1887
Volume 27, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Zones of distributed faulting with narrow (2–3 km) across‐strike spacing form a common structural style within rifts, especially in accommodation zones, and contrast with crustal‐scale half‐grabens, where strain is localised on normal faults spaced 10–30 km apart. These contrasting styles are likely to have a significant impact on geomorphic development, sediment routing and the stratigraphic record. Perachora Peninsula, in the eastern part of the active Corinth Rift, Greece, is one such zone of distributed faulting. We analyse the topography and drainage networks developed around these closely spaced normal faults, and compare our results with published studies from crustal‐scale half‐grabens. We subdivide the Perachora Peninsula into a series of drainage domains and examine the tectono‐geomorphic evolution of three domains that best represent the range of topographic characteristics, base levels and drainage network styles. We interpret that the perched, endorheic nature of the Asprokampos domain developed due to uplift and backtilt on offshore faults. The Pisia West domain, which drains the valley between the Skinos and Pisia Faults and responds to a perched base level, is interpreted to have experienced a complex base‐level history with episodic connections to sea level. The Skinos Relay domain drains to sea level, lying on the relay ramp between the closely spaced Kamarissa and Skinos Faults. Here, interaction between the displacement fields associated with each of the closely spaced faults controls the rate and style of landscape evolution. In contrast to crustal‐scale half‐grabens, observations from Perachora Peninsula suggest that zones of distributed faulting may be characterised by: (i) perched, internal sediment sinks at different elevations, responding to multiple base levels; (ii) minimal fault‐transverse sediment transport; (iii) interaction of uplift and subsidence fields associated with closely spaced faults, which modulate the rate and style of landscape response; and (iv) complex erosion and sedimentation histories, the evidence for which may have low preservation potential in the stratigraphic record.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12084
2014-08-19
2024-04-19
Loading full text...

Full text loading...

References

  1. Allen, P.A. & Densmore, A.L. (2000) Sediment flux from an uplifting fault block. Basin Res., 12, 367–380.
    [Google Scholar]
  2. Archer, S. (2006), The Sequence Stratigraphy and Correlation of Dryland Fluvial Systems: A Geomorphic Perspective from the Basin and Range Province, SW USA. PhD Thesis, University of Aberdeen.
  3. Armijo, R., Meyer, B., King, G.C.P., Rigo, A. & Papanastassiou, D. (1996) Quaternary evolution of the Corinth Rift and its implications for the late Cenozoic evolution of the Aegean. Geophys. J. Int., 126, 11–53.
    [Google Scholar]
  4. Bell, R.E., McNeill, L.C., Bull, J.M., Henstock, T.J., Collier, R.E.L. & Leeder, M.R. (2009) Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, Central Greece. Basin Res., 21, 824–855.
    [Google Scholar]
  5. Billiris, H., Paradissis, D., Veis, G., England, P. & Featherstone, W. (1991) Geodetic determination of Tectonic deformation in Central Greece from 1900 to 1988. Nature, 350, 124–129.
    [Google Scholar]
  6. Bornovas, J., Gaitanakis, P. & Spiridopoulos, A. (1984) Geological map of Greece, 1:50,000, Perachora sheet. Institute of Geological and Mineral Exploration, Athens.
  7. Boulton, S.J. & Whittaker, A.C. (2009) Quantifying the slip rates, spatial distribution and evolution of active normal faults from geomorphic analysis: field examples from an oblique‐extensional Graben, Southern Turkey. Geomorphology, 104, 299–316.
    [Google Scholar]
  8. Briole, P., Rigo, A., Lyon‐Caen, H., Ruegg, J.C., Papazissi, K., Mitsakaki, C., Balodimou, A., Veis, G., Hatzfeld, D. & Deschamps, A. (2000) Active deformation of the Corinth Rift, Greece‐ results from repeated global positioning system surveys between 1990 and 1995. J. Geophys. Res., 105, 25605–25625.
    [Google Scholar]
  9. Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y. & Pillans, B. (1996) Reconciliation of late quaternary sea levels derived from Coral Terraces at Huon Peninsula with Deep Sea Oxygen isotope records. Earth Planet. Sci. Lett., 141, 227–236.
