1887
Volume 27, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

The Barmer Basin is a poorly understood rift basin in Rajasthan, northwest India. Exposures in the Sarnoo Hills, situated along the central eastern rift margin of the Barmer Basin, reveal a sedimentary succession that accumulated prior to the main Barmer Basin rift event, and a rift‐oblique fault network that displays unusual geometries and characteristics. Here, we present a comprehensive study of Lower Cretaceous sedimentology on the basin margin, along with a detailed investigation of rift‐oblique faults that are exposed nowhere else in the region and provide critical insights into Barmer Basin evolution. Lower Cretaceous sediments were deposited within a rapidly subsiding alluvial plain fluvial system. Subsequent to deposition, the evolving Sarnoo Hills fault network was affected by structural inheritance during an early, previously unrecognised, rift‐oblique extensional event attributed to transtension between India and Madagascar, and formed a juvenile fault network within the immediate rift‐margin footwall. Ghaggar‐Hakra Formation deposition may have been triggered by early rifting which tectonically destabilised the Marwar Craton prior to the main northeast–southwest Barmer Basin rift event. The identification of early rifting in the Barmer Basin demonstrates that regional extension and the associated rift systems were established throughout northwest India prior to the main phase of Deccan eruptions. Inheritance of early oblique fault systems within the evolving Barmer Basin provides a robust explanation for poorly understood structural complications interpreted in the subsurface throughout the rift. Critically, the presence of syn‐rift sedimentary successions within older oblique rift systems obscured beneath the present‐day Barmer Basin has significant implications for hydrocarbon exploration.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12093
2015-01-09
2020-08-07
Loading full text...

Full text loading...

References

  1. Akhtar, K. & Ahmad, A.H.M. (1991) Single‐cycle cratonic quartzarenites produced by tropical weathering: the Nimar sandstone (Lower Cretaceous), Narmada basin, India. Sed. Geol., 71, 23–32.
    [Google Scholar]
  2. Baksi, S.K. & Naskar, P. (1981) Fossil plants from the Sarnu Hill formation, Barmer Basin, Rajasthan. Palaeobotanist, 27, 107–111.
    [Google Scholar]
  3. Basu, A.R., Renne, P.R., DasGupta, D.K., Teichmann, F. & Poreda, R.J. (1993) Early and late alkali igneous pulses and a high‐3He plume origin for the Deccan flood basalts. Science, 261, 902–906.
    [Google Scholar]
  4. Bellahsen, N. & Daniel, J.M. (2005) Fault reactivation control on normal fault growth: an experimental study. J. Struct. Geol., 27, 769–780.
    [Google Scholar]
  5. Bellahsen, N., Fournier, M., d'Acremont, E., Leroy, S. & Daniel, J.M. (2006) Fault reactivation and rift‐localisation: Northeastern Gulf of Aden margin. Tectonics, 25, TC1007, doi: 10.1029/2004TC001626.
    [Google Scholar]
  6. Biswas, S.K. (1982) Rift basins in Western Margin of India and their hydrocarbon prospects with special reference to Kutch Basin. Am. Assoc. Pet. Geol. Bull., 66(10), 1497–1513.
    [Google Scholar]
  7. Biswas, S.K. (1987) Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, 135, 307–327.
    [Google Scholar]
  8. Bladon, A.J., Clarke, S.M. & Burley, S.D. (2015) Complex rift geometries resulting from inheritance of pre‐existing structures: Insights and regional implications from the Barmer Basin rift. J. Struct. Geol., 71, 136–154.
    [Google Scholar]
  9. Bonini, M., Souriot, T., Boccaletti, M. & Brun, J.P. (1997) Successive orthogonal and oblique extension episodes in a rift zone: laboratory experiments with application to the Ethiopian Rift. Tectonics, 16(2), 347–362.
    [Google Scholar]
  10. Chattopadhyay, A. & Chakra, M. (2013) Influence of pre‐existing pervasive fabrics on fault patterns during orthogonal and oblique rifting: an experimental approach. Mar. Pet. Geol., 39, 74–91.
    [Google Scholar]
  11. Chenet, A.‐L., Quidelleur, X., Fluteau, F., Courtillot, V. & Bajpai, S. (2007) 40K—40Ar dating of the Main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet. Sci. Lett., 263, 1–15.
    [Google Scholar]
  12. Chowdhary, L.R. (1975) Reversal of basement‐block motions in Cambay Basin, India, and its importance in petroleum exploration. Am. Assoc. Pet. Geol. Bull., 59(1), 85–96.
