1887
Volume 27, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

There is now strong evidence that stratal geometries on basin margins are most likely a consequence of multiple controls, not just variations in accommodation. Consequently, correct sequence stratigraphic interpretation of stratal geometries requires an understanding of how multiple different controls may generate similar geometries. Using a simple numerical stratigraphic forward model, we explore the impact of time variable sediment supply and different sediment transport rates on stratal geometries. We demonstrate how four common types of stratal geometry can form by more than one set of controlling parameter values and are thus likely to be non‐unique, meaning that there may be several sets of controlling factors that can plausibly explain their formation. For example, a maximum transgressive surface can occur in the model due to an increase in rate of relative sea‐level rise during constant sediment supply, and due to a reduction in rate of sediment supply during a constant rate of relative sea‐level rise. Sequence boundaries, topset aggradation and shoreline trajectories are also examples of non‐unique stratal geometries. If the model simulations in this work are sufficiently realistic, then the modelled stratal geometries are important examples of non‐uniqueness, suggesting the need for a shift towards sequence stratigraphic methods based on constructing and evaluating multiple hypotheses and scenarios.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12082
2014-08-04
2024-04-23
Loading full text...

Full text loading...

References

  1. Allen, P.A., Armitage, J.J. & Carter, A. (2013) The Qs problem: sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60, 102–130.
    [Google Scholar]
  2. Begin, S.B., Meyer, D.F. & Schumm, S.A. (1981) Development of longitudinal profiles of alluvial channels in response to base‐level lowering. Earth Surf. Proc. Land., 6, 49–98.
    [Google Scholar]
  3. Best, J.L. & Ashworth, P.J. (1997) Scour in large braided rivers and the recognition of sequence stratigraphic boundaries. Nature, 387, 275–277.
    [Google Scholar]
  4. Box, G.E.P. (1979) Robustness in the strategy of scientific model building. In: Robustness in Statistics (Ed. by R.L.Launer & G.N.Wilkinson ), pp. 202. Academic Press, New York.
    [Google Scholar]
  5. Boyd, R., Ruming, K., Goodwin, I., Sandstrom, M. & Schröder‐Adams, C. (2008) Highstand transport of coastal sand to the deep ocean: a case study from Fraser Island, southeast Australia. Geology, 36, 15–18.
    [Google Scholar]
  6. Burgess, P.M. & Allen, P.A. (1996) A forward‐modelling analysis of the controls on sequence stratigraphical geometries. In: Sequence Stratigraphy in British Geology (Ed. by S.P.Hesselbo & D.N.Parkinson ) Geological Society of London, Spec. Publ., 103, 9–24.
    [Google Scholar]
  7. Burgess, P.M. & Hovius, N. (1998) Rates of delta progradation during highstands: consequences for timing of deposition in deep‐marine systems. Geol. Soc. London J., 155, 217–222.
    [Google Scholar]
  8. Burgess, P.M. & Steel, R. (2008) Stratigraphic forward modeling of basin‐margin clinoform systems: implications for controls on topset and shelf width and timing of formation of shelf‐edge deltas. In: Recent Advances in Models of Siliciclastic Shallow‐Marine Stratigraphy (Ed. by HampsonG.J. , SteelR.J. , BurgessP.M. & DalrympleR.W. ) SEPM Spec. Publ., 90, 35–45.
    [Google Scholar]
  9. Burgess, P.M., Lammers, H., Van Oosterhout, C. & Granjeon, D. (2006) Multivariate sequence stratigraphy: tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios and conditional frequency maps. Am. Assoc. Pet. Geol. Bull., 90, 1883–1901.
    [Google Scholar]
  10. Burton, R., Kendall, C.G.S.C. & Lerche, I. (1987) Out of our depth: on the impossibility of fathoming eustasy from the stratigraphic record. Earth Sci. Rev., 24, 237–277.
    [Google Scholar]
  11. Carvajal, C.R. & Steel, R.J. (2006) Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34, 665–668.
    [Google Scholar]
  12. Carvajal, C., Steel, R. & Petter, A. (2009) Sediment supply: the main driver of shelf‐margin growth. Earth Sci. Rev., 96, 221–248.
    [Google Scholar]
  13. Castelltort, S. & Van Den Driessche, J. (2003) How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sed. Geol., 157, 3–13.