    [Google Scholar]
  10. Clarke, P.J., Davies, R.R., England, P.C., Parsons, B.E., Billiris, H., Paradissis, D., Veis, G., Denys, P.H., Cross, P.A. & Ashkenazi, V. (1997) Geodetic estimate of seismic hazard in the Gulf of Korinthos. Geophys. Res. Lett., 24, 1303–1306.
    [Google Scholar]
  11. Collier, R.E.L., Pantosti, D., D'addezio, G., de Martini, P.M., Masana, E. & Sakellariou, D. (1998) Paleoseismicity of the 1981 Corinth earthquake fault: seismic contribution to extensional strain in Central Greece and implications for seismic hazard. J. Geophys. Res., 103, 30001–30016.
    [Google Scholar]
  12. Cowie, P. (1998) A healing‐reloading feedback control on the growth rate of seismogenic faults. J. Struct. Geol., 20, 1075–1087.
    [Google Scholar]
  13. Cowie, P.A. & Roberts, G.P. (2001) Constraining slip rates and spacings for active normal faults. J. Struct. Geol., 23, 1901–1915.
    [Google Scholar]
  14. Cowie, P.A., Gupta, S. & Dawers, N.H. (2000) Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Res., 12, 241–261.
    [Google Scholar]
  15. Cowie, P.A., Attal, M., Tucker, G.E., Whittaker, A.C., Naylor, M., Ganas, A. & Roberts, G.P. (2006) Investigating the surface process response to fault interaction and linkage using a numerical modelling approach. Basin Res., 18, 231–266.
    [Google Scholar]
  16. Cowie, P.A., Whittaker, A.C., Attal, M., Roberts, G., Tucker, G.E. & Ganas, A. (2008) New constraints on sediment‐flux–dependent river incision: implications for extracting tectonic signals from river profiles. Geology, 36, 535–538.
    [Google Scholar]
  17. Crider, J.G. & Pollard, D.D. (1998) Fault linkage: three‐dimensional mechanical interaction between Echelon normal faults. J. Geophys. Res., 103, 24373–24391.
    [Google Scholar]
  18. Crosby, B.T. & Whipple, K.X. (2006) Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand. Geomorphology, 82, 16–38.
    [Google Scholar]
  19. D'agostino, N., Jackson, J.A., Dramis, F. & Funiciello, R. (2001) Interactions between mantle upwelling, drainage evolution and active normal faulting: an example from the Central Apennines (Italy). Geophys. J. Int., 147, 475–497.
    [Google Scholar]
  20. Dart, C., Cohen, H.A., Serdar Akyuz, H. & Barka, A. (1995) Basinward migration of rift‐border faults: implications for facies distributions and preservation potential. Geology, 23, 69–73.
    [Google Scholar]
  21. Dawers, N.H. & Anders, M.H. (1995) Displacement‐length scaling and fault linkage. J. Struct. Geol., 17, 607–614.
    [Google Scholar]
  22. Densmore, A.L., Dawers, N.H., Gupta, S., Allen, P.A. & Gilpin, R. (2003) Landscape evolution at extensional relay zones. J. Geophys Res. B. Solid Earth, 108, 2273–2287.
    [Google Scholar]
  23. Densmore, A.L., Dawers, N.H., Gupta, S., Guidon, R. & Goldin, T. (2004) Footwall Topographic Development During Continental Extension. J. Geophys. Res., 109, 3001–3017.
    [Google Scholar]
  24. Eliet, P.P. & Gawthorpe, R.L. (1995) Drainage development and sediment supply within rifts, examples FROM the Sperchios basin, Central Greece. J. Geol. Soc., 152, 883–893.
    [Google Scholar]
  25. Ellis, M.A., Densmore, A.L. & Anderson, R.S. (1999) Development of mountainous topography in the basin ranges, USA. Basin Res., 11, 21–41.
    [Google Scholar]
  26. Færseth, R.B. & Ravnås, R. (1998) Evolution of the oseberg fault‐block in context of the Northern North Sea structural framework. Mar. Pet. Geol., 15, 467–490.
    [Google Scholar]
  27. Flint, J.J. (1974) Stream gradient as a function of order, magnitude, and discharge. Water Resour. Res., 10, 969–973.