    [Google Scholar]
  13. Collier, J.S., Sansom, V., Ishizuka, O., Taylor, R.N., Minshull, T.A. & Whitmarsh, R.B. (2008) Age of Seychelles‐India break‐up. Earth Planet. Sci. Lett., 272, 264–277.
    [Google Scholar]
  14. Compton, P.M. (2009) The geology of the Barmer Basin, Rajasthan, India, and the origins of its major oil reservoir, the Fatehgarh Formation. Pet. Geosci., 15, 117–130.
    [Google Scholar]
  15. Daniels, J.M. (2003) Floodplain aggradation and pedogenesis in a semiarid environment. Geomorphology, 56, 225–242.
    [Google Scholar]
  16. Dolson, J., Burley, S.D., Sunder, V.R., Kothari, V., Naidu, B., Whiteley, N.P., Farimond, P., Taylor, A., Direen, N. & Ananthakrishnan, B. (2015) The discovery of the Barmer Basin, Rajasthan, India, and its petroleum geology. Am. Assoc. Pet. Geol. Bull., 99, 433–465
    [Google Scholar]
  17. Fürisch, F.T. & Pandey, D.K. (2003) Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Upper Jurassic‐Lower Cretaceous of Kachchh, Western India. Palaeogeogr. Palaeoclimatol. Palaeoecol., 193, 285–309.
    [Google Scholar]
  18. Giba, M., Walsh, J.J. & Nicol, A. (2012) Segmentation and growth of an obliquely reactivated normal fault. J. Struct. Geol., 39, 253–267.
    [Google Scholar]
  19. Gombos, A.M.Jr, Powell, W.G. & Norton, I.O. (1995) The tectonic evolution of western India and its impact on hydrocarbon occurrences: an overview. Sed. Geol., 96, 119–129.
    [Google Scholar]
  20. Henza, A.A., Withjack, M.O. & Schlische, R.W. (2010) Normal‐fault development during two phases of non‐coaxial extension: an experimental study. J. Struct. Geol., 32, 1656–1667.
    [Google Scholar]
  21. Henza, A.A., Withjack, M.O. & Schlische, R.W. (2011) How do the properties of a pre‐existing normal fault population influence fault development during a subsequent phase of extension?J. Struct. Geol., 33, 1312–1324.
    [Google Scholar]
  22. Hesthammer, J. & Fossen, H. (1999) Evolution and geometries of gravitational collapse structures with examples from the Statfjord Field, northern North Sea. Mar. Pet. Geol., 16, 259–281.
    [Google Scholar]
  23. Jaitly, A.K. & Ajane, R. (2013) Comments on Placenticeras Mintoi (Vredenburg, 1906) from the Bagh Beds (Late Cretaceous), Central India with Special Reference to Turonian Nodular Limestone Horizon. J. Geol. Soc. India, 81, 565–574.
    [Google Scholar]
  24. Keep, M. & McClay, K.R. (1997) Analogue modelling of multiphase rift systems. Tectonophysics, 273, 239–270.
    [Google Scholar]
  25. Khosla, A., Kapur, V.V., Sereno, P.C., Wilson, J.A., Wilson, G.P., Dutheil, D., Sahni, A., Singh, M.P., Kumar, S. & Rana, R.S. (2003) First Dinosaur remains from the Cenomanian‐Turonian Nimar Sandstone (Bagh Beds), District Dhar, Madhya Pradesh, India. J. Palaeontol. Soc. India, 48, 115–127.
    [Google Scholar]
  26. Krishna, J. (1987) An overview of the Mesozoic stratigraphy of Kachchh and Jaisalmer basins. J. Palaeontol. Soc. India, 32, 136–149.
    [Google Scholar]
  27. Lezzar, K.E., Tiercelin, J.‐J., Le Turdu, C., Cohen, A.S., Reynolds, D.J., Le Gall, B. & Scholz, C.A. (2002) Control of normal fault interaction on the distribution of major Neogene sedimentary depocentres, Lake Tanganyika, East African rift. Am. Assoc. Pet. Geol. Bull., 86(6), 1027–1059.
    [Google Scholar]
  28. Mamtani, M.A., Karanth, R.V., Merh, S.S. & Greiling, R.O. (2000) Tectonic evolution of the southern part of Aravalli Mountain belt and its environs: possible causes and time constraints. Gondwana Res., 3(2), 175–187.
