1887
Volume 27, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

In the Northern Adriatic Sea, the occurrence of gas seepage and of unique rock outcrops has been widely documented. The genesis of these deposits has recently been ascribed to gas venting, leading to their classification as methane‐derived carbonates. However, the origin of seeping gas was not clearly constrained. Geophysical data collected in 2009 reveal that the gas‐enriched fluid vents are deeply rooted. In fact, the entire Plio‐Quaternary succession is characterized by widespread seismic anomalies represented by wipe‐out zones, and interpreted as gas chimneys. They commonly root at the base of the Pliocene sequence but also within the Palaeogene succession, where they appear to be associated to deep‐seated faults. We suggest that there is a structural control on chimney distribution. Chimneys originate and terminate at different stratigraphic levels; commonly they reach the seafloor, where authigenic carbonate deposits form locally. Gas analyses of some gas bubble streams just above the rock outcrops reveal that gas is composed mainly of methane. Geochemical analyses performed at four selected outcrop sites show that these deposits formed as a consequence of active gas venting. In particular, geochemical analyses indicate carbonate precipitation from microbial oxidation of methane‐rich fluids, although a straightforward correlation with the source depth of gas feeding the authigenic carbonates cannot yet be clearly defined.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12087
2014-08-28
2024-04-19
Loading full text...

Full text loading...

References

  1. Adams, A.E. & MacKenzie, W.S. (1998) A Colour Atlas of Carbonate Sediments and Rocks Under the Microscope. Manson publishing, London. ISBN 1‐874545‐84‐7.
    [Google Scholar]
  2. Anka, Z., Berndt, C. & Gay, A. (2012) Hydrocarbon leakage through focused fluid flow systems in continental margins. Mar. Geol., 332–334, 1–234.
    [Google Scholar]
  3. Barnes, R.O. & Goldberg, E.D. (1976) Methane production and consumption in anoxic marine sediments. Geology, 4, 297–300.
    [Google Scholar]
  4. Berndt, C. (2005) Focused fluid flow on continental margins. Philos. Trans. Royal Soc. Ser., A/363, 2855–2871.
    [Google Scholar]
  5. Bigi, G., Casentino, D., Parlotto, M., Sartori, R. & Scandone, P. (1983) Structural Model of Italy. Scala 1:500000. C.N.R., Progetto Finalizzato Geodinamica, Sottoprogetto Modello Strutturale Tridimensionale.
    [Google Scholar]
  6. Busetti, M., Volpi, V., Nicolich, R., Barison, E., Romeo, R., Baradello, L., Brancatelli, G., Giustiniani, M., Marchi, M., Zanolla, C., Wardell, N., Nieto, D. & Ramella, R. (2010) Dinaric tectonic features in the Gulf of Trieste (northern Adriatic Sea). Bollet. di Geofis. Teor. ed Appl., 51(2–3), 117–128.
    [Google Scholar]
  7. Campbell, K.A., Farmer, J.D. & Des Marais, D. (2002). Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids, 2 (2), 63–94.
    [Google Scholar]
  8. Capozzi, R., Guido, F.L., Oppo, D. & Gabbianelli, G. (2012) Methane‐Derived Authigenic Carbonates (MDAC) in northern‐central Adriatic Sea: relationships between reservoir and methane seepages. Mar. Geol., 332–334, 174–188.
    [Google Scholar]
  9. Cartwright, J., Huuse, M. & Aplin, A. (2007) Seal bypass systems. AAPG Bulletin, 91, 1141–1166.
    [Google Scholar]
  10. Carulli, G.B. (2011) Structural model of the Trieste Gulf: a proposal. J. Geodyn., 51, 156–165.
    [Google Scholar]
  11. Casero, P. (2004) Structural setting of petroleum exploration plays in Italy. In: Geology of Italy, Special Volume of the Italian Geological Society for the 32th International Geological Congress (Florence), pp. 189–199, Chieti, Italy.
    [Google Scholar]
  12. Casero, P. & Bigi, S. (2013) Structural setting of the Adriatic basin and the main related petroleum exploration plays. Mar. Pet. Geol., 42, 135–147.
    [Google Scholar]
  13. Castellarin, A., Vai, G.B. & Cantelli, L. (2006) The Alpine evolution of the Southern Alps around the Giudicarie faults: a Late Cretaceous to early Eocene transfer zone. Tectonophysics, 414, 203–223.
    [Google Scholar]
  14. Colantoni, P., Gabbianelli, G., Ceffa, L., Ceccolini, C. & Ricchiuto, T. (1998). Bottom Features and gas Seepages in the Adriatic Sea. 5th International Conference on Gas in Marine Sediments, Bologna 9–12 September 1998, Abstracts and Guide Book, pp. 28–31.
