1887
Volume 27, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

The main source of siliciclastic sediment in the Barbados accretionary prism is off‐scraped quartzose to feldspatho‐litho‐quartzose metasedimentaclastic turbidites, ultimately supplied from South America chiefly via the Orinoco fluvio‐deltaic system. Modern sand on Barbados island is either quartzose with depleted heavy‐mineral suites recycled from Cenozoic turbidites and including epidote, zircon, tourmaline, andalusite, garnet, staurolite and chloritoid, or calcareous and derived from Pleistocene coral reefs. The ubiquitous occurrence of clinopyroxene and hypersthene, associated with green‐brown kaersutitic hornblende in the north or olivine in the south, points to reworking of ash‐fall tephra erupted from andesitic (St Lucia) and basaltic (St Vincent) volcanic centres in the Lesser Antilles arc. Modern sediments on Barbados island and those shed by larger accretionary prisms such as the Indo‐Burman Ranges and Andaman‐Nicobar Ridge define the distinctive mineralogical signature of Subduction Complex Provenance, which is invariably composite. Detritus recycled from accreted turbidites and oceanic mudrocks is mixed in various proportions with detritus from the adjacent volcanic arc or carbonate reefs widely developed at tropical latitudes. Ophiolitic detritus, locally prominent on the Andaman Islands, is absent on Barbados, where the prism formed above a westward subduction zone with a shallow décollement plane. The four‐dimensional complexities inherent with multicyclic sediment dispersal along and across convergent plate boundaries require quantitative provenance analysis as a basic tool in paleogeographic reconstructions. Such analysis provides the link between faraway factories of detritus and depositional sinks, as well as clues on subduction geometry and the nature of associated growing orogenic belts, and even information on climate, atmospheric circulation and weathering intensity in source regions.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12095
2015-01-13
2020-05-25
Loading full text...

Full text loading...

References

  1. Allison, M.A. & Lee, M.T. (2004) Sediment exchange between Amazon mudbanks and shore‐fringing mangroves in French Guiana. Mar. Geol., 208, 169–190.
    [Google Scholar]
  2. Andò, E. & Garzanti, E. (2014) Raman spectroscopy in heavy‐mineral studies. In: Sediment Provenance Studies in Hydrocarbon Exploration and Production (Ed. by ScottR.A. , SmythH.R. , MortonA.C. & RichardsonN. ) Geol. Soc. London. Spec. Publ., 386, 395–412.
    [Google Scholar]
  3. Andò, S., Garzanti, E., Padoan, M. & Limonta, M. (2012) Corrosion of heavy minerals during weathering and diagenesis: a catalogue for optical analysis. Sed. Geol., 280, 165–178.
    [Google Scholar]
  4. Aslan, A., White, W.A., Warne, A.G. & Guevara, E.H. (2003) Holocene evolution of the western Orinoco Delta, Venezuela. Geol. Soc. Am. Bull., 115, 479–498.
    [Google Scholar]
  5. Babaie, H.A., Speed, R.C., Larue, D.K. & Claypool, G.E. (1992) Source rock and maturation evaluation of the Barbados accretionary prism. Mar. Petrol. Geol., 9, 623–632.
    [Google Scholar]
  6. Beck, C., Ogawa, Y. & Dolan, J. (1990) Eocene paleogeography of the southeastern Caribbean: relations between sedimentation on the Atlantic abyssal plain at site 672 and evolution of the South America margin. In: Proceedings of the Ocean Drilling Program, Scientific Results 110 (Ed. by J.C.Moore & A.Mascle et al.), pp. 7–15. National Science Foundation, Arlington, TX.
    [Google Scholar]
  7. Belderson, R.H., Kenyon, N.H., Stride, A.H. & Pelton, C.D. (1984) A ‘braided’ distributary system on the Orinoco deep‐sea fan. Mar. Geol., 56, 195–206.