    [Google Scholar]
  28. Ford, M., Rohais, S., Williams, E.A., Bourlange, S., Jousselin, D., Backert, N. & Malartre, F., (2013) Tectono‐sedimentary evolution of the Western Corinth Rift (Central Greece), Basin Res., DOI: http://dx.doi.org/10.1111/j.1365‐2117.2012.00550.x
    [Google Scholar]
  29. Gawthorpe, R.L. & Hurst, J.M. (1993) Transfer zones in extensional basins ‐ their structural style and influence on drainage development and stratigraphy. J. Geol. Soc., 150, 1137–1152.
    [Google Scholar]
  30. Gawthorpe, R.L. & Leeder, M.R. (2000) Tectono‐sedimentary evolution of active extensional basins. Basin Res., 12, 195–218.
    [Google Scholar]
  31. Goldsworthy, M. & Jackson, J. (2001) Migration of activity within normal fault systems: examples from the quaternary of Mainland Greece. J. Struct. Geol., 23, 489–506.
    [Google Scholar]
  32. Hack, J.T. (1973) Stream‐profile analysis and stream‐gradient index. J. Res. US Geol. Surv., 1, 421–429.
    [Google Scholar]
  33. Hilley, G.E. & Strecker, M.R. (2005) Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada Del Toro Basin, NW Argentina. Geol. Soc. Am. Bull., 117, 887–901.
    [Google Scholar]
  34. Hubert, A., King, G., Armijo, R., Meyer, B. & Papanastasiou, D. (1996) Fault re‐activation, stress interaction and rupture propagation of the 1981 Corinth earthquake sequence. Earth Planet. Sci. Lett., 142, 573–585.
    [Google Scholar]
  35. Jackson, J. & Leeder, M. (1994) Drainage Systems and the Development of Normal Faults ‐ an Example from Pleasant Valley, Nevada. J. Struct. Geol., 16, 1041–1059.
    [Google Scholar]
  36. Jackson, J.A., Gagnepain, J., Houseman, G., King, G.C.P., Papadimitriou, P., Soufleris, C. & Virieux, J. (1982) Seismicity, normal faulting, and the geomorphological development of the Gulf of Corinth (Greece): the Corinth earthquakes of February and March 1981. Earth Planet. Sci. Lett., 57, 377–397.
    [Google Scholar]
  37. Jolivet, L. (2001) A comparison of geodetic and finite strain pattern in the Aegean, geodynamic implications. Earth Planet. Sci. Lett., 187, 95–104.
    [Google Scholar]
  38. Jolivet, L. & Brun, J.P. (2010) Cenozoic Geodynamic Evolution of the Aegean. Int. J. Earth Sci., 99, 109–138.
    [Google Scholar]
  39. Kershaw, S. & Guo, L. (2001) Marine notches in coastal cliffs: indicators of relative sea‐level change, Perachora Peninsula, Central Greece. Mar. Geol., 179, 213–228.
    [Google Scholar]
  40. Kershaw, S. & Guo, L. (2003) Pleistocene Cyanobacterial mounds in Perachora Peninsula, Gulf of Corinth, Greece: structure and applications to interpreting sea‐level history and terrace sequences in an unstable tectonic setting. Palaeogeogr. Palaeoclimatol. Palaeoecol., 193, 503–514.
    [Google Scholar]
  41. King, G.C.P., Ouyang, Z.X., Papadimitriou, P., Deschamps, A., Gagnepain, J., Houseman, G., Jackson, J.A., Soufleris, C. & Virieux, J. (1985) The evolution of the Gulf of Corinth (Greece): an aftershock study of the 1981 earthquakes. Geophys. J. Int., 80, 677–693.
    [Google Scholar]
  42. Kirby, E. & Whipple, K.X. (2012) Expression of active tectonics in erosional landscapes. J. Struct. Geol., 44, 54–75.
    [Google Scholar]
  43. Kirby, E., Whipple, K.X., Tang, W. & Chen, Z. (2003) Distribution of active rock uplift along the eastern margin of the Tibetan plateau: inferences from bedrock channel longitudinal profiles. J. Geophys. Res., 108, 2217–2240.
    [Google Scholar]
  44. Leeder, M.R. & Jackson, J.A. (1993) The Interaction between normal faulting and drainage in active extensional basins, with examples from the Western United States and Central Greece. Basin Res., 5, 79–102.