    [Google Scholar]
  14. Catuneanu, O. (2006) Principles of Sequence Stratigraphy: Amsterdam. Elsevier, Oxford.
    [Google Scholar]
  15. Catuneanu, O., Abreu, V., Bhattacharya, J., Blum, M., Dalrymple, R., Eriksson, P., Fielding, C., Fisher, W., Galloway, W., Gibling, M., Giles, K., Holbrook, J., Jordan, R., Kendall, C.G.S.C., Macurda, B., Martinsen, O., Miall, A., Neal, J., Nummedal, D., Pomar, L., Posamentier, H., Pratt, B., Sarg, J., Shanley, K., Steel, R., Strasser, A., Tucker, M. & Winker, C. (2009) Towards the standardization of sequence stratigraphy. Earth Sci. Rev., 92, 1–33.
    [Google Scholar]
  16. Charvin, K., Gallagher, K.L., Hampson, G.J. & Labourdette, R. (2009a) A Bayesian approach to inverse modelling of stratigraphy, part 1: method. Basin Res., 21, 5–25.
    [Google Scholar]
  17. Charvin, K., Hampson, G.J., Gallagher, K.L. & Labourdette, R. (2009b) A Bayesian approach to inverse modelling of stratigraphy, part 2: validation tests. Basin Res., 21, 27–45.
    [Google Scholar]
  18. Covault, J.A. & Graham, S.A. (2010) Submarine fans at all sea‐level stands: tectono‐morphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology, 38, 939–942.
    [Google Scholar]
  19. Covault, J.A., Normark, W.R., Romans, B.W. & Graham, S.A. (2007) Highstand fans in the California borderland: the overlooked deep‐water depositional systems. Geology, 35, 783–786.
    [Google Scholar]
  20. Cross, T.A. & Lessenger, M.A. (1999) Construction and application of a stratigraphic inverse model. In: Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations (Ed. by HarbaughJ.W. , WatneyW.L. , RankeyE.C. , SlingerlandR. , GoldsteinR.H. & FranseenE.K. ), SEPM Spec. Publ., 62, 69–83.
    [Google Scholar]
  21. Falivene, O., Frascati, A., Gesbert, S., Pickens, J.Y., Hsu, Y. & Rovira, A. (2014) Automatic calibration of stratigraphic forward models for reservoir presence in exploration. Am. Assoc. Pet. Geol. Bull., 98, 1811–1835.
    [Google Scholar]
  22. Flemings, P. & Grotzinger, J. (1996) STRATA: freeware for analyzing classic stratigraphic problems. GSA Today, 6(12), 1–7.
    [Google Scholar]
  23. Flemings, P.B. & Jordan, T.E. (1989) A synthetic stratigraphic model of foreland basin development. J. Geophys. Res., 94, 3851–3866.
    [Google Scholar]
  24. Forzoni, A., Storms, J.E.A., Whittaker, A.C. & de Jager, G. (2014) Delayed delivery from the sediment factory: modeling the impact of catchment response time to tectonics on sediment flux and fluvio‐deltaic stratigraphy. Earth Surf. Proc. Land., 39, 689–704.
    [Google Scholar]
  25. Granjeon, D. & Joseph, P. (1999) Concepts and applications of a 3D multiple lithology, diffusive model in stratigraphic modeling. In: Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations (Ed. by J.W.Harbaugh , W.L.Watney , E.C.Rankey , R.Slingerland , R.H.Goldstein & E.K.Franseen ), SEPM Spec. Publ., 62, 197–210.
    [Google Scholar]
  26. Helland‐Hansen, W. (2009) Discussion: Towards the standardization of sequence stratigraphy. Earth‐Sci. Rev., 94, 95–97.
    [Google Scholar]
  27. Helland‐Hansen, W. & Gjelberg, J.G. (1994) Conceptual basis and variability in sequence stratigraphy: a different perspective. Sed. Geol., 92, 31–52.
    [Google Scholar]
  28. Helland‐Hansen, W. & Hampson, G.J. (2009) Trajectory analysis: concepts and applications. Basin Res., 21, 454–483.
    [Google Scholar]
  29. Heller, P.L. & Paola, C. (1992) The large‐scale dynamics of grain‐size variation in alluvial basins, 2: application to syntectonic conglomerate. Basin Res., 4, 91–102.
