that the Xigaze forearc was a possible source of Sangdanlin detritus by . 55 Ma. We propose a model in which the Xigaze forearc prograded south over the accretionary prism and onto the advancing Tethyan Himalayan passive margin between 58 and 54 Ma, during late stage evolution of the forearc basin and the beginning of collision with the Tethyan Himalaya. The lack of documented forearc strata younger than . 51 Ma suggests that sedimentation in the forearc basin ceased at this time owing to uplift resulting from continued continental collision.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12080
2014-07-10
2020-04-09
Loading full text...

Full text loading...

References

  1. Aitchison, J.C., Xia, X., Baxter, A.T. & Ali, J.R. (2011) Detrital zircon U‐Pb ages along the Yarlung‐Tsangpo suture zone, Tibet: implications for oblique convergence and collision between India and Asia. Gondwana Res., 20(4), 691–709.
    [Google Scholar]
  2. Allen, J.R.L. (1978) Studies in fluviatile sedimentation: an exploratory quantitative model for the architecture of avulsion controlled alluvial sites. Sediment. Geol., 21, 129–147.
    [Google Scholar]
  3. Barbeau, D.L., Olivero, E.B., Swanson‐Hysell, N.L., Zahid, K., Murray, K.E. & Gehrels, G.E. (2009) Detrital‐zircon geochronology of the eastern Magallanes foreland basin: implications for Eocene kinematics of the northern Scotia Arc and Drake Passage. Eart Planet. Sci. Lett., 284, 489–503.
    [Google Scholar]
  4. Bouma, A.H. (1962) Sedimentology of some Flysch Deposits. Elsevier, Amsterdam, p. 168.
    [Google Scholar]
  5. Burg, J.P. & Chen, G.M. (1984) Tectonics and structure zonation of southern Tibet, China. Nature, 311, 219–223.
    [Google Scholar]
  6. Cai, F., Ding, L., Leary, R.J., Wang, H., Xu, Q., Zhang, L. & Yue, Y. (2012) Tectonostratigraphy and provenance of an accretionary complex within the Yarlung‐Zangpo suture zone, southern Tibet: insights into subduction‐accretion processes in the Neo‐Tethys. Tectonophysics, 574–575, 181–192.
    [Google Scholar]
  7. Chung, S.‐L., Liu, D., Ji, J., Chu, M.‐F., Lee, H.‐Y., Wen, D.‐J., Lo, C.‐H., Lee, T.‐Y., Qian, Q. & Zhang, Q. (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology, 31, 1021–1024.
    [Google Scholar]
  8. Chung, S.‐L., Chu, M.‐F., Zhang, Y., Xie, Y., Lo, C.‐H., Lee, T.‐Y., Lan, C.‐Y., Li, X., Zhang, Q. & Wang, Y. (2005) Tibetan tectonic evolution inferred from spatial & temporal variations in post‐collisional magmatism. Earth Sci. Rev., 68, 173–196.
    [Google Scholar]
  9. DeCelles, P.G., Graym, B., Ridgway, K.D., Coler, B., Srivastav, P.A., Pequera, N. & Pivnik, D.A. (1991) Kinematic history of foreland uplift determined from Paleocene synorogenic conglomerate, Beartooth Range, Wyoming and Montana. Geol. Soc. Am., 103, 1458–1475.
    [Google Scholar]
  10. DeCelles, P.G., Robinson, D.M., Quade, J., Ojha, T.P., Garzione, C.N., Copeland, P. & Upreti, B.N. (2001) Stratigraphy, structure, and tectonic evolution of the Himalayan fold‐thrust belt in western Nepal. Tectonics, 20, 487–509.
    [Google Scholar]
