1887
Volume 27, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

The Nanpanjiang Basin occurs in a key position for resolving controversies of basin tectonics and patterns of plate assembly at the junction between south China and Southeast Asian plates. Paleocurrent measurements indicate that siliciclastic turbidites in the basin were sourced by the Precambrian Jiangnan uplift to the northeast, the Precambrian Yunkai uplift to the southeast and the Triassic Songma suture to the south. Detrital zircon geochronology reveals Archean (2500 Ma), Paleoproterozoic (1800–1900 Ma), Neoproterozoic (900–1000 Ma) and Paleozoic (420–460 Ma) ages consistent with derivation from the Jiangnan and Yunkai uplifts. A large Permian‐Triassic peak of 250 Ma is present in the southern basin and attenuates northward suggesting derivation from an arc developed along the Songma suture. Sandstone QFL compositions average 65/12/23% and plot in the recycled orogen field except for a few samples in the southern basin that fall in the dissected arc field. The compositions are consistent with derivation from Precambrian basement that includes orogenic complexes. In the southern basin, Middle Triassic turbidites contain greater lithics and feldspars and Lower Triassic turbidites have volcaniclastic composition consistent with derivation from a southerly arc. Our preferred interpretation is evolution from remnant basin to a large peripheral foreland with southward subduction and convergence with Indochina along the Songma suture. The previously proposed Dian‐Qiong zone is not a suture as its map location places it within carbonate platforms bounded by identical stratigraphy. The Nan‐Uttaradit zone is too distant to have provided voluminous siliciclastic flux to the basin. The Nanpanjiang Basin provides an example of the evolution of an exceptionally large foreland with far‐field rejuvenation of Precambrian uplifts and carbonate platforms that were significantly influenced by siliciclastic flux. The timing and pattern of turbidite basin fill impacted platform evolution by enabling margin progradation in areas proximal to siliciclastic sources, whereas platforms distant from sources were driven to aggradation and extreme relief with large‐scale gravitational sector collapse.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12090
2014-08-28
2020-07-06
Loading full text...

Full text loading...

References

  1. Bosellini, A. (1984) Progradation geometries of carbonate platforms: examples from the Triassic of the Dolomites, northern Italy. Sedimentology, 31, 1–24.
    [Google Scholar]
  2. Budd, D.A. & Harris, P.M. (1990) Carbonate‐Siliciclastic mixtures. Soc. Econ. Paleont. Miner. Reprint Series 14, Tulsa, OK.
  3. Cai, J. & Zhang, K. (2009) A new model for the Indochina and south China collision during the Later Permian to the Middle Triassic. Tectonophysics, 467, 35–43.
    [Google Scholar]
  4. Cai, J., Tan, X. & Wu, Y. (2014) Magnetic fabric and paleomagnetism of the Middle Triassic siliciclastic rocks from the Nanpanjiang Basin: implications for sediment provenance and tectonic process. J. Asian Earth Sci., 80, 134–147.
    [Google Scholar]
  5. Carter, A. & Clift, P.D. (2008) Was the Indosinian orogeny a Triassic mountain building event or a thermotectonic reactivation event?. Comp. Rend. – Acad. des Sci. Geosci., 340, 83–93.
    [Google Scholar]
  6. Carter, A., Roques, D., Bristow, C. & Kinny, P. (2001) Understanding Mesozoic accretion in southeast Asia: significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29, 211–214.
    [Google Scholar]
  7. Chaikin, D.H. (2004) Sedimentology and provenance of the Bianyang Formation, Guizhou Province, south China. MS Thesis, University of Kansas.
  8. Chang, E.Z. (1996) The Jiangnan complex – a Middle‐Late Proterozoic accretionary fold belt in south China. Int. Geol. Rev., 38, 467–483.
    [Google Scholar]
  9. Charvet, J. (2013) The Neoproterozoic – Early Paleozoic tectonic evolution of the south China Block: a review. J. Asian Earth Sci., 74, 198–209.