    [Google Scholar]
  8. Bigi, S., Lenci, F., Doglioni, C., Moore, J.C., Carminati, E. & Scrocca, D. (2003) Décollement depth versus accretionary prism dimension in the Apennines and the Barbados. Tectonics, 22, doi:10.1029/2002TC001410.
    [Google Scholar]
  9. Boettcher, S.S., Jackson, J.L., Quinn, M.J. & Neal, J.E. (2003) Lithospheric structure and supracrustal hydrocarbon systems, offshore eastern Trinidad. In: The Circum‐Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics (Ed. by BartoliniC. , BufflerR.T. & BlickwedeJ. ) Am. Ass. Petrol. Geol. Memoir., 79, 529–544.
    [Google Scholar]
  10. Bonadonna, C., Mayberry, G.C., Calder, E.S., Sparks, R.S.J., Choux, C., Jackson, P., Lejeune, A.M., Loughlin, S.C., Norton, G.E., Rose, W.I., Ryan, G. & Young, S.R. (2002) Tephra fallout in the eruption of Soufrière Hills Volcano, Montserrat. Geol. Soc. Lond. Memoir., 21, 483–516.
    [Google Scholar]
  11. Borg, L.E. & Banner, J.L. (1996) Neodymium and strontium isotopic constraints on soil sources in Barbados, West Indies. Geochim. Cosmochim. Acta, 60, 4193–4206.
    [Google Scholar]
  12. Brazier, S., Davis, A.N., Sigurdsson, H. & Sparks, R.S.J. (1982) Fall‐out and deposition of volcanic ash during the 1979 explosive eruption of the Soufrière of St. Vincent. J. Volcanol. Geotherm. Res., 14, 335–359.
    [Google Scholar]
  13. Callec, Y., Deville, E., Desaubliaux, G., Griboulard, R., Huyghe, P., Mascle, A., Mascle, G., Noble, M., Padron De Carillo, C. & Schmitz, J. (2010) The Orinoco turbidite system: tectonic controls on sea‐floor morphology and sedimentation. Am. Ass. Petrol. Geol. Bull., 94, 869–887.
    [Google Scholar]
  14. Carey, S.N. & Sigurdsson, H. (1978) Deep‐sea evidence for distribution of tephra from the mixed magma eruption of the Soufrière on St. Vincent, 1902: ash turbidites and air fall. Geology, 6, 271–274.
    [Google Scholar]
  15. Critelli, S. & Ingersoll, R.V. (1995) Interpretation of neovolcanic versus palaeovolcanic sand grains: an example from Miocene deep‐marine sandstone of the Topanga Group (Southern California). Sedimentology, 42, 783–804.
    [Google Scholar]
  16. Deville, E., Guerlais, S.H., Callec, Y., Griboulard, R., Huyghe, P., Lallemant, S., Mascle, A., Noble, M. & Schmitz, J. (2006) Liquefied vs. stratified sediment mobilization processes: insight from the south of the Barbados accretionary prism. Tectonophysics, 428, 33–47.
    [Google Scholar]
  17. Di Giulio, A., Ceriani, A., Ghia, E. & Zucca, F. (2003) Composition of modern stream sands derived from sedimentary source rocks in a temperate climate (Northern Apennines, Italy). Sed. Geol., 158, 145–161.
    [Google Scholar]
  18. Dickinson, W.R. (1988) Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In: New Perspectives in Basin Analysis (Ed. by K.L.Kleinspehn & C.Paola ), pp. 3–25. Springer, New York.
    [Google Scholar]
  19. Dickinson, W.R. & Suczek, C.A. (1979) Plate tectonics and sandstone composition. Am. Ass. Petrol. Geol. Bull., 63, 2164–2172.
    [Google Scholar]
  20. Doglioni, C., Carminati, E., Cuffaro, M. & Scrocca, D. (2007) Subduction kinematics and dynamic constraints. Earth Sci. Rev., 83, 125–175.
    [Google Scholar]
  21. Donovan, S.K. (2005) The geology of Barbados: a field guide. Caribbean J. Earth Sci., 38, 21–33.
    [Google Scholar]
  22. Eisma, D. & Van Der Marel, H.W. (1971) Marine muds along the Guyana coast and their origin from the Amazon Basin. Contrib. Mineral. Petrol., 31, 321–334.