  11. DeCelles, P.G., Gehrels, G.E., Najman, Y., Martin, A.J., Carter, A. & Garzanti, E. (2004) Detrital geochronology and geochemistry of Cretaceous‐Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett., 227, 313–330.
    [Google Scholar]
  12. DeCelles, P.G., Kapp, P., Quade, J. & Gehrels, G.E. (2011) Oligocene‐Miocene Kailas basin, southwestern Tibet: record of postcollisional upper‐plate extension in the Indus‐Yarlung suture zone. Geol. Soc. Am. Bull., 123, 1337–1362.
    [Google Scholar]
  13. Dewey, J.F., Shackleton, R.M., Chang, C.F. & Sun, Y.Y. (1988) The tectonic evolution of the Tibetan plateau. Philos. Trans. R. Soc. Lond. Ser. A, 327, 379–413.
    [Google Scholar]
  14. Dickinson, W.R. (1985) Interpreting provenance relation from detrital modes of sandstones. In: Provenance of Arenites: NATO ASI Series, C 148 (Ed. G.G.Zuffa ), pp. 333–363. D. Reidel Publishing Company, Dordrecht.
    [Google Scholar]
  15. Dickinson, W.R. (1995) Forearc basins. In: Tectonics of Sedimentary Basins (Ed. by C.J.Busby & R.V.Ingersoll ), pp. 221–261. Blackwell Scientific, Cambridge.
    [Google Scholar]
  16. Dickinson, W.R. & Gehrels, G.E. (2009) Use of U‐Pb ages of detrital zircons to inder maximum depostional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett., 288, 115–125.
    [Google Scholar]
  17. Dickinson, W.R. & Suczek, C.A. (1979) Plate tectonics and sandstone compositions. AAPG, 63, 2164–2182.
    [Google Scholar]
  18. Dickinson, W.R., Beard, S.L., Brakenridge, G.R., Erjavec, J.L., Furguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. & Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull., 94, 222–235.
    [Google Scholar]
  19. Ding, L., Kapp, P. & Wan, X. (2005) Paleocene – Eocene record of ophiolite obduction and initial India‐Asia collision, south‐central Tibet. Tectonics, 24, TC3001.
    [Google Scholar]
  20. Dürr, S.B. (1996) Provenance of Xigaze fore‐arc basin clastic rocks (Cretaceous, south Tibet). Geol. Soc. Am. Bull., 108, 669–684.
    [Google Scholar]
  21. Einsele, G., Liu, B., Dürr, S., Frisch, W., Liu, G., Luterbacher, H.P., Ratschbacher, L., Ricken, W., Wendt, J., Wetzel, A., Yu, G. & Zheng, H. (1994) The Xigaze forearc basin: evolution and facies architecture (Cretaceous, Tibet). Sed. Geol., 90, 1–32.
    [Google Scholar]
  22. Garzanti, E. (1999) Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. J. Asian Earth Sci., 17, 805–827.
    [Google Scholar]
  23. Garzanti, E. & Van Haver, T. (1988) The Indus clastics: fore‐arc basin sedimentation in the Ladakh Himalaya (India). Sediment. Geol., 59(3‐4), 237–249.
    [Google Scholar]
  24. Garzanti, E., Critelli, S. & Ingersoll, R.V. (1996) Paleogeographic and paleotectonic evolution of the Himalayan range as reflected by detrital modes of tertiary sandstones and modern sands (Indus transect, India and Pakistan). Geol. Soc. Am. Bull., 108, 631–642.
    [Google Scholar]
  25. Gazzi, P. (1966) Le Arenarie del Flysche Sopracretaceo dell'Appennino Modenese: Correlazioni con il Flysch di Monghidoro. Mineralogica e Petrografica Acta, 12, 69–97.
    [Google Scholar]
  26. Gehrels, G.E., Kapp, P., Pullen, A. & Ding, L. (2008a) U‐Pb basement and detrital zircon geochronology of the southern Tibetan plateau and Tethyan Himalaya. Geol. Soc. Am., Abstracts with Programs.