    [Google Scholar]
  15. Conti, A., Stefanon, A. & Zuppi, G.M. (2002) Gas seeps and rock formation in the northern Adriatic Sea. Cont. Shelf Res., 22, 2333–2344.
    [Google Scholar]
  16. Craig, H. (1957) Isotopic standards for carbon and oxygen and correlation factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta, 12, 133–149.
    [Google Scholar]
  17. Denman, K.L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.M., Dickinson, R.E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P.L., Wofsy, S.C. & Zhang, X. (2007) Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Ed. by S.Solomon , D.Qin , ManningM. , Z.Chen , M.Marquis , K.B.Averyt , M.Tignor & H.L.Miller ) Cambridge University Press, Cambridge, UK and New York, NY, USA.
    [Google Scholar]
  18. Dimitrov, L.I. (2002) Mud volcanoes‐the most important pathway for degassing deeply buried sediments. Earth‐Sci. Rev., 59, 49–76.
    [Google Scholar]
  19. Doglioni, C. (1993) Some remarks on the origin of foredeeps. Tectonophysics, 228, 1–20.
    [Google Scholar]
  20. Donda, F., Civile, D., Forlin, E., Volpi, V., Zecchin, M., Gordini, E., Merson, B. & De Santis, L. (2013) The northernmost Adriatic Sea: a potential location for CO2 geological storage?Mar. Pet. Geol., 42, 148–159.
    [Google Scholar]
  21. Etiope, G. (2009) Natural emissions of methane from geological seepage in Europe. Atmos. Environ., 43, 1430–1443.
    [Google Scholar]
  22. Fantoni, R. & Franciosi, R. (2010) Tectono‐sedimentary setting of the Po Plain and Adriatic foreland. Rend. Sci. Fis. Nat. Accad. Lin., 21, 197–209.
    [Google Scholar]
  23. Garcia‐Garcia, A., Orange, D.L., Miserocchi, S., Correggiari, A., Langone, L., Lorenson, T.D., Trincardi, F. & Nittrouer, C.A. (2007) What controls the distribution of shallow gas in the Western Adriatic Sea?Cont. Shelf Res., 27, 359–374.
    [Google Scholar]
  24. Gay, A., Lopez, M., Berndt, C. & Seranne, M. (2007) Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Mar. Geol., 244, 68–92.
    [Google Scholar]
  25. Geletti, R., Del Ben, A., Busetti, M., Ramella, R. & Volpi, V. (2008) Gas seeps linked to salt structures in the Central Adriatic Sea. Basin Res., 20, 473–487.
    [Google Scholar]
  26. Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., Rossi, M. & Vignolo, A. (2010) Sedimentary and tectonic evolution in the eastern Po‐Plain and northern Adriatic Sea area from the Messinian to Middle Pleistocene (Italy). Rendiconti Scienze Fisiche e Naturali Accademia Lincei, 21, 131–166.
    [Google Scholar]
  27. Giovanardi, O., Cristofalo, G., Manzueto, L. & Franceschini, G. (2003) Le “tegnue” di Chioggia: nuovi dati e osservazioni sulla base di campionamenti acustici ad alta definizione (Multibeam e Side‐Scan Sonar). Chioggia – Rivista di studi e ricerche, 23, 103–116.
    [Google Scholar]
  28. Gordini, E. (2009) Integrazione di metodologie geofisiche, geomorfologiche, sedimentologiche e geochimiche per la definizione della genesi e dell'età degli affioramenti rocciosi presenti sul fondale marino dell'Adriatico settentrionale. PhD Thesis, University of Trieste, Department of Geological, Environmental and Marine Science.
  29. Gordini, E., Marocco, R., Tunis, G. & Ramella, R. (2004) The cemented deposits of the Trieste Gulf (Northern Adriatic Sea): areal distribution, geomorphologic characteristics and high resolution seismic survey. Il Quaternario‐ Italian Journal of Quaternary Science, 17(2/2), 555–563.
    [Google Scholar]
  30. Gordini, E., Falace, A., Kaleb, S., Donda, F., Marocco, R. & Tunis, G. (2012) Methane‐Related Carbonate Cementation of Marine Sediments and Related Macroalgal Coralligenous Assemblages in the Northern Adriatic Sea. In: Seafloor Geomorphology as Benthic Habitats (Ed. by P.T.Harris & E.K.Baker ), pp. 183–198. Elsevier, Amsterdam, Boston.