    [Google Scholar]
  10. Dickinson, W.R. & Suczek, C.A. (1979) Plate tectonics and sandstone compositions. Am. Assoc. Petroleum Geol. Bull., 63, 2164–2182.
    [Google Scholar]
  11. Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjakec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. & Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull., 94, 222–235.
    [Google Scholar]
  12. Eberli, G.P., Anselmetti, F.S., Betzler, C., Van Konijnenburg, J.H. & Bernoulli, D. (2004) Carbonate platform to basin transitions on seismic data and in outcrops: Great Bahama Bank and the Maiella Platform margin, Italy. In: Seismic Imaging of Carbonate Reservoirs and Systems (Ed. By EberliG.P. , MasaferroJ.L. & SargJ.F. ), Am. Assoc. Petroleum Geol. Mem., 81, 207–250.
    [Google Scholar]
  13. Enos, P. (1969) Anatomy of a flysch. J. Sedim. Petrol., 39, 680–723.
    [Google Scholar]
  14. Enos, P. (1995) Permian of China. In: The Permian of Northern Pangea (Ed. by P. A.Scholle , T. M.Peryt & D. S.Ulmer‐Scholle ), 2, pp. 225–256. Springer, Berlin.
    [Google Scholar]
  15. Enos, P., Wei, J. & Yan, Y. (1997) Facies distribution and retreat of Middle Triassic platform margin, Guizhou Province, south China. Sedimentology, 44 (3), 563–584.
    [Google Scholar]
  16. Enos, P., Wei, J. & Lehrmann, D. J. (1998) Death in Guizhou—Late Triassic drowning of the Yangtze carbonate platform. Sed. Geol., 118, 55–76.
    [Google Scholar]
  17. Enos, P., Lehrmann, D.J., Wei, J., Yu, Y., Xiao, J., Chaikin, D.H., Minzoni, M., Berry, A.K. & Montgomery, P. (2006) Triassic evolution of the Yangtze Platform in Guizhou Province. P. R. C. Geol. Soc. Am. Spec. Pap.417, 105p.
    [Google Scholar]
  18. Fan, C. & Zhang, Y. (1994) The structure and tectonics of western Yunnan. J. Asian Earth Sci., 9, 355–361.
    [Google Scholar]
  19. Faure, M., Leprvier, C., van Vuong, N., van Tich, V. & Chen, Z. (2013) The south China Indochina collision: where, when, and how?J. Asian Earth Sci., 79, 260–264.
    [Google Scholar]
  20. Findlay, R.H. & Trinh, P.T. (1997) The structural setting of the Song Ma region, Vietnam and the Indochina‐South China plate boundary problem. Gondwana Res., 1, 11–33.
    [Google Scholar]
  21. Gehrels, G.E., Valencia, V. & Pullen, A. (2006) Detrital zircon geochronology by laser‐ablation multicollector ICPMS at the Arizona LaserChron Center. In: Geochronology: Emerging Opportunities (Ed. by OlszewskiT. ) Paleontol. Soc. Papers, 12, 67–76.
    [Google Scholar]
  22. Gehrels, G.E., Valencia, V. & Ruiz, J. (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochem. Geophys. Geosyst., 9, Q03017.
    [Google Scholar]
  23. Gehrels, G.E., Rusmore, M., Woodsworth, G., Crawford, M., Andronicos, C., Hollister, L., Patchett, J., Ducea, M., Butler, R., Klepeis, K., Davidson, C., Friedman, R., Haggart, J., Mahoney, B., Crawford, W., Pearson, D. & Girardi, J. (2009) U‐Th‐Pb geochronology of the Coast Mountains batholith in north‐coastal British Columbia: constraints on age and tectonic evolution. Geol. Soc. Am. Bull., 121, 1341–1361.