    [Google Scholar]
  27. Gehrels, G.E., Valencia, V. & Ruiz, J. (2008b) Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation‐multicollector‐inductively coupled plasma‐mass spectrometry. Geochem. Geophys. Geosyst., 9, Q03017.
    [Google Scholar]
  28. Gehrels, G.E., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N. & Yin, A. (2011) Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan‐Himalayan orogen. Tectonics, 30, TC5016.
    [Google Scholar]
  29. Göpel, C., Allègre, C.J. & Xu, R.‐H. (1984) Lead isotopic study of the Xigaze ophiolite (Tibet): the problem of the relationship between magmatites (gabbros, dolerites, lavas) and tectonites (harzburgites). Earth Planet. Sci. Lett., 69, 301–310.
    [Google Scholar]
  30. Graham, S.A., Tolson, R.B., DeCelles, P.G., Ingersoll, R.V., Bargar, E., Caldwell, M., Cavazza, W., Edwards, D.P., Follo, M.F., Handschy, J.F., Lemke, L., Moxon, I., Rice, R., Smith, G.A. & White, J. (1986) Provenance modeling as a technique for analyzing source terrane evolution and controls on foreland sedimentation. Spec. Publs int. Ass. Sediment., 8, 425–436.
    [Google Scholar]
  31. Guilmette, C., Hébert, R., Dostal, J., Indares, A., Ullrich, T., Bédard, É. & Wang, C. (2012) Discovery of a dismembered metamorphic sole in the Saga ophiolitic mélange, South Tibet: assessing an Early Cretaceous disruption of the Neo‐Tethyan supra‐subduction zone and consequences on basin closing. Gondwana Res., 22, 398–414.
    [Google Scholar]
  32. Guynn, J.H., Kapp, P., Pullen, A., Heizler, M., Gehrels, G. & Ding, L. (2006) Tibetan basement rocks near Amdo reveal “missing tectonism along the Bangong suture, central Tibet. Geology, 34, 505–508.
    [Google Scholar]
  33. Hall, R. & Smyth, H.R. (2008) Special paper 436: formation and applications of the sedimentary record in arc collision zones. Geol. Soc. Am., 436, 27–54.
    [Google Scholar]
  34. Hamilton, W. (1974) Map of Sedimentary Basins of the Indonesian Region. U.S.Geological Survey Miscellaneous Investigations, Denver, CO, Map I‐875‐B.
    [Google Scholar]
  35. Harms, J.C. & Fahnestock, R.K. (1965) Stratification, bed forms and flow phenomena (with an example from the Rio Grande), SEPM. In: Primary Sedimentary Structures and their Hydrodynamic Interpretation, Vol. 12 (Ed. G.V.Middleton ), pp. 84–115. Special Pub. Soc. Econ. Paleont. Miner.
    [Google Scholar]
  36. He, S., Kapp, P., DeCelles, P.G., Gehrels, G.E. & Heizler, M. (2007) Cretaceous‐Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet. Tectonophysics, 433, 15–37.
    [Google Scholar]
  37. Hébert, R., Bezard, R., Guilmette, C., Dostal, J., Wang, C.S. & Liu, Z.F. (2012) The Indus‐Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes southern Tibet: first synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo‐Tethys. Gondwana Res., 22, 377–397.
    [Google Scholar]
  38. Henderson, A.L., Najman, Y., Parrish, R., BouDasgher‐Fadel, M., Barford, D., Garzanti, E. & Andò, S. (2010) Geology of the Cenozoic Indus Basin sedimentary rocks: paleoenvironmental interpretation of sedimentation from the western Himalaya during early phases of India‐Eurasia collision. Tectonics, 29, TC6015.