    [Google Scholar]
  45. Leeder, M.R., Collier, R.E.L., Abdul Aziz, L.H., Trout, M., Ferentinos, G., Papatheodorou, G. & Lyberis, E. (2002) Tectono‐sedimentary processes along an active Marine/Lacustrine Half‐Graben margin: Alkyonides Gulf, E. Gulf of Corinth, Greece. Basin Res., 14, 25–41.
    [Google Scholar]
  46. Leeder, M., McNeill, L., Collier, R., Portman, C., Rowe, P. & Andrews, J. (2003) Rift‐margin uplift: new evidence from late quaternary marine shorelines, Corinth Rift, Greece. Geophys. Res. Lett., 30, 1611–1614.
    [Google Scholar]
  47. Leeder, M.R., Portman, C., Andrews, J.E., Collier, R., Finch, E., Gawthorpe, R.L., McNeill, L.C., Perez‐Arlucea, M. & Rowe, P. (2005) Normal faulting and crustal deformation, Alkyonides Gulf and Perachora Peninsula, Eastern Gulf of Corinth Rift, Greece. J. Geol. Soc., 162, 549–561.
    [Google Scholar]
  48. Leeder, M.R., Mack, G.H., Brasier, A.T., Parrish, R.R., McIntosh, W.C., Andrews, J.E. & Duermeijer, C.E. (2008) Late‐Pliocene timing of Corinth (Greece) rift‐margin fault migration. Earth Planet. Sci. Lett., 274, 132–141.
    [Google Scholar]
  49. Mansfield, C.S. & Cartwright, J.A. (1996) High resolution fault displacement mapping from three‐dimensional seismic data: evidence for dip linkage during fault growth. J. Struct. Geol., 18, 249–263.
    [Google Scholar]
  50. Maroukian, H., Gaki‐Papanastassiou, K., Karymbalis, E., Vouvalidis, K., Pavlopoulos, K., Papanastassiou, D. & Albanakis, K. (2008) Morphotectonic control on drainage network evolution in the Perachora Peninsula, Greece. Geomorphology, 102, 81–92.
    [Google Scholar]
  51. McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K. & Kahle, H. (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res., 105, 5695–5719.
    [Google Scholar]
  52. McKenzie, D. (1972) Active tectonics of the Mediterranean region. Geophys. J. Int., 30, 109–185.
    [Google Scholar]
  53. McKenzie, D. (1978) Active tectonics of the Alpine—Himalayan belt: the Aegean Sea and surrounding regions. Geophys. J. Roy. Astron. Soc., 55, 217–254.
    [Google Scholar]
  54. Menges, C.M. (2008) Multistage late Cenozoic evolution of the Amargosa river drainage, Southwestern Nevada and Eastern California. Geol. Soc. Amer. Spec. Pap., 439, 39–81.
    [Google Scholar]
  55. Moretti, I., Sakellariou, D., Lykousis, V. & Micarelli, L. (2003) The Gulf of Corinth: an active half Graben?J. Geodyn., 36, 323–340.
    [Google Scholar]
  56. Morewood, N.C. & Roberts, G.P. (1999) Lateral propagation of the surface trace of the south Alkyonides normal fault segment, Central Greece: its impact on models of fault growth and displacement‐length relationships. J. Struct. Geol., 21, 635–652.
    [Google Scholar]
  57. Morrison, R.B. (1999) Lake Tecopa: quaternary geology of Tecopa valley, California, a multimillion‐year record and its relevance to the proposed nuclear‐waste repository at Yucca mountain, Nevada. Cenozoic Basins of the Death Valley Region, 33, 301–344.
    [Google Scholar]
  58. Ori, G.G. (1989) Geologic history of the extensional basin of the Gulf of Corinth (? Miocene‐Pleistocene), Greece. Geology, 17, 918–921.
    [Google Scholar]
  59. Peacock, D.C.P. & Sanderson, D.J. (1991) Displacements, segment linkage and relay ramps in normal fault zones. J. Struct. Geol., 13, 721–733.
    [Google Scholar]
  60. Peacock, D.C.P., Price, S.P., Whitham, A.G. & Pickles, C.S. (2000) The worlds biggest relay ramp: hold with hope, Ne Greenland. J. Struct. Geol., 22, 843–850.