    [Google Scholar]
  23. Eisma, D., Van Der Gaast, S.J., Martin, J.M. & Thomas, A.J. (1978) Suspended matter and bottom deposits of the Orinoco delta: turbidity, mineralogy and elementary composition. Netherlands J. Sea Res., 12, 224–251.
    [Google Scholar]
  24. Faugères, J.C., Gonthier, E., Masse, L., Parra, M., Pons, J.C. & Pujol, C. (1991) Quaternary deposits on the South Barbados accretionary prism. Mar. Geol., 96, 247–267.
    [Google Scholar]
  25. Faugères, J.C., Gonthier, E., Griboulard, R. & Masse, L. (1993) Quaternary sandy deposits and canyons on the Venezuelan margin and south Barbados accretionary prism. Mar. Geol., 110, 115–142.
    [Google Scholar]
  26. Garzanti, E. & Andò, S. (2007a) Heavy‐mineral concentration in modern sands: implications for provenance interpretation. In: Heavy Minerals in Use (Ed. by MangeM.A. & WrightD.T. ) Develop. Sedimentol. Series, 58, 517–545. Elsevier, Amsterdam.
    [Google Scholar]
  27. Garzanti, E. & Andò, S. (2007b) Plate tectonics and heavy‐mineral suites of modern sands. In: Heavy Minerals in Use (Ed. by MangeM.A. & WrightD.T. ) Develop. Sedimentol. Series, 58, 741–763. Elsevier, Amsterdam.
    [Google Scholar]
  28. Garzanti, E. & Vezzoli, G. (2003) A classification of metamorphic grains in sands based on their composition and grade. J. Sediment. Res., 73, 830–837.
    [Google Scholar]
  29. Garzanti, E., Scutellà, M. & Vidimari, C. (1998) Provenance from ophiolites and oceanic allochthons: modern beach and river sands from Liguria and the Northern Apennines (Italy). Ofioliti, 23, 65–82.
    [Google Scholar]
  30. Garzanti, E., Andò, S. & Scutellà, M. (2000) Actualistic ophiolite provenance: the Cyprus Case. J. Geol., 108, 199–218.
    [Google Scholar]
  31. Garzanti, E., Canclini, S., Moretti Foggia, F. & Petrella, N. (2002a) Unraveling magmatic and orogenic provenances in modern sands: the back‐arc side of the Apennine thrust‐belt (Italy). J. Sediment. Res., 72, 2–17.
    [Google Scholar]
  32. Garzanti, E., Vezzoli, G. & Andò, S. (2002b) Modern sand from obducted ophiolite belts (Oman, U.A.E.). J. Geol., 110, 371–391.
    [Google Scholar]
  33. Garzanti, E., Doglioni, C., Vezzoli, G. & Andò, S. (2007) Orogenic belts and orogenic sediment provenances. J. Geol., 115, 315–334.
    [Google Scholar]
  34. Garzanti, E., Vezzoli, G. & Andò, S. (2008) Settling equivalence of detrital minerals and grain‐size dependence of sediment composition. Earth Planet. Sci. Lett., 273, 138–151.
    [Google Scholar]
  35. Garzanti, E., Limonta, M., Resentini, A., Bandopadhyay, P.C., Najman, Y., Andò, S. & Vezzoli, G. (2013a) Sediment recycling at convergent plate margins (Indo‐Burman Ranges and Andaman‐Nicobar Ridge). Earth Sci. Rev., 123, 113–132.
    [Google Scholar]
  36. Garzanti, E., Padoan, M., Andò, S., Resentini, A., Vezzoli, G. & Lustrino, M. (2013b) Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift. J. Geol., 121, 547–580.