    [Google Scholar]
  29. McClay, K. & Khalil, S. (1998) Extensional hard linkages, eastern Gulf of Suez, Egypt. Geology, 26(6), 563–566.
    [Google Scholar]
  30. McClay, K.R., Dooley, T., Whitehouse, P. & Mills, M. (2002) 4‐D evolution of rift‐systems: insights from scaled physical models. Am. Assoc. Pet. Geol. Bull., 86(6), 935–959.
    [Google Scholar]
  31. Morgan, W.J. (1971) Convection plumes in the lower mantle. Nature, 230, 42–43.
    [Google Scholar]
  32. Morley, C.K. (1995) Developments in the structural geology of rifts over the last decade and their implications on hydrocarbon exploration. In: Hydrocarbon Habitat in Rift Basins (Ed. by J.J.Lambiase ), pp. 1–32. Geological Society, London, Special Publications, 80.
    [Google Scholar]
  33. Morley, C.K. (1999) How successful are analogue models in addressing the influence of pre‐existing fabrics on rift structure?J. Struct. Geol., 21, 1267–1274.
    [Google Scholar]
  34. Morley, C.K., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawan, A. & Wonganan, N. (2004) Activation of rift oblique and rift parallel pre‐existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand. J. Struct. Geol., 26, 1803–1829.
    [Google Scholar]
  35. Morley, C.K., Gabdi, S. & Seusutthiya, K. (2007) Fault superimposition and linkage resulting from stress changes during rifting: examples from 3D seismic data, Phitsanulok Basin, Thailand. J. Struct. Geol., 29, 646–663.
    [Google Scholar]
  36. Nieto‐Samaniego, A.F. & Alaniz‐Alvarez, S.A. (1997) Origin and tectonic interpretation of multiple fault patterns. Tectonophysics, 270, 197–206.
    [Google Scholar]
  37. Pandey, D.K., Fürisch, F.T. & Sha, J.G. (2009) Interbasinal marker intervals – a case study from the Jurassic basins of Kachchh and Jaisalmer, western India. Sci. China, Ser. D Earth Sci., 52(12), 1924–1931, doi: 10.1007/s11430‐009‐0158‐0.
    [Google Scholar]
  38. Pandey, D.K., Choudhary, S., Bahadur, T., Swami, N., Poonia, D. & Sha, J. (2012) A review of the Lower – lowermost Upper Jurassic facies and stratigraphy of the Jaisalmer Basin, western Rajasthan, India. Volumina Jurassica, 10, 61–82.
    [Google Scholar]
  39. Pareek, H.S. (1981) Petrochemistry and Petrogenesis of the Malani Igneous Suite, India. Geol. Soc. Am. Bull., 92(2), 206–273.
    [Google Scholar]
  40. Plummer, P.S. & Belle, E.R. (1995) Mesozoic tectono‐stratigraphic evolution of the Seychelles microcontinent. Sed. Geol., 96, 73–91.
    [Google Scholar]
  41. Rai, J., Singh, A. & Pandey, D.K. (2013) Early to middle Albian age calcareous nannofossils from Pariwar Formation of Jaisalmer Basin, Rajasthan, western India and their significance. Curr. Sci., 105(11), 1604–1611.
    [Google Scholar]
  42. Raju, A.T.R. (1968) Geological evolution of Assam and Cambay Tertiary Basins of India. Am. Assoc. Pet. Geol. Bull., 52(2), 2422–2437.
    [Google Scholar]
  43. Reeve, M.T., Bell, R.E. & Jackson, C.A.‐L. (2014) Origin and significance of intra‐basement seismic reflections offshore western Norway. J. Geol. Soc., 171, 1–4.
    [Google Scholar]
  44. Reeves, C. (2013) The position of Madagascar within Gondwana and its movements during Gondwana dispersal. J. Afr. Earth Sci., doi: 10.1016/j.afrearsci.2013.07.011.
    [Google Scholar]
  45. Rohrman, M. (2007) Prospectivity of volcanic basins: trap delineation and acreage de‐risking. Am. Assoc. Pet. Geol. Bull., 91(6), 915–939.
    [Google Scholar]
  46. Roy, A.B. (2003) Geological and geophysical manifestations of the Réunion Plume‐Indian lithosphere interactions – evidence from Northwest India. Gondwana Res., 6(3), 487–500.
    [Google Scholar]
  47. Roy, A.B. & Jakhar, S.R. (2002) Geology of Rajasthan (Northwest India): Precambrian to Recent, p. 421. Scientific Publishers (India), Jodhpur.
    [Google Scholar]
  48. Sen, A., Pande, K., Hegner, E., Sharma, K.K., Dayal, A.M., Sheth, H.C. & Mistry, H. (2012) Deccan volcanism in Rajasthan: 40Ar‐39Ar geochronology and geochemistry of the Tavidar volcanic suite. J. Asian Earth Sci., 59, 127–140.