    [Google Scholar]
  24. Gischler, E., Ginsburg, R.N., Herrle, J.O. & Prasas, S. (2010) Mixed carbonates and siliciclastics in the Quaternary of southern Belize: Pleistocene turning points in reef development controlled by sea‐level change. Sedimentology, 57, 1049–1068.
    [Google Scholar]
  25. Graham, S.A., Ingersoll, R.V. & Dickinson, W.R. (1976) Common provenance for lithic grains in carboniferous sandstones from Ouachita Mountains and Black Warrior Basin. J. Sedim. Petrol., 46, 620–632.
    [Google Scholar]
  26. Guangxi Bureau of Geology
    Guangxi Bureau of Geology (1999) Regional Geology Report of Guangxi. [Geologic map 1:500,000].
  27. Guangxi Bureau of Geology and Mineral Resources
    Guangxi Bureau of Geology and Mineral Resources (1985) Regional Geology of Guangxi. Geological Memoires, 1, (3), [Geologic map 1:1,000,000].
  28. Guizhou Bureau of Geology and Mineral Resources
    Guizhou Bureau of Geology and Mineral Resources (1987) Regional Geology of Guizhou Province. Geological Memoires, 1, (6), [Geologic map 1:500,000].
  29. Guo, H. (1985) Preliminary research on tectonic background and material source area of turbidites of Middle‐Upper Triassic in Yunnan, Guizhou and Guangxi. Acta Sedimentol. Sin., 3 (4), 95–107.
    [Google Scholar]
  30. He, Z. (1986) Formation environment of turbidity current deposits in the Middle Triassic of Guizhou and Guangxi. Oil Gas Geol., 7 (3), 207–217.
    [Google Scholar]
  31. Hou, F. & Huang, J. (1984) Research into the Permian and Triassic volcaniclastic turbidites of the Nanpan River Sag. Acta Sedimentol. Sin., 3, 256–264.
    [Google Scholar]
  32. Hutchinson, C.S. (1989) The Palaeo‐Tethyan realm and Indosinian orogenic system of Southeast Asia. In: Tectonic Evolution of the Tethyan Region (Ed. by A.M.C.Sengör ), pp. 585–643. Kluwer Academic Publishers, Dordrecht, Netherlands.
    [Google Scholar]
  33. Ingersoll, R.V., Bullard, T.F., Ford, R.I., Grimm, J.P., Pickle, J.D. & Sares, S.W. (1984) The effect of grain size on detrital modes: a test of the Gazzi‐Dickinson point counting method. J. Sedim. Petrol., 54, 103–116.
    [Google Scholar]
  34. Ingersoll, R.V., Dickinson, W.R. & Graham, S.A. (2002) Remnant‐ocean submarine fans; largest sedimentary systems on Earth. In: Extreme Depositional Environments; Mega End Members in Geologic Time (Ed. by ChanM.A. & ArcherA.W. ). Geol. Soc. Am. Spec. Publ., 370, 191–208.
    [Google Scholar]
  35. Jian, P., Wang, X., He, L. & Wang, C. (1998) Geochronology of ophiolitic rocks from the Ailaoshan suture, Yunnan Province, southwestern China, implication on Paleotethyan evolution. Geol. Mineral Res. South China, 1, 1–11.
    [Google Scholar]
  36. Klimetz, M.P. (1983) An outline of the Mesozoic plate evolution of eastern China. Tectonics, 2, 139–166.
    [Google Scholar]
  37. Lehrmann, D.J., Wei, J. & Enos, P. (1998) Controls on facies architecture of a large Triassic carbonate platform: The Great Bank of Guizhou, Nanpanjiang Basin, South China. J. Sedimen. Res., 68, 311–326.
    [Google Scholar]
  38. Lehrmann, D.J., Enos, P., Payne, J.L., Montgomery, P., Wei, J., Yu, Y., Xiao, J. & Orchard, M.J. (2005) Permian and Triassic depositional history of the Yangtze Platform and Great Bank of Guizhou in the Nanpanjiang Basin of Guizhou and Guangxi, south China. Albertiana, 33, 149–168.