    [Google Scholar]
  37. Gibbs, A. & Barron, C.N. (1983) The Guiana Shield reviewed. Episodes, 2, 7–14.
    [Google Scholar]
  38. Hill, R.J. & Schenk, C.J. (2005) Petroleum geochemistry of oil and gas from Barbados: implications for distribution of Cretaceous source rocks and regional petroleum prospectivity. Mar. Petrol. Geol., 22, 917–943.
    [Google Scholar]
  39. Hinderer, M. (2012) From gullies to mountain belts: a review of sediment budgets at various scales. Sed. Geol., 280, 21–59.
    [Google Scholar]
  40. Hoorn, C. (1993) Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia; results of a palynostratigraphic study. Palaeogeogr. Palaeoclimatol. Palaeoecol., 105, 267–309.
    [Google Scholar]
  41. Hoorn, C., Guerrero, J., Sarmiento, G.A. & Lorente, M.A. (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23, 237–240.
    [Google Scholar]
  42. Hubert, J.F. (1962) A zircon‐tourmaline‐rutile maturity index and the interdependence of the composition of heavy minerals assemblages with the gross composition and texture of sandstones. J. Sediment. Petrol., 32, 440–450.
    [Google Scholar]
  43. Imbrie, J. & Van Andel, T.H. (1964) Vector analysis of heavy‐mineral data. Geol. Soc. Am. Bull., 75, 1131–1156.
    [Google Scholar]
  44. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. & Sares, S.W. (1984) The effect of grain size on detrital modes: a test of the Gazzi‐Dickinson point‐counting method. J. Sediment. Petrol., 54, 103–116.
    [Google Scholar]
  45. Ingersoll, R.V., Dickinson, W.R. & Graham, S.A. (2003) Remnant‐ocean submarine fans: largest sedimentary systems on Earth. In: Extreme Depositional Environments: Mega end Members in Geologic Time (Ed. by ChanM.A. & ArcherA.W. ) Geol. Soc. Am. Spec. Pap., 370, 191–208.
    [Google Scholar]
  46. Johnsson, M.J. (1993) The system controlling the composition of clastic sediments. In: Processes Controlling the Composition of Clastic Sediments (Ed. by JohnssonM.J. & BasuA. ) Geol. Soc. Am. Spec. Pap., 284, 1–19.
    [Google Scholar]
  47. Johnsson, M.J. & Stallard, R.F. (1989) Physiographic controls on the composition of sediments derived from volcanic and sedimentary terrains on Barro Colorado Island, Panama. J. Sediment. Petrol., 59, 768–781.
    [Google Scholar]
  48. Johnsson, M.J., Stallard, R.F. & Meade, R.H. (1988) First‐cycle quartz arenites in the Orinoco River basin: Venezuela and Colombia. J. Geol., 96, 263–277.
    [Google Scholar]
  49. Johnsson, M.J., Stallard, R.F. & Lundberg, N. (1991) Controls on the composition of fluvial sands from a tropical weathering environment: sands of the Orinoco River drainage basin, Venezuela and Colombia. Geol. Soc. Am. Bull., 103, 1622–1647.
    [Google Scholar]
  50. Jones, R.W. (2009) Stratigraphy, palaeoenvironmental interpretation and uplift history of Barbados based on foraminiferal and other palaeontological evidence. J. Micropal., 28, 37–44.
    [Google Scholar]
  51. Krumbein, W.C. (1941) Measurement and geological significance of shape and roundness of sedimentary particles. J. Sediment. Petrol., 11, 64–72.
    [Google Scholar]
  52. Kuehl, S.A., Demaster, D.J. & Nittrouer, C.A. (1986) Nature of sediment accumulation on the Amazon continental shelf. Cont. Shelf Res., 6, 209–225.
    [Google Scholar]
  53. Lacroix, A. (1904). La Montagne Pelée et ses éruptions. Masson, Paris, 662 p.
    [Google Scholar]
  54. Macdonald, R., Hawkesworth, C.J. & Heath, E. (2000) The Lesser Antilles volcanic chain: a study in arc magmatism. Earth Sci. Rev., 49, 1–76.
