1887
Volume 28 Number 1
  • E-ISSN: 1365-2117

Abstract

Abstract

Established models indicate that, before being breached, relay zones along rift borders can evolve either by lengthening and rotating during progressive overlap of growing fault segments (isolated fault model), or, by simply rotating without lengthening before breaching (coherent fault model). The spatio‐temporal distribution of vertical motions in a relay zone can thus be used to distinguish fault growth mechanisms. Depositional relay zones that develop at sea level and accommodate both deposition on the ramp itself as well as transfer of sediments from the uplifting footwall into the hangingwall depocentres and provide the most complete record of vertical motions. We examine the development of a depositional relay ramp on the border of the active Corinth rift, Greece to reconstruct fault interaction in time and space using both onshore and offshore (2D seismic lines) data. The Akrata relay zone developed over a period of . 0.5 Myr since the Middle Pleistocene between the newly forming East Helike Fault (EHF) that propagated towards the older, more established Derveni Fault (DF). The relay zone captured the Krathis River, which deposited prograding Gilbert‐type deltas on the sub‐horizontal ramp. Successive oblique faults record progressive linkage and basinward migration of accommodation along the ramp axis, whereas marine terraces record diachronous uplift in their footwalls. Although early linkage of the relay zone occurs, continuous propagation and linkage of the EHF onto the static DF is recorded before final beaching. Rotation on forced folds above the upward and laterally propagating normal faults at the borders of the relay zone represents the ramp hinges. The Akrata relay zone cannot be compared directly to a simple fault growth model because (1) the relay zone connects two fault segments of different generations; (2) multiple linkages during propagation was facilitated by the presence of pre‐existing crustal structures, inherited from the Hellenide fold and thrust belt. The linkage of the EHF to the DF contributed to the westward and northward propagation of the southern rift border.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12101
2014-12-30
2019-12-13
Loading full text...

Full text loading...

References

  1. Acocella, V., Morvillo, P. & Funiciello, R. (2005) What controls relay ramps and transfer faults within rift zones? Insights from analogue models. J. Struct. Geol., 27, 397–408.
    [Google Scholar]
  2. Armijo, R., Meyer, B., King, G.C.P., Rigo, A. & Papanastassiou, D. (1996) Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys. J. Int., 126, 11–53.
    [Google Scholar]
  3. Athmer, W. & Luthi, S.M. (2011) The effect of relay ramps on sediment routes and deposition: a review. Sediment. Geol., 242, 1–17.
    [Google Scholar]
  4. Athmer, W., Groenenberg, R.M., Luthi, S.M., Donselaar, M.E., Sokoutis, D. & Willingshofer, E. (2010) Relay ramps as pathways for turbidity currents: a study combining analogue sandbox experiments and numerical flow simulations. Sedimentology, 57, 806–823.
    [Google Scholar]
  5. Athmer, W., Gonzalez Uribe, G.A., Luthi, S.M. & Donselaar, M.E. (2011) Tectonic control on the distribution of Palaeocene marine syn‐rift deposits in the Fenris Graben, northwestern Vøring Basin, offshore Norway. Basin Res., 23, 361–375.
    [Google Scholar]
  6. Backert, N., Ford, M. & Malartre, F. (2010) Architecture and sedimentology of the Kerinitis Gilbert‐type fan delta, Corinth Rift, Greece. Sedimentology, 57, 543–586.
    [Google Scholar]
  7. Bell, R.E., McNeill, L.C., Bull, J.M. & Henstock, T.J. (2008) Evolution of the offshore western Gulf of Corinth. Geol. Soc. Am. Bull., 120, 156–178.
    [Google Scholar]
  8. Bell, R.E., McNeill, L.C., Bull, J.M., Henstock, T.J., Collier, R.E.L. & Leeder, M.R. (2009) Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Res., 21, 824–855.
    [Google Scholar]
  9. Bellahsen, N. & Daniel, J.M. (2005) Fault reactivation control on normal fault growth: an experimental study. J. Struct. Geol., 27, 769–780.
    [Google Scholar]
  10. Bernard, P., Lyon‐caen, H., Briole, P., Deschamps, A. & Boudin, F. (2006) Seismicity, deformation and seismic hazard in the western rift of Corinth: new insights from the Corinth Rift Laboratory (CRL). Tectonophysics, 426, 7–30.