    [Google Scholar]
  39. Lehrmann, D.J., Ramezani, J., Bowring, S.A., Martin, M.W., Montgomery, P., Enos, P., Payne, J.L., Orchard, M.J., Wang, H. & Wei, J. (2006) Timing of recovery from the end‐Permian extinction: Geochronologic and biostratigraphic constraints from south China. Geology, 34, 1053–1056.
    [Google Scholar]
  40. Lehrmann, D.J., Pei, D., Enos, P., Ellwood, B.B., Zhang, J., Wei, J., Dillett, P., Koenig, J., Steffen, K., Druke, D., Gross, J., Kessel, B. & Newkirk, T. (2007) Impact of differential tectonic subsidence on isolated carbonate platform evolution: Triassic of the Nanpanjiang Basin, south China. Am. Assoc. Petroleum Geol. Bull., 91 (3), 287–320.
    [Google Scholar]
  41. Lepvrier, C., Maluski, H., van Vuong, N., Roques, D., Axente, V. & Rangin, C. (1997) Indosinian NW‐trending shear zones within the Truong Son belt (Vietnam) 40Ar‐39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics, 283, 105–127.
    [Google Scholar]
  42. Lepvrier, C., Maluski, H., Tich, V.V., Leyreloup, A., Thi, P.H. & Vuong, N.V. (2004) The Early Triassic Indosinian Orogeny in Vietnam (Troung Son belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics, 393, 87–118.
    [Google Scholar]
  43. Li, Z.X., Li, X.H., Kimmy, P.D., Wang, J., Zhang, S., Zhou, H., Cho, M. & Li, X. (2003) Geochronology of Neoproterozoic syn‐rift magmatism in the Yangtze Craton, south China, and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambr. Res., 122, 85–109.
    [Google Scholar]
  44. Li, Z., Li, X., Wartho, J., Clark, C., Li, W., Zhang, C. & Bao, C. (2010) Magmatic and metamorphic events during the Early Paleozoic Wuyi‐Yunkai orogeny, southeastern South China; New age constraints and pressure‐temperature conditions. Geol. Soc. Am. Bull., 122, 772–793.
    [Google Scholar]
  45. Li, X., Yu, M., Lehrmann, D.J., Payne, J.L., Kelley, B.M. & Minzoni, M. (2012) Factors controlling carbonate platform asymmetry: preliminary results from the Great Bank of Guizhou, an isolated Permian–Triassic platform in the Nanpanjiang basin, south China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 315–316, 158–171.
    [Google Scholar]
  46. Liu, B. & Xu, X. (1994) Atlas of Lithofacies and Paleogeography of south China. Science Press, Beijing.
    [Google Scholar]
  47. Ludwig, K.R. (2008) Isoplot 3.60. Berkeley Geochronology Center, Special Publication, 4.
  48. Meissner, F.F. (1972) Cyclic sedimentation in middle Permian strata of the Permian Basin. In: Cyclic Sedimentation in the Permian Basin, 2nd edn (Ed. by ElamJ.G. & ChuberS. ), West Texas Geological Soc. Publ., 72‐60, 203–232.
    [Google Scholar]
  49. Metcalfe, I. (1996) Pre‐Cretaceous evolution of SE Asian terranes. In: Tectonic Evolution of Southeast Asia (Ed. by HallR. & BlundellD. ), Spec. Publ. Geol. Soc., 106, 91–122.
    [Google Scholar]
  50. Metcalfe, I. (2002) Permian tectonic framework and palaeogeography of SE Asia. J. Asian Earth Sci., 20 (6), 551–566.
    [Google Scholar]
  51. Minzoni, M. (2007) Triassic Yangtze Platform margin: evolution, internal architecture, and death of a large, attached carbonate platform, Guizhou Province, China. PhD Dissertation, University of Kansas.