    [Google Scholar]
  49. Sharma, K.K. (2007) K‐T magmatism and basin tectonism in western Rajasthan, India: results from external tectonics and not from Réunion plume activity. In: Plates, Plumes and Planetary Processes (Ed. by G.R.Foulger & D.M.Jurdy ), pp. 775–784. Geological Society of America Special Paper, 430, doi: 10.1130/2007.2430(35).
    [Google Scholar]
  50. Sheth, H.C. (2005a) Were the Deccan flood Basalts derived in part from ancient oceanic crust within the Indian continental lithosphere?Gondwana Res., 8(2), 109–127.
    [Google Scholar]
  51. Sheth, H.C. (2005b) From Deccan to Réunion: no trace of a mantle plume. In: Plates, Plumes and Paradigms (Ed. by G.R.Foulger , J.H.Natland , D.C.Presnall & D.L.Anderson ), pp. 477–501. Geological Society of America Special Paper, 388, doi: 10.1130/2005.2388(29).
    [Google Scholar]
  52. Sheth, H.C. (2007) Plume‐related regional prevolcanic uplift in the Deccan Traps: absence of evidence, evidence of absence. In: Plates, Plumes and Planetary Processes (Ed. by G.R.Foulger & D.M.Jurdy ), pp. 785–813. Geological Society of America Special Paper, 430, doi: 10.1130/2007.2430(36).
    [Google Scholar]
  53. Simonetti, A., Bell, K. & Viladkar, S.G. (1995) Isotopic data from the Amba Dongar carbonatite complex, west–central India: evidence for an enriched mantle source. Chem. Geol., 122, 185–198.
    [Google Scholar]
  54. Simonetti, A., Goldstein, S.L., Schmidberger, S.S. & Viladkar, S.G. (1998) Geochemical and Nd, Pb, and Sr isotope data from deccan alkaline complexes‐inferences for mantle sources and plume–lithosphere interaction. J. Petrol., 39, 1847–1864.
    [Google Scholar]
  55. Singh, N.P. (2006) Mesozoic lithostratigraphy of the Jaisalmer Basin, Rajasthan. J. Palaeontol. Soc. India, 51(2), 1–25.
    [Google Scholar]
  56. Singh, N.P. (2007) Cenozoic lithostratigraphy of the Jaisalmer Basin, Rajasthan. J. Palaeontol. Soc. India, 52(2), 129–154.
    [Google Scholar]
  57. Sisodia, M.S. & Singh, U.K. (2000) Depositional environment and hydrocarbon prospects of the Barmer Basin, Rajasthan, India. Nafta, Zagreb (Croatia), 51(9), 309–326.
    [Google Scholar]
  58. Storey, M., Mahoney, J.J., Saunders, A.D., Duncan, R.A., Kelley, S.P. & Coffin, M.F. (1995) Timing of hot spot‐related volcanism and the breakup of Madagascar and India. Science, 267, 852–855.
    [Google Scholar]
  59. Torsvik, T.H., Pandit, M.K., Redfield, T.F., Ashwal, L.D. & Webb, S.J. (2005) Remagnetization of Mesozoic limestones from the Jaisalmer basin, NW India. Geophys. J. Int., 161, 57–64.
    [Google Scholar]
  60. Vijaya Rao, V., Rajendra Prasad, B., Reddy, P.R. & Tewari, H.C. (2000) Evolution of Proterozoic Aravalli Delhi fold belt in the northwestern Indian shield from seismic studies. Tectonophysics, 327, 109–130.
    [Google Scholar]
  61. Whipp, P.S., Jackson, C.A.‐L., Gawthorpe, R.L., Dreyer, T. & Quinn, D. (2014) Fault array evolution above a reactivated rift‐fabric; a subsurface example from the northern Horda Platform fault array, Norwegian North Sea. Basin Res., doi: 10.1111/bre.12050.
    [Google Scholar]
  62. Willemse, E.J.M. (1997) Segmented normal faults: correspondance between three‐dimensional mechanical models and field data. J. Geophys. Res., 102(B1), 675–692.
    [Google Scholar]
  63. Younes, A.I. & McClay, K. (2002) Development of accommodation zones in the Gulf of Suez – Red Sea rift, Egypt. Am. Assoc. Pet. Geol. Bull., 86(6), 1003–1026.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12093
Loading
/content/journals/10.1111/bre.12093
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error