    [Google Scholar]
  39. Hetzel, R., Dunkl, I., Haider, V., Strobl, M., von Eynatten, H., Ding, L. & Frei, D. (2011) Peneplain formation in southern Tibet predates the India‐Asia collision and plateau uplift. Geology, 39, 983‐986.
    [Google Scholar]
  40. Hou, Z.Q., Gao, Y.F., Qu, X.M., Rui, Z.Y. & Mo, X. (2004) Origin of adakitic intrusives generated during mid‐Miocene east‐west extension in southern Tibet. Earth Planet. Sci. Lett., 220, 139–155.
    [Google Scholar]
  41. Hu, X., Sinclair, H.D., Wang, J., Jiang, H. & Wu, F. (2012) Late Cretaceous‐Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of India‐Asia initial collision. Basin Res., 24, 1–24.
    [Google Scholar]
  42. Ingersoll, R. (1979) Evolution of the Late Cretaceous forearc basin, northern and central California. Geol. Soc. Am. Bull., 90, 813–826.
    [Google Scholar]
  43. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. & Sares, S.W. (1984) The effect of grain size on detrital modes: a test of the GazzDickinson point‐counting method. J. Sediment. Petrol., 54, 0103–0116.
    [Google Scholar]
  44. Ji, W.O., Wu, F.Y., Chung, S.L., Li, J.X. & Liu, C.Z. (2009a) Zircon U‐Pb chronology and Hf isotopic constraints on the petrogenesis of Gandese batholiths, southern Tibet. Chem. Geol., 262, 229–245.
    [Google Scholar]
  45. Ji, W.Q., Wu, F.Y., Liu, C.Z. & Chung, S.L. (2009b) Geochronology and petrogensis of granitic rocks in the Gandese batholith, southern Tibet. Sci. China D, 52, 1240–1261.
    [Google Scholar]
  46. Kapp, J.L.D., Harrison, T.M., Kapp, P., Grove, M., Lovera, O.M. & Ding, L. (2005) The Nyainqentanglha Shan: a window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. J. Geophys. Res., 110, B08413.
    [Google Scholar]
  47. Kapp, P., DeCelles, P.G., Leier, A.L., Fabijanic, J.M., He, S., Pullen, A., Gehrels, G.E. & Ding, L. (2007a) The Gangdese retroarc thrust belt revealed. Geol. Soc. Am. Today, 17, 4–9.
    [Google Scholar]
  48. Kapp, P., DeCelle, P.G., Gehrels, G.E., Heizler, M. & Ding, L. (2007b) Geological records of the Cretaceous Lhasa‐Qiangtang and Indo‐Asian collisions in the Nima basin area, central Tibet. Geol. Soc. Am. Bull., 119, 917–932.
    [Google Scholar]
  49. Kapp, P., Taylor, M., Stockli, D. & Ding, L. (2008) Development of active low‐angle normal fault systems during orogenic collapse: insight from Tibet. Geology, 36, 7–10.
    [Google Scholar]
  50. Karig, D.E. & Sharman, G.F. (1975) Subduction and accretion in trenches. Geol. Soc. Am. Bull., 86, 377–389.
    [Google Scholar]
  51. Lee, H.‐Y., Ching, S.‐L., Lo, C.‐H., Ji, J., Lee, T.‐Y., Qian, Q. & Zhang, Q. (2009) Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477, 20–35.
    [Google Scholar]
  52. Leier, A.L., DeCelles, P.G., Kapp, P. & Gehrels, G.E. (2007) Lower Cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau. J. Sediment. Res., 77, 809–825.
    [Google Scholar]
  53. Li, J.‐G., Guo, Z.‐Y., Batten, D.J., Cai, H.‐W. & Zhang, Y.‐Y. (2010) Palynological stratigraphy of the Late Cretaceous and Cenozoic collision‐related conglomerates at Qiabulin, Xigaze, Xizang (Tibet) and its bearing on palaeoenvironmental development. J. Asian Earth Sci., 38, 86–95.