  52. Minzoni, M., Lehrmann, D.J., Payne, J., Enos, P., Yu, M., Wei, J., Kelley, B., Li, X., Schaal, E., Meyer, K., Montgomery, P., Goers, A. & Wood, T. (2013) Triassic tank: Platform margin and slope architecture in space and time, Nanpanjiang Basin, south China. In: Deposits, Architecture and Controls of Carbonate Margin, Slope, and Basin Systems (Ed. by PlaytonT. , HarrisP.M. & VerwerK. ) Soc. Econ. Paleont. Miner. Spec. Publ., 105, 84–113.
    [Google Scholar]
  53. Morsilli, M., Rusciadelli, G. & Bosellini, A. (2002) Large‐scale gravity‐driven structures; control on margin architecture and related deposits of a Cretaceous carbonate platform (Montagna della Maiella, Central Apennines, Italy). Bollet. della Soc. Geol. Italia., 1, 619–628.
    [Google Scholar]
  54. Mu, C., Wu, Y. & Tan, Q. (1990) Middle Triassic source area and tectonic setting in the Nanpanjiang Basin. J. Chendu Coll. Geol., 17 (4), 90–96.
    [Google Scholar]
  55. Mullins, H.T. & Hine, A.C. (1989) Scalloped bank margins: beginning of the end for carbonate platforms?Geology, 17 (1), 30–33.
    [Google Scholar]
  56. Newkirk, T.T., Lehrmann, D. & Hudak, G. (2002) Tephrastratigraphy and analysis of tectonic setting of Triassic intermediate volcanic strata: Nanpanjiang Basin, south China. Geol. Soc. Am., Abstracts with programs, 34 (6), 512.
    [Google Scholar]
  57. Ovtcharova, M., Bucher, H., Schaltegger, U., Galfetti, T., Brayard, A. & Guex, J. (2006) New Early to Middle Triassic U‐Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth Planet. Sci. Lett., 243, 463–475.
    [Google Scholar]
  58. Playton, T.E., Janson, X. & Kerans, C. (2010) Carbonate slopes (Chapter 18). In: Facies Models 4 (Ed. by N.P.James & R.W.Dalrymple ), GEOtext 6, Geological Association of Canada, St. Johns, NF, Canada.
    [Google Scholar]
  59. Qin, S., Jiao, H., Xia0, J., Liu, P. & Zhang, Y. (1989) Geological map of the Huaxi region, Guizhou. Guizhou Bureau of Geology, 1:50,000.
  60. Qin, X., Zhou, F., Hu, G., Li, G., Xie, L., Zhou, K., Huang, X. & Pan, Y. (2005) First discovery of MORB volcanic rock on the northern margin of the Yunkai block, southeastern Guangxi, China, and its tectonic significance. Geol. Sci. Technol. Inf., 24 (3), 20–24.
    [Google Scholar]
  61. Qing, J., Wu, Y., Yan, Y. & Zhu, Z. (1991) Hercynian – Indosinian geotectonic evolution of Dian – Qian – Gui Basin, southwestern China – north marginal basin of the eastern end of east Tethys. Int. Symp. Gondwana Disp. Asian Accret., IGCP Project, 321, 206–211.
    [Google Scholar]
  62. Rowley, D.B., Ziegler, A.M. & Gyou, N. (1989) Comment on “Mesozoic overthrust tectonics in south China”. Geology, 17, 384–386.
    [Google Scholar]
  63. Sengör, A.M.C. (1987) Tectonics of the Tethysides‐ Orogenic collage development in a collisional setting. Annu. Rev. Earth Planet. Sci., 15, 213–244.
    [Google Scholar]
  64. Shen, S., Shi, G.R. & Feng, Z. (2002) Permian brachiopods from the Baoshan and Simao blocks in Western Yunnan. J. Asian Earth Sci., 20, 665–682.