    [Google Scholar]
  55. Mange, M.A. & Maurer, H.F.W. (1992) Heavy Minerals in Colour. Chapman and Hall, London, 147 pp.
    [Google Scholar]
  56. Mascle, A., Endignoux, L. & Chennouf, T. (1990) Frontal accretion and piggyback basin development at the southern edge of the Barbados Ridge accretionary complex. In: Proceedings of the Ocean Drilling Program, Scientific Results 110 (Ed. by J.C.Moore & A.Mascle et al.), pp. 17–28. National Science Foundation, Arlington, TX.
    [Google Scholar]
  57. Meade, R.H. (1994) Suspended sediments of the modern Amazon and Orinoco rivers. Quat. Int., 21, 29–39.
    [Google Scholar]
  58. Mesolella, K.J., Scaly, H.A. & Mathews, R.K. (1970) Facies geometries within Pleistocene reefs of Barbados, West Indies. Am. Ass. Petrol. Geol. Bull., 54, 1899–1917.
    [Google Scholar]
  59. Moores, E.M., Robinson, P.T., Malpas, J. & Xenophonotos, C. (1984) Model for the origin of the Troodos massif, Cyprus, and other mideast ophiolites. Geology, 12, 500–503.
    [Google Scholar]
  60. Morley, C.K., King, R., Hillis, R., Tingay, M. & Backe, G. (2011) Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: a review. Earth Sci. Rev., 104, 41–91.
    [Google Scholar]
  61. Morton, A.C. & Hallsworth, C. (2007) Stability of detrital heavy minerals during burial diagenesis. In: Heavy Minerals in Use (Ed. by MangeM.A. & WrightD.T. ) Develop. Sedimentol. Series, 58, 215–245. Elsevier, Amsterdam.
    [Google Scholar]
  62. Morton, A.C. & Johnsson, M.J. (1993) Factors influencing the composition of detrital heavy mineral suites in Holocene sands of the Apure River drainage basin, Venezuela. Geol. Soc. Am. Spec. Pap., 284, 171–185.
    [Google Scholar]
  63. Muhs, D.R. (2001) Evolution of soils on Quaternary reef terraces, Barbados, West Indies. Quat. Res., 56, 66–78.
    [Google Scholar]
  64. Muhs, D.R., Budahn, J.R., Prospero, J.M. & Carey, S.N. (2007) Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida. J. Geophys. Res., 112, F02009. doi: 10.1029/2005JF000445.
    [Google Scholar]
  65. Nesbitt, H.W. & Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.
    [Google Scholar]
  66. Nota, D.J.G. (1958) Sediments of the Western Guiana Shelf. Mededelingen van de Landbouwhogeschool te Wageningen, 58/2, 1–98. H. Veenman, Wageningen.
    [Google Scholar]
  67. Pedersen, R.B., Searle, M.P., Carter, A. & Bandopadhyay, P.C. (2010) U‐Pb zircon age of the Andaman ophiolite: implications for the beginning of subduction beneath the Andaman‐Sumatra arc. J. Geol. Soc. London, 167, 1105–1112.
    [Google Scholar]
  68. Pindell, J.L. & Kennan, L. (2007) Cenozoic kinematics and dynamics of oblique collision between two convergent plate margins: the Caribbean–South America collision in eastern Venezuela, Trinidad, and Barbados. In: The Paleogene of the Gulf of Mexico and Caribbean Basins: Processes, Events and Petroleum Systems (Ed. by L.Kennan , J.L.Pindell & N.C.Rosen ) Transactions of the 27th GCSSEPM Annual Bob F. Perkins Research Conference, pp. 458–553. GCSSEPM, Houston, TX.
    [Google Scholar]
  69. Pindell, J.L., Kennan, L., Wright, D. & Erikson, J. (2009) Clastic domains of sandstones in central/eastern Venezuela, Trinidad, and Barbados: heavy mineral and tectonic constraints on provenance and palaeogeography. In: The Geology and Evolution of the Region Between North and South America (Ed. by JamesK. , LorenteM.A. & PindellJ. ) Geol. Soc. London. Spec. Publ., 328, 743–797.