    [Google Scholar]
  54. Liu, C., Yin, J., Shun, X. & Sun, Y. (1988) Marine Late Cretaceous‐Early Tertiary sequences—the non‐flysch deposits of the Xigaze forearc basin in South Xizang. J. Inst. Geol. Chin. Acad. Sci., 3, 130–157.
    [Google Scholar]
  55. Lowe, D.R. (1982) Sediment gravity flows: II. Depositional models with special reference to the deposits of high‐den‐ sity turbidity currents. J. Sediment. Petrol., 52, 279–297.
    [Google Scholar]
  56. Ludwig, K.R. (2008) Isoplot 3.6: Berkeley Geochronology Center. Special Publication 4, 77 pp.
    [Google Scholar]
  57. Ludwig, K. & Mundil, R. (2002) Extracting reliable U‐Pb ages and errors from complex populations of zircons from Phanerozoic tuffs. J. Conf. Abstr. 12th Goldschmidt Conf. 2002.
  58. Makaske, B. (2001) Anastomosing rivers: a review of their classification, origin and sedimentary products. Earth Sci. Rev., 53, 1490196.
    [Google Scholar]
  59. Makovsky, Y., Kelmperer, S.L., Ratschbacher, L. & Alsdorf, D. (1999) Midcrustal reflector on INDEPTH wide‐angle profiles: an ophiolitic slab beneath the India‐Asia suture in southern Tibet?Tectonics, 18, 793–808.
    [Google Scholar]
  60. Miall, A.D. (1978) Lithofacies types and vertical profile models in braided river deposits: a summary. In: Fluvial Sedimentology (Ed. A.D.Miall ), Mem. Can. Soc. petrol. Geol., 5, 597.
    [Google Scholar]
  61. Mo, X.‐X., Zhao, Z.D., Deng, J.F., Dong, G.C., Zhou, S., Guo, T.Y., Zhang, S.Q. & Wang, L.L. (2003) Response of volcanism to the India‐Asia collision. Earth Sci. Front., 10, 135–148.
    [Google Scholar]
  62. Moxon, I.W. (1988) Sequence stratigraphy of the Great Valley basin in the context of convergent margin tectonics. In: Studies of the Geology of the San Joaquin Basin: Los Angeles, Society of Economic Paleontologists and Mineralogists, Pacific Section. pp. 3‐28.
    [Google Scholar]
  63. Moxon, I. (1988) Sequence stratigraphy of the Great Valley basin in the context of convergent margin tectonics. In: Studies of the Geology of the San Joaquin Basin: Pacific Sections S.E.P.M., Vol. 60 (Ed. S.A.Graham ), pp. 3–28.
    [Google Scholar]
  64. Murphy, M.A. (2007) Isotopic characteristics of the Gurla Mandhata metamorphic core complex: implications for the architecture of the Himalayan orogen. Geology, 35, 983–986.
    [Google Scholar]
  65. Murphy, M.A., Yin, A., Harrison, T.M., Dürr, S.B., Chen, Z., Ryerson, F.J., Kidd, W.S.F., Wang, X. & Zhou, X. (1997) Did the Ingo‐Asian collision alone create the Tibetan plateau?Geology, 25, 719–722.
    [Google Scholar]
  66. Mutti, E. (1992) Turbidite Sandstones. Asip, Istituto di Geologia Universita di Parma, Parma, Italy, p. 275.
    [Google Scholar]
  67. Najman, Y. (2006) The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins. Earth Sci. Rev., 74, 1–72.
    [Google Scholar]
  68. Najman, Y. & Garzanti, E. (2000) An integrated approach to provenance studies: reconstructing early Himalayan paleogeography and tectonic evolution from tertiary foredeep sediments. N. India Geol. Soc. Am. Bull., 112, 435–449.
    [Google Scholar]