    [Google Scholar]
  65. Shu, L. & Charvet, J. (1996) Kinematics and grochronology of the Proterozoic Dongxiang‐Shexian ductile shear zone: with HP metamorphism and ophiolitic mélange (Jiangnan region, south China). Tectonophysics, 267, 291–302.
    [Google Scholar]
  66. Tanh, T D., Janvier, P. & Phuong, T.H. (1996) Fish suggest continental connections between Indochina and south China blocks in Middle Devonian Time. Geology, 24 (6), 571–574.
    [Google Scholar]
  67. Tapponnier, P., Lacassin, R., Leloup, P.H., Scharer, U., Zhong, D., Wu, H., Liu, X., Ji, S., Zhang, L. & Zhou, J. (1990) The Ailao Shan/Red River metamorphic belt: Tertiary left‐lateral shear between Indochina and South China. Nature, 343, 431–437.
    [Google Scholar]
  68. Trung, N.M., Tsujimori, T. & Itaya, T. (2006) Honvang serpentinite body of the Song Ma fault zone, northern Vietnam; a remnant of oceanic lithosphere within the Indochina‐south China suture. Gondwana Res., 9, 225–230.
    [Google Scholar]
  69. Wang, Y. (1988) The outline of regional geological characteristics of Yunnan. Yunnan Geol., 2, 38–49.
    [Google Scholar]
  70. Wang, J. & Li, Z.X. (2003) History of Neoproterozoic rift basins in south China: implications for Rodinia break up. Precambr. Res., 122, 141–158.
    [Google Scholar]
  71. Wang, X., Metcalfe, I., Jian, P., He, L. & Wang, C. (2000) The Jinshajian‐Ailaoshan suture zone, China: tectonostratigraphy, age and evolution. Sci. China Ser. D, 43, 10–22.
    [Google Scholar]
  72. Wang, X.L., Zhou, J.C., Qiu, J.S., Zhang, W.L., Liu, X.M. & Zhang, G.L. (2006) LA‐ICP‐MS U/Pb zircon geochronology of the Neoproterozoic igneous rocks from northern Guangxi, south China; implications for tectonic evolution. Precambr. Res., 145, 111–130.
    [Google Scholar]
  73. Wang, X.L., Zhou, J.C., Griffin, W.L., Wang, R.C., Qiu, J.S., O'reilly, S.Y.O., Xu, X., Liu, X.M. & Zhang, G.L. (2007a) Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze and Cathaysia Blocks. Precambr. Res., 159, 117–131.
    [Google Scholar]
  74. Wang, Y., Fan, W., Zhao, G., Ji, S. & Peng, T. (2007b) Zircon U/Pb geochronology of gneissic rocks in the Yunkai Massif and its implications on the Caledonian event in the South China Block. Gondwana Res., 12, 404–416.
    [Google Scholar]
  75. Wang, W., Chen, F.K., Hu, R., Chu, Y. & Yang, Y.Z. (2012) Provenance and tectonic setting of Neoproterozoic sedimentary sequences in the south China Block: evidence from detrital zircon ages and Hf‐Nd isotopes. Int. J. Earth Sci., 101, 1723–1744.
    [Google Scholar]
  76. Wei, J. (1993) The Triassic stratigraphic framework of the Guiyang area, Guizhou Province. Reg. Geol. China, 12 (2), 97–106.
    [Google Scholar]
  77. Wilson, J.L. (1967) Cyclic and reciprocal sedimentation in Virgilian strata of southern New Mexico. Geol. Soc. Am. Bull., 78 (7), 805–817.
    [Google Scholar]
  78. Wu, J. & Li, S. (1992) Paleoflow directions and paleoslope inclination of Middle Triassic turbidite in Guangxi, China. Geol. Guang., 5 (4), 15–24.
    [Google Scholar]
  79. Wu, G., Yao, J., Ji, Z. & Wang, L. (2008) Discovery of the upper Qingyan conodonts in the Qingyan cross section of Guizhou and its significance. Dizhi Xuebao, 82 (2), 145–154.