    [Google Scholar]
  11. Billiris, H., Paradissis, D., Veis, G., England, P., Featherstone, W., Parsons, B., Cross, P., Rands, P., Rayson, M., Sellers, P., Ashkenazi, V., Davison, M., Jackson, J. & Ambraseys, N. (1991) Geodetic determination of tectonic deformation in central Greece from 1900 to 1988. Nature, 350, 124–129.
    [Google Scholar]
  12. Briole, P., Rigo, A., Lyon‐Caen, H., Ruegg, J.C., Papazissi, K., Mitsakaki, C., Balodimou, A., Veis, G., Hatzfeld, D. & Deschamps, A. (2000) Active deformation of the Corinth rift Greece' Results from repeated Global Positioning System surveys between 1990 and 1995. J. Geophys. Res., 105, 25605–25625.
    [Google Scholar]
  13. Cartwright, J.A., Trudgill, B.D. & Mansfield, C.S. (1995) Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. J. Struct. Geol., 17, 1319–1326.
    [Google Scholar]
  14. Cheng, H., Edwards, R., Hoff, J., Gallup, C., Richards, D. & Asmerom, Y. (2000) The half‐lives of uranium‐234 and thorium‐230. Chem. Geol., 169, 17–33.
    [Google Scholar]
  15. Childs, C., Watterson, J. & Walsh, J.J. (1995) Fault overlap zones within developing normal fault systems. J. Geol. Soc. London, 152, 535–549.
    [Google Scholar]
  16. Childs, C., Nicol, A., Walsh, J.J. & Watterson, J. (2003) The growth and propagation of synsedimentary faults. J. Struct. Geol., 25, 633–648.
    [Google Scholar]
  17. Clarke, P.J., Davies, R.R., England, P.C., Parsons, B., Billiris, H., Paradissis, D., Veis, G., Cross, P.A., Denys, P.H., Ashkenazi, V., Bingley, R., Kahle, H.‐G., Muller, M.‐V. & Briole, P. (1998) Crustal strain in central Greece from repeated GPS measurements in the interval 1989–1997. Geophys. J. Int., 135, 195–214.
    [Google Scholar]
  18. Clément, C., Sachpazi, M., Charvis, P., Graindorge, D., Laigle, M., Hirn, A. & Zafiropoulos, G. (2004) Reflection–refraction seismics in the Gulf of Corinth: hints at deep structure and control of the deep marine basin. Tectonophysics, 391, 97–108.
    [Google Scholar]
  19. Collier, R.E.L. & Dart, C.J. (1991) Neogene to Quarternary rifting, sedimentation and uplift in the Corinth Basin, Greece. J. Geol. Soc. London, 148, 1049–1065.
    [Google Scholar]
  20. Collier, R.E.L., Leeder, M.R., Rowe, P.J. & Atkinson, T.C. (1992) Rates of tectonic uplift in the Corinth and Megara Basins, central Greece. Tectonics, 11, 1159–1167.
    [Google Scholar]
  21. Conneally, J., Childs, C. & Walsh, J.J. (2014) Contrasting origins of breached relay zone geometries. J. Struct. Geol., 58, 59–68.
    [Google Scholar]
  22. Cowie, P.A. & Scholz, C.H. (1992) Displacement‐length scaling relationship for faults: data synthesis and discussion. J. Struct. Geol., 14, 1149–1156.
    [Google Scholar]
  23. Cowie, P.A., Roberts, G.P. & Mortimer, E. (2007) Strain localization within fault arrays over timescales of 100–107 years. In: Tectonic Faults: Agents of Change on a Dynamic Earth (Ed. by M.R.Handy , G.Hirth & N.Hovius ), pp. 47–77. MIT Press, Cambridge, MA.
    [Google Scholar]
  24. Cowie, P.A., Gupta, S. & Dawers, N.H. (2008) Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Res., 12, 241–261.
    [Google Scholar]
  25. Crider, J.G. & Peacock, D.C.P. (2004) Initiation of brittle faults in the upper crust: a review of field observations. J. Struct. Geol., 26, 691–707.
    [Google Scholar]
  26. Crider, J.G. & Pollard, D.D. (1998) Fault linkage: three‐dimensional mechanical interaction faults. J. Geophys. Res., 103, 24373–24391.