    [Google Scholar]
  30. Heller, P.L., Burns, B.A. & Marzo, M. (1993) Stratigraphic solution sets for determining the roles of sediment supply, subsidence and sea level on transgressions and regressions. Geology, 21, 747–750.
    [Google Scholar]
  31. Hovius, N. (1998) Controls on sediment supply by large rivers. In: Relative Role of Eustasy, Climate and Tectonism in Continental Rocks (Ed. by ShanleyK.W. & McCabeP.J. ). Soc. Econ. Paleontol. Mineral. Spec. Publ., 59, 3–16.
    [Google Scholar]
  32. Jordan, T.E. & Flemings, P.B. (1991) Large‐scale stratigraphic architecture, eustatic variation and unsteady tectonism: a theoretical evaluation. J. Geophys. Res., 96, 6681–6699.
    [Google Scholar]
  33. Kaufman, P., Grotzinger, J.P. & McCormick, D.S. (1991) Depth‐dependent diffusion algorithm for simulation of sedimentation in shallow marine depositional systems. In: Sedimentary Modeling: Computer Simulations and Methods for Improved Parameter Definition (Ed. by FranseenE.K. ), Kansas Geological Survey Bulletin, 233, 491–508.
    [Google Scholar]
  34. Kenyon, P. & Turcotte, D. (1985) Morphology of a delta prograding by bulk sediment transport. Geol. Soc. Am. Bull., 96(11), 1457–1465.
    [Google Scholar]
  35. Kolla, V. & Perlmutter, M.A. (1993) Timing of turbidite sedimentation on the Mississippi Fan. Am. Assoc. Petrol. Geol. Bull., 77, 1129–1141.
    [Google Scholar]
  36. Leeder, M. & Stewart, M. (1996) Fluvial incision and sequence stratigraphy: alluvial responses to relative sea‐level fall and their detection in the geological record. In: Sequence Stratigraphy in British Geology (Ed. by HesselboS.P. & ParkinsonD.N. ) Geological Society of London, Spec. Publ., 103, 25–39.
    [Google Scholar]
  37. Martin, J., Cantelli, A., Paola, C., Blum, M. & Wolinsky, M. (2011) Quantitative modeling of the evolution and geometry of incised valleys. J. Sediment. Res., 81, 64–79.
    [Google Scholar]
  38. Meijer, X.D. (2002) Modelling the drainage evolution of a river‐shelf system forced by Quaternary glacio‐eustasy. Basin Res., 14, 361–377.
    [Google Scholar]
  39. Miall, A.D. & Miall, C.E. (2004) Empiricism and model‐building in stratigraphy: around the hermeneutic circle in the pursuit of stratigraphic correlation. Stratigraphy, 1, 27–46.
    [Google Scholar]
  40. Miller, K., Kominz, M., Browning, J., Wright, J., Mountain, G., Katz, K., Sugarman, P., Cramer, B., Christie‐Blick, N. & Pekar, S. (2005) The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  41. Muto, T. & Steel, R. (2002) Retreat of the front in a prograding delta. Geology, 20, 967–970.
    [Google Scholar]
  42. Muto, T., Steel, R. & Swenson, J. (2007) Autostratigraphy: a framework norm for genetic stratigraphy. J. Sediment. Res., 77, 2–12.
    [Google Scholar]
  43. Neal, J. & Abreu, V. (2009) Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37, 779–782.
    [Google Scholar]
  44. Paola, C., Heller, P.L. & Angevine, C.L. (1992) The large scale dynamics of grain‐size variation in alluvial basins, 1: theory. Basin Res., 4, 73–90.
    [Google Scholar]
  45. Paola, C., Parker, G., Mohrig, D. & Whipple, K. (1999) The influence of transport fluctuations on the spatially averaged topography on a sandy, braided fluvial fan. In: Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations (Ed. by HarbaughJ.W. , WatneyW.L. , RankeyE.C. , SlingerlandR. , GoldsteinR.H. & FranseenE.K. ) SEPM Spec. Publ., 62, 211–218.
    [Google Scholar]
  46. Petter, A.L. & Muto, T. (2008) Sustained alluvial aggradation and autogenic detachment of the alluvial river from the shoreline in response to steady fall of relative sea level. J. Sediment. Res., 78, 98–111.
    [Google Scholar]
  47. Plint, A.G. & Nummedal, D. (2000) The falling stage systems tract: recognition and importance in sequence stratigraphic analysis. In: Sedimentary Response to Forced Regression (Ed. by HuntD. & GawthorpeR.L. ) Geological Society of London Spec. Publ., 172, 1–17.