    [Google Scholar]
  80. Xia, B., Fang, Z., Lu, H., Zhu, B. & Zhou, W. (1993) The Middle Triassic back‐arc flysch in Nanpanjiang area, southwest China. J. Nanjing Univ., 5 (3), 320–329.
    [Google Scholar]
  81. Xu, X., Xu, Q., Pan, G. & Liu, Q. (1996) Palaeogeography of the South China continent and its correlation with Pangea. Sediment. Facies Palaeogeog., 16 (2), 1–23.
    [Google Scholar]
  82. Yang, K.M. & Dorobek, S.L. (1995) The Permian Basin of west Texas and New Mexico: tectonic history of a” composite” foreland basin and its effects on stratigraphic development. In: Stratigraphic Evolution of Foreland Basins (Ed. by DorobekS.L. & RossG.M. ) Soc. Econ. Paleont. Miner. Spec. Publ., 52, 149–174.
    [Google Scholar]
  83. Yang, D.P., Zhou, M.F., Song, H.L. & Malpas, J. (2002) Where was south China located in the reconstruction of Rodinia?Earth Sci. Front., 9, 249–256.
    [Google Scholar]
  84. Yang, C., Chen, Q., Lu, H. & Qu, C. (2008) Provenance and tectonic setting of Middle Triassic turbidites in the Nanpanjiang basin. J. China Univ. Petrol., 32, 22–27.
    [Google Scholar]
  85. Yang, D., Li, X., Li, X., Li, W., Liang, X., Long, W. & Xiong, X. (2010) U/Pb and 40 Ar/39Ar geochronology of the Baiyunshan Gneiss (Central Guangdong, south China): constraints on the timing of Early Paleozoic and Mesozoic tectonothermal events in the Wuyun (Wuyi‐Yunkai) Orogen. Geol. Mag.147, 481–496.
    [Google Scholar]
  86. Yang, J.H., Cawood, P.A., Du, Y., Huang, H., Huang, H. & Hu, L. (2012) Detrital record of Indosinian mountain building in SW China: provenance of the Middle Triassic turbidites in the Youjiang basin. Tectonophysics, 574–575, 105–117.
    [Google Scholar]
  87. Yao, J., Ji, Z., Wang, L., Wang, Y., Wu, Z., Liu, D., Wu, G., Zhang, J. & Li, S. (2011) Conodont biostratigraphy and age determination of the lower‐middle Triassic boundary in south Guizhou Province. Acta Geol. Sinica, 85 (2), 408–420.
    [Google Scholar]
  88. Yu, J., O'reilly, S.Y., Wang, L., Griffin, W.L., Zhou, M., Zhang, M. & Shu, L. (2010) Components and episodic growth of Precambrian crust in the Cathaysia block, South China: evidence from U/Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambr. Res., 181, 97–114.
    [Google Scholar]
  89. Zhang, J. (1988) Triassic flysch and Indonesian rejuvenated geosyncline in Youjiang. J. Regional Geol. China, 1, 29–36.
    [Google Scholar]
  90. Zhang, J. (1991) Middle Triassic gravity‐flow deposits in western Guangxi. J. Reg. Geol. China, 2, 88–97.
    [Google Scholar]
  91. Zhang, Z.M., Liou, J.G. & Coleman, R.G. (1984) An outline of the plate tectonics of China. Geol. Soc. Am. Bull., 95, 295–312.
    [Google Scholar]
  92. Zi, J.W., Cawood, P.A., Fan, W.M., Wang, Y.J., Tohver, E., McCuaig, T.C. & Peng, T.P. (2012) Triassic collision in the Paleo‐Tethys ocean constrained by volcanic activity in SW China. Lithos, 144–145, 145–160.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12090
Loading
/content/journals/10.1111/bre.12090
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error