    [Google Scholar]
  27. Davies, R., England, P., Parsons, B., Billiris, H., Paradissis, D. & Veis, G. (1997) Geodetic strain of Greece in the interval 1892–1992. J. Geophys. Res. Solid Earth, 102, 24571–24588.
    [Google Scholar]
  28. Dawers, N.H. & Anders, M.H. (1995) Displacment‐length scaling and fault linkage. J. Struct. Geol., 17, 607–614.
    [Google Scholar]
  29. De Martini, P.M., Pantosti, D., Palyvos, N., Lemeille, F., McNeill, L.C. & Collier, R.E.L. (2004) Slip rates of the Aigion and Eliki Faults from uplifted marine terraces, Corinth Gulf, Greece. Comptes Rendus Geosci., 336, 325–334.
    [Google Scholar]
  30. Densmore, A.L., Dawers, N.H., Sanjeev, G., Allen, P.A. & Gilpin, R. (2003) Landscape evolution at extensional relay zones. J. Geophys. Res., 108, 2273.
    [Google Scholar]
  31. Doutsos, T. & Piper, D.J.W. (1990) Listric faulting, sedimentation, and morphological evolution of the Quaternary eastern Corinth rift, Greece: first stages of continental rifting. Geol. Soc. Am. Bull., 102, 812–829.
    [Google Scholar]
  32. Ferrill, D.A. & Morris, A.P. (2001) Displacement gradient and deformation in normal fault systems. J. Struct. Geol., 23, 619–638.
    [Google Scholar]
  33. Flotté, N., Sorel, D., Müller, C. & Tensi, J. (2005) Along strike changes in the structural evolution over a brittle detachment fault: example of the Pleistocene Corinth‐Patras rift (Greece). Tectonophysics, 403, 77–94.
    [Google Scholar]
  34. Ford, M., Williams, E.A., Malartre, F. & Popescu, S.‐M. (2007a) Stratigraphic architecture, sedimentology and structure of the Vouraikos Gilbert‐type fan delta, Gulf of Corinth, Greece. In: Sedimentary Processes, Environments and Basins: A Tribute to Peter Friend (Ed. by PaolaC. , NicholsG.J. & WilliamsE.A. ), Spec. Publ. Int. Assoc. Sedimentol., 38, 49–90.
    [Google Scholar]
  35. Ford, M., Le Carlier de Veslud, C. & Bourgeois, O. (2007b) Kinematic and geometric analysis of fault‐related folds in a rift setting: the Dannemarie basin, Upper Rhine Graben, France. J. Struct. Geol., 29, 1811–1830.
    [Google Scholar]
  36. Ford, M., Rohais, S., Williams, E.A., Bourlange, S., Jousselin, D., Backert, N. & Malartre, F. (2013) Tectono‐sedimentary evolution of the western Corinth rift (Central Greece). Basin Res., 25, 3–25.
    [Google Scholar]
  37. Gawthorpe, R.L. & Hurst, J.M. (1993) Transfer zones in extensional basins: their structural style and influence on drainage development and stratigraphy. J. Geol. Soc. London, 150, 1137–1152.
    [Google Scholar]
  38. Ghisetti, F. & Vezzani, L. (2004) Plio‐Pleistocene sedimentation and fault segmentation in the Gulf of Corinth (Greece) controlled by inherited structural fabric. Comptes Rendus Geosci., 336, 243–249.
    [Google Scholar]
  39. Ghisetti, F. & Vezzani, L. (2005) Inherited structural controls on normal fault architecture in the Gulf of Corinth (Greece). Tectonics, 24, TC001696.
    [Google Scholar]
  40. Giba, M., Walsh, J.J. & Nicol, A. (2012) Segmentation and growth of an obliquely reactivated normal fault. J. Struct. Geol., 39, 253–267.
    [Google Scholar]
  41. Gobo, K., Ghinassi, M., Nemec, W. & Sjursen, E. (2014) Development of an incised valley‐fill at an evolving rift margin: Pleistocene eustasy and tectonics on the southern side of the Gulf of Corinth, Greece. Sedimentology, 28, 1811–1830.
    [Google Scholar]
  42. Goldsworthy, M. & Jackson, J. (2001) Migration of activity within normal fault systems: examples from the Quaternary of mainland Greece. J. Struct. Geol., 23, 489–506.