    [Google Scholar]
  61. Pirazzoli, P.A., Stiros, S.C., Arnold, M., Laborel, J., Laborel‐Deguen, F. & Papageorgiou, S. (1994) Episodic uplift deduced from Holocene shorelines in Perachora Peninsula, Corinth Area, Greece. Tectonophysics, 229, 201–209.
    [Google Scholar]
  62. Roberts, G.P. (1996) Variation in fault‐slip directions along active and segmented normal fault systems. J. Struct. Geol., 18, 835–845.
    [Google Scholar]
  63. Roberts, G.P. & Stewart, I. (1994) Uplift, deformation and fluid involvement within an active normal fault zone in the Gulf of Corinth. J. Geol. Soc., 151, 531–541.
    [Google Scholar]
  64. Roberts, G.P., Houghton, S.L., Underwood, C., Papanikolaou, I., Cowie, P.A., van Calsteren, P., Wigley, T., Cooper, F.J. & McArthur, J.M. (2009) Localization of quaternary slip rates in an active rift in 105 years: an example from Central Greece constrained by 234U–230Th coral dates from uplifted Paleoshorelines. J. Geophys. Res. Solid Earth, 114, B10406. doi:10.1029/2008JB005818.
    [Google Scholar]
  65. Sakellariou, D., Lykousis, V., Alexandri, S., Kaberi, H., Rousakis, G., Nomikou, P., Georgiou, P. & Ballas, D. (2007) Faulting, seismic stratigraphic architecture and late quaternary evolution of the gulf of Alkyonides Basin‐East Gulf of Corinth, Central Greece. Basin Res., 19, 273–295.
    [Google Scholar]
  66. Schultz, R.A., Soliva, R., Okubo, C. & Mege, D. (2009) Fault populations. In: Planetary Tectonics (Ed. by T.R.Watters & R.A.Schultz ), pp. 456–509. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  67. Shackleton, N. (1987) Oxygen isotopes, ice volume and sea‐level. Quatern. Sci. Rev., 6, 183–190.
    [Google Scholar]
  68. Snyder, N.P., Whipple, K.X., Tucker, G.E. & Merritts, D.J. (2000) Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, Northern California. Bull. Geol. Soc. Amer., 112, 1250–1263.
    [Google Scholar]
  69. Sobel, E.R., Hilley, G.E. & Strecker, M.R. (2003) Formation of internally drained contractional basins by aridity‐limited bedrock incision. J. Geophys. Res., 108, 25–42.
    [Google Scholar]
  70. Stefatos, A., Papatheodorou, G., Ferentinos, G., Leeder, M. & Collier, R. (2002) Seismic reflection imaging of active offshore faults in the gulf of Corinth: their Seismotectonic significance. Basin Res., 14, 487–502.
    [Google Scholar]
  71. Taymaz, T., Jackson, J. & McKenzie, D. (1991) Active tectonics of the North and Central Aegean Sea. Geophys. J. Int., 106, 433–490.
    [Google Scholar]
  72. Trudgill, B.D. (2002) Structural controls on drainage development in the Canyonlands Grabens of Southeast Utah. AAPG Bull., 86, 1095–1112.
    [Google Scholar]
  73. Turner, J.A., Leeder, M.R., Andrews, J.E., Rowe, P.J., van Calsteren, P. & Thomas, L. (2010) Testing rival tectonic uplift models for the Lechaion Gulf in the Gulf of Corinth Rift. J. Geol. Soc., 167, 1237–1250.
    [Google Scholar]
  74. Vita‐Finzi, C. (1993) Evaluating late quaternary uplift in Greece and cyprus. Geol. Soc. Lond. Spec. Publ., 76, 417–424.
    [Google Scholar]
  75. Wobus, C., Whipple, K.X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B. & Sheehan, D. (2006) Tectonics from topography: procedures, promise and pitfalls. In: Tectonics, Climate and Landscape Evolution, (Ed. by S.D.Willett , N.Hovius , M.T.Brandon & D.Fisher ), Geol. Soc. Amer. Spec. Pap.398, 55–74.
    [Google Scholar]
  76. Younes, A.I. & McClay, K. (2002) Development of accommodation zones in the Gulf of Suez‐Red Sea Rift, Egypt. AAPG Bull., 86, 1003–1026.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12084
Loading
/content/journals/10.1111/bre.12084
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error