  69. Najman, Y., Appel, E., Boudagher‐Fadel, M., Brown, P., Carter, A., Garzanti, E., Godin, L., Han, J., Oliver, G., Parrish, R. & Vezzoli, G. (2010) Timing of the India‐Asia collision: geological, biostratigraphic, and paleomagnetic constraints. J. Geophys. Res., 115, B12416.
    [Google Scholar]
  70. Nelson, K.D., Zhao, W., Brown, L.D., Kuo, J., Che, J., Liu, X., Klemperer, S.L., Makovsky, Y., Meissner, R., Mechie, J., Kind, R., Wenzel, F., Ni, J., Nabelek, J., Leshou, C., Tan., H., Wei, W., Jones, A.G., Booker, J., Unsworth, M., Kidd, W.S.F., Hauck, M., Alsdorf, D., Ross, A., Cogan, N., Wu, C., Sandovol, E. & Edwards, M. (1996) Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Nature, 274, 1684–1688.
    [Google Scholar]
  71. Painter, C.S., Carrapa, B., DeCelles, P.G., Gehrels, G.E. & Thomson, S.N. (2014) Exhumation of the North American Cordillera revealed by multidating of Upper Jurassic‐Upper Cretaceous foreland basin deposits. Geol. Soc. Am. Bull., doi: 10.1130/B30999.1.
    [Google Scholar]
  72. Quidelleur, X., Grove, M., Lovera, O.M., Harrison, T.M., Yin, A. & Ryerson, F.J. (1997) The thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet. J. Geophys. Res., 102, 2659–2679.
    [Google Scholar]
  73. Schärer, U., Xu, R.H. & Allègre, C.J. (1984) U‐Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa‐Xigaze region, Tibet. Earth Planet. Sci. Lett., 69, 311–320.
    [Google Scholar]
  74. Searle, M.P. (1986) Structural evolution and sequence of thrusting in the High Himalayan, Tibetan‐Tethys and Indus suture zones of Zanskar and Ladakh, western Himalaya. J. Struct. Geol., 8, 923–936.
    [Google Scholar]
  75. Sellwood, B.W. (1978) Shallow‐water Carbonate Environments. In: Sedimentary Environments and Facies (Ed. by H.G.Reading ), Elsevier, New York.
    [Google Scholar]
  76. Shultz, A.W. (1984) Subaerial debris‐flow deposition in the upper Paleozoic Cutler Formation, western Colorado. J. Sediment. Res., 54, 0759–0772.
    [Google Scholar]
  77. Slingerland, R. & Smith, N.D. (2004) River avulsions and their deposits. Annu. Rev. Earth and Planet. Sci., 32, 257–285.
    [Google Scholar]
  78. Talling, P.J. (2013) Hyrbid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models. Geosphere, 9, 460–488.
    [Google Scholar]
  79. Talling, P.J., Masson, D.C., Sumner, E.J. & Malgesini, G. (2012) Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology, 59, 1937–2003.
    [Google Scholar]
  80. Tapponnier, P., Mercier, J.L., Proust, F., Andrieux, J., Armijo, R., Bassoullett, J.P., Brunel, M., Burg, J.P., Colchen, M., Dupre, B., Girardeau, J., Marcoux, J., Mascle, G., Matte, P., Nicolas, A., Li, T., Xiao, X., Chang, C., Lin, P., Li, G., Wang, N., Chen, G., Han, T., Wang, X., Den, W., Zhen, H., Sheng, H., Cao, T., Zhou, J. & Qiu, H. (1981) The Tibetan side of the India‐Eurasia collision. Nature, 294, 405–410.
    [Google Scholar]
  81. Volkmer, J.E., Kapp, P., Guynn, J.H. & Lai, Q. (2007) Cretaceous‐Tertiary structural evolution of north central Lhasa terrane, Tibet. Tectonics, 26, TC6007.
    [Google Scholar]
  82. Wan, X.Q., Wang, L., Wang, C.S. & Jansa, L. (1998) Discovery and significance of Cretaceous fossils from the Xigaze Forearc Basin, Tibet. J. Asian Earth Sci., 16, 217–223.