    [Google Scholar]
  43. Goldsworthy, M., Jackson, J. & Haines, J. (2002) The continuity of active fault systems in Greece. Geophys. J. Int., 148, 596–618.
    [Google Scholar]
  44. Gupta, A. & Scholz, C.H. (2000) A model of normal fault interaction based on observations and theory. J. Struct. Geol., 22, 865–879.
    [Google Scholar]
  45. Gupta, S., Underhill, J.R., Sharp, I.R. & Gawthorpe, R.L. (1999) Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt. Basin Res., 11, 167–189.
    [Google Scholar]
  46. Hardy, S. & McClay, K. (1999) Kinematic modelling of extensional fault‐propagation folding. J. Struct. Geol., 21, 695–702.
    [Google Scholar]
  47. Hatzfeld, D., Kementzetzidou, D., Karakostas, V., Ziazia, M., Nothard, S., Diagourtas, D., Deschamps, A., Karakaisis, G., Papadimitriou, P., Scordilis, Smith, R., Voulgaris, N., Kiratzi, S., Makropoulos, K., Bouin, M. P. & Bernard, P. (1996) The Galaxidi Earthquake of 18 November 1992: a possible asperity within the normal fault system of the Gulf of Corinth (Greece). Bull. Seismol. Soc. Am., 86, 1987–1991.
    [Google Scholar]
  48. van Hinsbergen, D.J.J. & Schmid, S.M. (2012) Map view restoration of Aegean–West Anatolian accretion and extension since the Eocene. Tectonics, 31, TC5005.
    [Google Scholar]
  49. Houghton, S.L., Roberts, G.P., Papanikolaou, I.D., McArthur, J.M. & Gilmour, M.A. (2003) New 234U‐230Th coral dates from the western Gulf of Corinth: implications for extensional tectonics. Geophys. Res. Lett., 30, 2013.
    [Google Scholar]
  50. Huggins, P., Watterson, J., Walsh, J.J. & Childs, C. (1995) Relay zone geometry and displacement transfer between normal faults recorded in coal‐mine plans. J. Struct. Geol., 17, 1741–1755.
    [Google Scholar]
  51. Hus, R., Acocella, V., Funiciello, R. & DeBatist, M. (2005) Sandbox models of relay ramp structure and evolution. J. Struct. Geol., 27, 459–473.
    [Google Scholar]
  52. Jolivet, L. & Brun, J.‐P. (2008) Cenozoic geodynamic evolution of the Aegean. Int. J. Earth Sci., 99, 109–138.
    [Google Scholar]
  53. Jolivet, L., Labrousse, L., Agard, P., Lacombe, O., Bailly, V., Lecomte, E., Mouthereau, F. & Mehl, C. (2010) Rifting and shallow‐dipping detachments, clues from the Corinth Rift and the Aegean. Tectonophysics, 483, 287–304.
    [Google Scholar]
  54. Keraudren, B. & Sorel, D. (1987) The terraces of Corinth (Greece) — a detailed record of eustatic sea‐level variations during the last 500,000 years. Mar. Geol., 77, 99–107.
    [Google Scholar]
  55. Khalil, S.M. & McClay, K.R. (2002) Extensional fault‐related folding, northwestern Red Sea, Egypt. J. Struct. Geol., 24, 743–762.
    [Google Scholar]
  56. Ku, T.‐L. & Liang, Z.‐C. (1984) The dating of impure carbonates with decay‐series isotopes. Nucl. Instrum. Methods Phys. Res., 223, 563–571.
    [Google Scholar]
  57. Le Pichon, X., Lallemant, S.J., Chamot‐Rooke, N., Lemeur, D. & Pascal, G. (2002) The Mediterranean Ridge backstop and the Hellenic nappes. Mar. Geol., 186, 111–125.
    [Google Scholar]
  58. Leeder, M.R. & Gawthorpe, R.L. (1987) Sedimentary models for extensional tilt‐block/half‐graben basins. Geol. Soc. Spec. Publ., 28, 139–152.
    [Google Scholar]
  59. Leeder, M.R. & Jackson, J.A. (1993) The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and central Greece. Basin Res., 5, 79–102.