    [Google Scholar]
  70. Poole, E.G. & Barker, L.H. (1983) The Geology of Barbados. 1:50,000 sheet. Directorate of Overseas Surveys and Government of Barbados, St Michael.
    [Google Scholar]
  71. Potter, P.E. (1978) Petrology and chemistry of modern big river sands. J. Geol., 86, 423–449.
    [Google Scholar]
  72. Potter, P.E. (1994) Modern sands of South America: composition, provenance and global significance. Geol. Rundsch., 83, 212–232.
    [Google Scholar]
  73. Powers, M.C. (1953) A new roundness scale for sedimentary particles. J. Sediment. Petrol., 23, 117–119.
    [Google Scholar]
  74. Pudsey, J. & Reading, H.G. (1982) Sedimentology and structure of the Scotland Group, Barbados. Geol. Soc. Lond. Spec. Publ., 10, 291–308.
    [Google Scholar]
  75. Rea, W.J. (1982) The Lesser Antilles. In: Andesites (Ed. by R.S.Thorpe ), pp. 167–185. Wiley, London.
    [Google Scholar]
  76. Rea, W.J. & Baker, P.E. (1980) The geochemical characteristics and conditions of petrogenesis of the volcanic rocks of the northern Lesser Antilles – a review. Bull. Volcanol., 43, 325–336.
    [Google Scholar]
  77. Ricou, L.E. (1972) Le croissant ophiolitique peri‐Arabe, une ceinture des nappes au Cretacé supérieur. Rev. Géog. Phys. Géol. Dynam., 13, 327–349.
    [Google Scholar]
  78. Rubey, W.W. (1933) The size‐distribution of heavy minerals within a water‐laid sandstone. J. Sediment. Petrol., 3, 3–29.
    [Google Scholar]
  79. Saunders, J.B., Bernoulli, D., Müller‐Merz, E., Oberhänsli, H., Perch‐Nielsen, K., Riedel, W.R., Sanfilippo, A. & Torrini, R. (1984) Stratigraphy of the late Middle Eocene to early Oligocene in the Bath Cliff section, Barbados. Micropaleontology, 30, 390–425.
    [Google Scholar]
  80. Schellmann, G. & Radtke, U. (2004) A revised morpho‐ and chronostratigraphy of the Late and Middle Pleistocene coral reef terraces on Southern Barbados (West Indies). Earth Sci. Rev., 64, 157–187.
    [Google Scholar]
  81. Senn, A. (1940) Paleogene of Barbados and its bearing on the history and structure of Antillean‐Caribbean region. Am. Ass. Petrol. Geol. Bull., 24, 1548–1610.
    [Google Scholar]
  82. Speed, R.C. (1994) Barbados and the Lesser Antilles Forearc. In: Caribbean Geology: An Introduction (Ed. by S.K.Donovan , T.A.Jackson ), pp. 179–192. University of the West Indies Publishers’ Association, Kingston.
    [Google Scholar]
  83. Speed, R.C. & Larue, D.K. (1982) Barbados: architecture and implications for accretion. J. Geophys. Res., 87, 3633–3643.
    [Google Scholar]
  84. Speed, R.C., Barker, L.H. & Payne, P.L.B. (1991) Geologic and hydrocarbon evolution of Barbados. J. Petrol. Geol., 14, 323–342.
    [Google Scholar]
  85. Speed, R.C., Speed, C. & Sedlock, R. (2012) Geology and geomorphology of Barbados. Geol. Soc. Am. Spec. Pap., 491, 63.
    [Google Scholar]
  86. Taylor, F.W. & Mann, P. (1991) Late Quaternary folding of coral reef terraces, Barbados. Geology, 19, 103–106.
    [Google Scholar]
  87. Torrini, R. & Speed, R.C. (1989) Tectonic wedging in the forearc basin‐accretionary prism transition, Lesser Antilles forearc. J. Geophys. Res., 94, 10549–10584.