    [Google Scholar]
  83. Wan, X.Q., Ding, L., Li, J.G. & Cai, H.W. (2001) Latest Cretaceous to Early Eocene marine strata in the Zhongba region, Tibet. J. Stratigr., 25, 267–272, (in Chinese with English abstract).
    [Google Scholar]
  84. Wang, J., Hu, X., Jansa, L. & Huang, Z. (2011) Provenance of the upper Cretaceous‐eocene deep‐water sandstones in Sangdanlin, Southern Tibet: constraints on the timing of initial India‐Asia collision. J. Geol., 119, 293–309.
    [Google Scholar]
  85. Wang, C., Li, X., Liu, Z., Li, Y., Jansa, L., Dai, J. & Wei, Y. (2012) Revision of the Cretaceous‐Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Res., 22(2), 415–433.
    [Google Scholar]
  86. Wen, D.R., Liu, D.Y., Chung, S.L., Chu, M.F., Ji, J.Q., Zhang, Q., Song, B., Lee, T.Y., Yeh, M.W. & Lo, C.H. (2008) Zircon SHRIMP U‐Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chem. Geol., 252, 191–201.
    [Google Scholar]
  87. Wu, F.‐Y., Ji, W.‐Q., Liu, C.‐Z. & Chung, S.‐L. (2010) Detrital zircon U‐Pb & Hf isotopic data from the Xigaze fore‐arc basin: constraints on Transhimalayan magmatic evolution in southern Tibet. Chem. Geol., 271, 13–25.
    [Google Scholar]
  88. Yin, A. & Harrison, T.M. (2000) Geologic evolution of the Himalayan‐Tibetan orogen. Annu. Rev. Earth and Planet. Sci., 28, 211–280.
    [Google Scholar]
  89. Zhang, Q., Willems, H., Ding, L., Grafe, K.‐U. & Appel, E. (2012) Initial India‐Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: evidence from stratigraphy and paleontology. J. Geol., 120, 175–189.
    [Google Scholar]
  90. Zhao, W., Nelson, K.D. & Team, P.I. (1993) Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366, 557–579.
    [Google Scholar]
  91. Zhu, B., Kidd, W.S.F., Rowley, D.B., Currie, B.S. & Shafique, N. (2005) Age of initiation of the India‐Asia collision in the east‐central Himalaya. J. Geol., 113, 265–285.
    [Google Scholar]
  92. Zhu, D.‐C., Mo, X.‐X., Niu, Y., Zhao, Z.‐D., Wang, L.Q., Pan, G.‐T. & Wu, F.‐Y. (2009) Zircon U‐Pb dating and in‐situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet. Tectonophysics, 469, 48–60.
    [Google Scholar]
  93. Zhu, D.‐C., Mo, X.‐X., Zhao, Z.‐D., Niu, Y., Wang, L.‐Q., Chu, Q.‐H., Pan, G.‐T., Xu, J.‐F. & Zhou, C.‐Y. (2010) Presence of Permian extension‐ and arc‐type magmatism in southern Tibet: paleogeographic implications. Geol. Soc. Am. Bull., 122, 979–993.
    [Google Scholar]
  94. Zhu, D.‐C., Zhao, Z.D., Niu, Y., Mo, X.‐X., Chung, S.‐L., Hou, Z.‐Q., Wang, L.‐Q. & Wu, F.‐Y. (2011) The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett., 301, 241–255.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12080
Loading
/content/journals/10.1111/bre.12080
Loading

Data & Media loading...

Supplements

Detailed sedimentological descriptions of Sections B and H.

PDF

All U–Pb geochronological analyses for samples collected from stratigraphic sections A–H. Data reduction parameters at the end of the table.

PDF

Recalculated modal petrographic data. Parameters described in Table 2 and results summarized in Fig. 13.

PDF

 

TEXT
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error