    [Google Scholar]
  60. Leeder, M.R. & Mack, G.H. (2007) Basin‐fill incision, Rio Grande and Gulf of Corinth rifts: convergent response to climatic and tectonic drivers. In: Sedimentary Processes, Environ‐ ments and Basins: A Tribute to Peter Friend (Ed. by NicholsG.J. , WilliamsE.A. & PaolaC. ), Spec. Publ. Int. Assoc. Sedimentol., 38, 9–27.
    [Google Scholar]
  61. Long, J.J. & Imber, J. (2012) Strain compatibility and fault linkage in relay zones on normal faults. J. Struct. Geol., 36, 16–26.
    [Google Scholar]
  62. Longhitano, S.G. (2008) Sedimentary facies and sequence stratigraphy of coarse‐grained Gilbert‐type deltas within the Pliocene thrust‐top Potenza Basin (Southern Apennines, Italy). Sediment. Geol., 210, 87–110.
    [Google Scholar]
  63. Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J. & Wilson, D. (2004) The Neogene Period. In: A Geological Time Scale (Ed. by F.M.Gradstein , J.G.Ogg & A.G.Smith ), pp. 409–440. Cambridge University Press, Cambridge.
    [Google Scholar]
  64. Lykousis, V., Sakellariou, D., Moretti, I. & Kaberi, H. (2007) Late Quaternary basin evolution of the Gulf of Corinth: sequence stratigraphy, sedimentation, fault‐slip and subsidence rates. Tectonophysics, 440, 29–51.
    [Google Scholar]
  65. Manighetti, I., King, G.C.P. & Gaudemer, Y. (2001) Slip accumulation and lateral propagation of active normal faults in Afar. J. Geophys. Res., 106, 13667–13696.
    [Google Scholar]
  66. Mansfield, C.S. & Cartwright, J.A. (2001) Fault growth by linkage: observations and implications from analogue models. J. Struct. Geol., 23, 745–763.
    [Google Scholar]
  67. Mattei, M., D'Agostino, N., Zananiri, I., Kondopoulou, D., Pavlides, S. & Spatharas, V. (2004) Tectonic evolution of fault‐bounded continental blocks: comparison of paleomagnetic and GPS data in the Corinth and Megara basins (Greece). J. Geophys. Res. Solid Earth, 109, B02106.
    [Google Scholar]
  68. McLeod, A.E., Dawers, N.H. & Underhill, J.R. (2000) The propagation and linkage of normal faults: insights from the Strathspey‐Brent‐Statfjord fault array, northern North Sea. Basin Res., 12, 263–284.
    [Google Scholar]
  69. McMurray, L.S. & Gawthorpe, R.L. (2000) Along‐strike variability of forced regressive deposits: late Quaternary, northern Peloponnesos, Greece. Geol. Soc. Spec. Publ., 172, 363–377.
    [Google Scholar]
  70. McNeill, L.C. & Collier, R.E.L. (2004) Uplift and slip rates of the eastern Eliki fault segment, Gulf of Corinth, Greece, inferred from Holocene and Pleistocene terraces. J. Geol. Soc. London, 161, 81–92.
    [Google Scholar]
  71. McNeill, L.C., Cotterill, C.J., Henstock, T.J., Bull, J.M., Stefatos, A., Collier, R.E.L., Papatheoderou, G., Ferentinos, G. & Hicks, S.E. (2005) Active faulting within the offshore western Gulf of Corinth, Greece: implications for models of continental rift deformation. Geology, 33, 241.
    [Google Scholar]
  72. Meyer, V., Nicol, A., Childs, C., Walsh, J.J. & Watterson, J. (2002) Progressive localisation of strain during the evolution of a normal fault population. J. Struct. Geol., 24, 1215–1231.
    [Google Scholar]
  73. Moretti, I., Sakellariou, D., Lykousis, V. & Micarelli, L. (2003) The Gulf of Corinth: an active half graben?J. Geodyn., 36, 323–340.
    [Google Scholar]
  74. Morley, C.K. (1999) Patterns of displacement along large normal faults: implications for basin evolution and fault propagation, based on examples from East Africa. Am. Assoc. Pet. Geol. Bull., 83, 613–634.
    [Google Scholar]
  75. Morley, C.K. (2002) Evolution of large normal faults: Evidence from seismic reflection data. Am. Assoc. Pet. Geol. Bull., 6, 961–978.