    [Google Scholar]
  31. Greinert, J., Bohrmann, J.G. & Suess, E. (2001) Gas hydrate‐associated carbonates and methane‐venting at Hydrate Ridge: classification, distribution, and origin of authigenic lithologies. In: Natural Gas Hydrates: Occurrence, Distribution and Detection (Ed. by PaullC.K. & DillonW.P. ), Am. Geophys. Union, Geophysical Monograph, 124, 99–113.
    [Google Scholar]
  32. Hovland, M. & Curzi, P. (1989) Gas seepage and assumed mud diapirism in the Italian central Adriatic Sea. Mar. Pet. Geol., 6, 161–169.
    [Google Scholar]
  33. Hovland, M., Talbot, M.R., Qvale, H., Olaussen, S. & Aasberg, L. (1987) Methane‐related carbonate cements in pockmarks of the North Sea. J. Sediment. Petrol., 57(5), 881–892.
    [Google Scholar]
  34. Hustoft, S., Mienert, J., Bunz, S. & Nouze, H. (2007) High‐resolution 3D‐seismic data indicate focused fluid migration pathways above polygonal fault systems of the mid‐Norwegian margin. Mar. Geol., 245(1–4), 89–106.
    [Google Scholar]
  35. Judd, A.G. & Hovland, M. (2007) Seabed Fluid Flow; the Impact on Geology, Biology, and the Marine Environment. Cambridge University Press, New York.
    [Google Scholar]
  36. Kent, D.V., Rio, D., Massari, F., Kukla, G. & Lanci, L. (2002) Emergence of Venice during the Pleistocene. Quatern. Sci. Rev., 21, 1719–1727.
    [Google Scholar]
  37. Kessler, J.D., Reeburgh, W.S., Southon, J. & Varela, R. (2005) Fossil methane source dominates Cariaco Basin water column methane geochemistry. Geophys. Res. Lett., 32, L12609.
    [Google Scholar]
  38. Kutas, R.I., Paliy, S.I. & Rusakov, O.M. (2003) Deep faults, heat flow and gas leakage in the northern Black Sea. Geo‐Mar. Lett., 24, 163–168.
    [Google Scholar]
  39. Løseth, H., Gading, M. & Wensaas, L. (2009) Hydrocarbon leakage interpreted on seismic data. Mar. Pet. Geol., 26, 1304–1319.
    [Google Scholar]
  40. Martens, C.S. & Berner, R.A. (1977) Interstitial water chemistry of anoxic Long Island Sound sediments. I. Dissolved gas. Limnol. Oceanog., 22, 10–25.
    [Google Scholar]
  41. Massari, F., Grandesso, P., Stefani, C. & Jobstraibizer, P.G. (1986) A small polyhistory foreland basin evolving in a context of oblique convergence: the Venetian Basin (Chattian to Recent, Southern Alps, Italy). Int. Assoc. Sedimentol. Spec. Publ., 8, 141–168.
    [Google Scholar]
  42. Massari, F., Rio, D., Serandrei Barbero, R., Asioli, A., Capraro, L., Fornaciari, E. & Vergerio, P.P. (2004) The environment of Venice area in the past two million years. Palaeog. Plalaeoclimatol. Palaeoecol., 202, 273–308.
    [Google Scholar]
  43. Mattavelli, L. & Novelli, L. (1988) Geochemistry and habitat of natural gases in Italy. Org. Geochem., 13, 1–13.
    [Google Scholar]
  44. Mattavelli, L., Ricchiuto, T., Grignani, D. & Schoell, M. (1983) Geochemistry and habitat of natural gases in Po Basin, Northern Italy. Am. Assoc. Pet. Geol. Bull., 67, 2239–2254.
    [Google Scholar]
  45. Mattavelli, L., Ricchiuto, T. & Martinenghi, C. (1992) Deep isotopic light methane in Northern Italy. In: Bacterial Gas (Ed. by RVially ), pp. 121–132. Editions Technip, Paris.
    [Google Scholar]
  46. Mazzini, A., Ivanov, M.K., Parnell, J., Stadnitskaia, A., Cronin, B.T., Poludetkina, E., Mazurenko, L. & van Weering, T.C.E. (2004) Methane‐related authigenic carbonates from the Black Sea: geochemical characterization and relation to seeping fluids. Mar. Geol., 212(1–4), 153–181.
    [Google Scholar]
  47. Mazzotti, L., Segantini, S., Tramontana, M. & Wezel, F.C. (1987) Classification and distribution of pockmarks in the Jabuka Trough Floor (Central Adriatic). Bollett. di Oceanog. Teoria e Appl., 5, 237–250.