    [Google Scholar]
  48. Porebski, S.J. & Steel, R.J. (2003) Shelf‐margin deltas: their stratigraphic significance and relation to deep‐water sands. Earth Sci. Rev., 62, 283–326.
    [Google Scholar]
  49. Porebski, S.J. & Steel, R.J. (2003) Deltas and sea‐level change. J. Sediment. Res., 76, 390–403.
    [Google Scholar]
  50. Posamentier, H.W. (2001) Lowstand alluvial bypass systems: incised vs. unincised. Bull. Am. Assoc. Petrol. Geol., 85, 1771–1793.
    [Google Scholar]
  51. Posamentier, H.W. & Allen, G.P. (1993) Variability of the sequence stratigraphic model: effects of local basin factors. Sed. Geol., 86, 91–109.
    [Google Scholar]
  52. Posamentier, H.W. & Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. J. Sediment., 73, 367–388.
    [Google Scholar]
  53. Posamentier, H.W., Jervey, M.T. & Vail, P.R. (1988) Eustatic controls on clastic deposition I – conceptual framework. In: Sea Level Changes–An Integrated Approach (Ed. by WilgusC.K. , HastingsB.S. , KendallC.G.S.C. , PosamentierH.W. , RossC.A. & Van WagonerJ.C. ), SEPM Spec. Publ., 42, 110–124.
    [Google Scholar]
  54. Prince, G. & Burgess, P. (2013) Numerical modeling of falling‐stage topset aggradation: implications for distinguishing between forced and unforced regressions in the geological record. J. Sediment. Res., 83, 767–781.
    [Google Scholar]
  55. Schlager, W. (1993) Accommodation and supply – a dual control on stratigraphic sequences. Sed. Geol., 86, 111–136.
    [Google Scholar]
  56. Schumm, S.A. (1993) River response to baselevel change: implications for sequence stratigraphy. J. Geol., 101, 279–294.
    [Google Scholar]
  57. Sinclair, H.D., Coakley, B.J., Allen, P.A. & Watts, A.B. (1991) Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: an example from the Central Alps, Switzerland. Tectonics, 10, 599–620.
    [Google Scholar]
  58. Strong, N. & Paola, C. (2008) Valleys that never were: time surfaces versus stratigraphic surfaces. J. Sediment. Res., 78, 579–593.
    [Google Scholar]
  59. Swenson, J.B. & Muto, T. (2007) Response of coastal plain rivers to falling relative sea‐level: allogenic controls on the aggradational phase. Sedimentology, 54, 207–221.
    [Google Scholar]
  60. Thorne, J.A. (1992) An analysis of the implicit assumptions of the methodology of seismic sequence stratigraphy. In: Geology and Geophysics of Continental Margins (Ed. by J.S.Watkins ) AAPG Memoir, 53, 375–394.
    [Google Scholar]
  61. Tomer, A., Muto, T. & Wonsuck, K. (2011) Autogenic hiatus in fluviodeltatic successions: geometrical modeling and physical experiments. J. Sediment. Res., 81, 207–217.
    [Google Scholar]
  62. Ulicny, D., Nichols, G. & Waltham, D. (2002) Role of initial depth at basin margins in sequence architecture: field examples and computer models. Basin Res., 14, 347–360.
    [Google Scholar]
  63. Van Wagoner, J.C., Mitchum, R.M.J.R., Campion, K.M. & Rahmanian, V.D. (1990) Siliciclastic sequence stratigraphy in well logs, core, and outcrops: concepts for high‐resolution correlation of time and facies. Am. Assoc. Petrol. Geol. Methods Expl. Series, 7, 55.
    [Google Scholar]
  64. Wehr, F.L. (1993) Effects of variations in subsidence and sediment supply on parasequence stacking patterns. In: Siliciclastic Sequence Stratigraphy: Recent Developments and Applications (Ed. by WeimerP. & PosamentierH.W. ) AAPG Memoir, 58, 369–379.
    [Google Scholar]
  65. Williams, H.D., Burgess, P.M., Wright, V.P., Della Porta, G. & Granjeon, D. (2011) Investigating carbonate platform types: multiple controls and a continuum of geometries. J. Sediment. Res., 81, 18–37.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12082
Loading
/content/journals/10.1111/bre.12082
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error