    [Google Scholar]
  88. Torrini, R., Speed, R.C. & Mattioli, G.S. (1985) Tectonic relationships between forearc‐basin strata and the accretionary complex at Bath, Barbados. Geol. Soc. Am. Bull., 96, 861–874.
    [Google Scholar]
  89. Underwood, M.B. (2007) Sediment inputs to subduction zones: why lithostratigraphy and clay mineralogy matters. In: The Seismogenic Zone of Subduction Thrust Faults (Ed. by T.H.Dixon , J.C.Moore ), pp. 42–85. Columbia University Press, New York.
    [Google Scholar]
  90. Van Andel, T.H. (1967) The Orinoco Delta. J. Sediment. Petrol., 37, 297–310.
    [Google Scholar]
  91. Velbel, M.A. (1980) Petrography of subduction zone sandstones. A discussion. J. Sediment. Petrol., 50, 303–304.
    [Google Scholar]
  92. Velbel, M.A. (1985) Mineralogically mature sandstones in accretionary prisms. J. Sediment. Petrol., 55, 685–690.
    [Google Scholar]
  93. Vincent, H., Wach, G. & Ketannah, Y. (2014) Heavy mineral record of Andean uplift and changing sediment sources across the NE margin of South America: a case study from Trinidad and Barbados. In: Sediment Provenance Studies in Hydrocarbon Exploration and Production (Ed. by ScottR.A. , SmythH.R. , MortonA.C. & RichardsonN. ) Geol. Soc. London. Spec. Publ., 386, 217–241.
    [Google Scholar]
  94. Warne, A.G., Meade, R.H., White, W.A., Guevara, E.H., Gibeaut, J., Smyth, R.C., Aslan, A. & Tremblay, T. (2002) Regional controls on geomorphology, hydrology, and ecosystem integrity in the Orinoco Delta, Venezuela. Geomorphology, 44, 273–307.
    [Google Scholar]
  95. Weber, J.C., Dixon, T.H., Demets, C., Ambeh, W.B., Mattioli, P.J.G., Saleh, J., Selle, G., Bilham, R. & Perez, O. (2001) GPS estimate of relative motion between the Caribbean and South American plates, and geological implications for Trinidad and Venezuela. Geology, 29, 75–78.
    [Google Scholar]
  96. Zuffa, G.G. (1985) Optical analysis of arenites: influence of methodology on compositional results. In: Provenance of Arenites (Ed. by ZuffaG.G. ) NATO ASI Series, 148, 165–189. Reidel, Dordrecht.
    [Google Scholar]
  97. Zuffa, G.G. (1987) Unravelling hinterland and offshore palaeogeography from deep‐water arenites. In: Marine Clastic Sedimentology. Concepts and Case Studies (Ed. by J.K.Leggett , G.G.Zuffa ), pp. 39–61. Graham & Trotman, London.
    [Google Scholar]
  98. Zuffa, G.G., Normark, W.R., Serra, F. & Brunner, C.A. (2000) Turbidite megabeds in an oceanic rift valley recording Jökulhlaups of Pleistocene, Late glacial lakes of the States, Western United. J. Geol., 108, 253–274.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12095
Loading
/content/journals/10.1111/bre.12095
Loading

Data & Media loading...

Supplements

Complete Table Captions for S1 to S4 and Cited References.

WORD

Location of the studied sand and sandstone samples from Barbados Island, the Lesser Antilles, and rivers of northern South America. Bulk‐petrography data for modern sands, sandstone granules in modern sands and Cenozoic sandstones from Barbados Island, the Lesser Antilles and rivers of northern South America. Heavy‐mineral data for modern sands, modern muds and Cenozoic sandstones from Barbados Island, the Lesser Antilles and rivers of northern South America. . Chemical composition of volcaniclastic beach sands of the Lesser Antilles (analyses made at ACME Laboratories, Vancouver; for information on adopted procedures, geostandards used and precision for various elements of group 4A–4B see http://acmelab.com).

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error