    [Google Scholar]
  48. McCrea, J.M. (1950) On the isotopic chemistry of carbonates and a palaeotemperature scale. J. Chem. Phys., 18, 849–857.
    [Google Scholar]
  49. Minissale, A., Magro, G., Martinelli, G., Vaselli, O. & Tassi, G.F. (2000) Fluid geochemical transect in the Northern Apennines (central‐northern Italy): fluid genesis and migration and tectonic implications. Tectonophysics, 319, 199–222.
    [Google Scholar]
  50. Moertz, T., Karlik, E.A., Kreiter, S. & Kopf, A. (2007) An experimental setup for fluid venting in unconsolidated sediments: new insights to fluid mechanics and structures. Sed. Geol., 196, 251–267.
    [Google Scholar]
  51. Newton, R. & Stefanon, A. (1975) The “Tegne de Ciosa” area: patch reefs in the Northern Adriatic Sea. Mar. Geol., 8, M27–M33.
    [Google Scholar]
  52. Orange, D., Garcia‐Garcia, A., Lorenson, T., Nittrouer, C., Milligan, T., Miserocchi, S., Langone, L., Correggiari, A. & Trincardi, F. (2005) Shallow gas and flood deposition on the Po delta. Mar. Geol., 222–223, 159–177.
    [Google Scholar]
  53. Panieri, G. (2006) Foraminiferal response to an active methane seep environment: a case study from the Adriatic Sea. Mar. Micropaleontol., 61, 116–130.
    [Google Scholar]
  54. Placer, L., Vrabec, M. & Celarc, B. (2010) The bases for understanding of the NW Dinarides and Istria Peninsula tectonics. Geologia, 53(1), 55–86.
    [Google Scholar]
  55. Poljak, M., Zivcic, M. & Zupancic, P. (2000) The seismotectonic characteristics of Slovenia. Pure Appl. Geophys., 157, 37–55.
    [Google Scholar]
  56. Prinzhofer, A.A. & Huc, A.Y. (1995) Genetic and post‐genetic molecular and isotopic fractionations in natural gases. Chem. Geol., 126, 281–290.
    [Google Scholar]
  57. Reeburgh, W.S. (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet. Sci. Lett., 28, 337–344.
    [Google Scholar]
  58. Ricciato, A., Pola, M., Fantoni, R. & Zampieri, D. (2011) Evolution of the Alpine Venetian foredeep along the Schio‐Vicenza fault system by seismic section analysis. Proceedings of Geoitalia 2011 Congress, Torino (Italy). Epitome 4, 149.
  59. Rigter, S., Carson, B. & Suess, E. (1987) Methane‐derived authigenic carbonates formed by subduction‐induced pore‐water expulsion along the Oregon/Washington margin. Geol. Soc. Am. Bull., 98, 147–156.
    [Google Scholar]
  60. Shoell, M. (1988) Multiple origins of methane in the earth. Chem. Geol., 71, 1–10.
    [Google Scholar]
  61. Stefanon, A. (1980) The acoustic response of some gas‐charged sediments in the Northern Adriatic sea. Bottom Interacting Ocean Acoustic Conference, SACLANT ASW Centre, La Spezia (Italy), 73–84.
  62. Sun, Q., Wu, S., Cartwright, J. & Dong, D. (2012) Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea. Mar. Geol., 315–318, 1–14.
    [Google Scholar]
  63. Taludker, A.R. (2012) Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova, 24(4), 255–272.
    [Google Scholar]
  64. Trincardi, F., Cattaneo, A., Correggiari, A. & Ridente, D. (2004) Evidence of soft sediment deformation, fluid escape, sediment failure and regional weak layers within the late Quaternary mud deposits of the Adriatic Sea. Mar. Geol., 213, 91–119.
    [Google Scholar]
  65. Vadakkepuliyambatta, S., Buenz, S., Mienert, J. & Chand, S. (2013) Distribution of subsurface fluid‐flow systems in the SW Barents Sea. Mar. Pet. Geol., http://dx.doi.org/10.1016/j.marpetgeo.2013.02.007.
    [Google Scholar]
  66. Van Rensbergen, P., Rabaute, A., Colpaert, A., Ghislain, T.S., Mathjis, M. & Bruggeman, A. (2007) Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin, interpreted from industrial 3D seismic and well data combined with high resolution site survey data. Int. J. Earth Sci., 96, 185–197.
    [Google Scholar]
  67. Whiticar, M.J. (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol., 161, 291–314.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12087
Loading
/content/journals/10.1111/bre.12087
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error