    [Google Scholar]
  76. Morley, C.K. & Wonganan, N. (2000) Normal fault displacement characteristics, with particular reference to synthetic transfer zones, Mae Moh mine, northern Thailand. Basin Res., 12, 307–327.
    [Google Scholar]
  77. Morley, C.K., Nelson, R.A., Platton, T.L. & Munn, S.G. (1990) Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts. Am. Assoc. Pet. Geol. Bull., 74, 1234–1253.
    [Google Scholar]
  78. Mouyaris, N., Papastamatiou, D. & Vita‐Finzi, C. (1992) The Helice Fault?Terra Nova, 4, 124–128.
    [Google Scholar]
  79. Muraoka, H. & Kamata, H. (1983) Displacement distribution along minor fault traces. J. Struct. Geol., 5, 483–495.
    [Google Scholar]
  80. Nicol, A., Watterson, J., Walsh, J.J. & Childs, C. (1996) The shapes, major axis orientations and displacement patterns of fault surfaces. J. Struct. Geol., 18, 235–248.
    [Google Scholar]
  81. Nicol, A., Walsh, J.J., Villamor, P., Seebeck, H. & Berryman, K.R. (2010) Normal fault interactions, paleoearthquakes and growth in an active rift. J. Struct. Geol., 32, 1101–1113.
    [Google Scholar]
  82. Nomikou, P., Alexandri, M., Lykousis, V., Sakellariou, D. & Ballas, D. (2011) Swath Bathymetry and morphological slope analysis of the Corinth gulf. 2nd INQUA‐IGCP‐567 Int. Work. Act. Tectonics, Earthq. Geol. Archaeol. Eng. Corinth, Greece, 155–158.
  83. Nyst, M. & Thather, W. (2004) New constraints on the active tectonic deformation of the Aegean. J. Geophys. Res., 109, B11406.
    [Google Scholar]
  84. Palyvos, N., Lemeille, F., Sorel, D., Pantosti, D. & Pavlopoulos, K. (2008) Geomorphic and biological indicators of paleoseismicity and Holocene uplift rate at a coastal normal fault footwall (western Corinth Gulf, Greece). Geomorphology, 96, 16–38.
    [Google Scholar]
  85. Palyvos, N., Mancini, M., Sorel, D., Lemeille, F., Pantosti, D., Julia, R., Triantaphyllou, M. & De Martini, P.‐M. (2010) Geomorphological, stratigraphic and geochronological evidence of fast Pleistocene coastal uplift in the westernmost part of the Corinth Gulf Rift (Greece). Geol. J., 45, 78–104.
    [Google Scholar]
  86. Papanikolaou, D.J. & Royden, L.H. (2007) Disruption of the Hellenic arc: late Miocene extensional detachment faults and steep Pliocene‐Quaternary normal faults‐Or what happened at Corinth?Tectonics, 26, TC5003.
    [Google Scholar]
  87. Papanikolaou, D., Gouliotis, L. & Triantaphyllou, M. (2009) The Itea‐Amfissa detachment: a pre‐Corinth rift Miocene extensional structure in central Greece. Geol. Soc. Spec. Publ., 311, 293–310.
    [Google Scholar]
  88. Paton, D.A. & Underhill, J.R. (2004) Role of crustal anisotropy in modifying the structural and sedimentological evolution of extensional basins: the Gamtoos Basin, South Africa. Basin Res., 16, 339–359.
    [Google Scholar]
  89. Peacock, D.C.P. (2002) Propagation, interaction and linkage in normal fault systems. Earth Sci. Rev., 58, 121–142.
    [Google Scholar]
  90. Peacock, D.C.P. & Sanderson, D.J. (1991) Displacements, segment linkage and relay ramps in normal fault zones. J. Struct. Geol., 13, 721–733.
    [Google Scholar]
  91. Peacock, D.C.P. & Sanderson, D.J. (1994) Geometry and development of relay ramps in normal fault systems. Am. Assoc. Pet. Geol. Bull., 78, 147–165.
    [Google Scholar]
  92. Peacock, D.C.P. & Sanderson, D.J. (1996) Effects of propagation rate on displacement variations along faults. J. Struct. Geol., 18, 311–320.
    [Google Scholar]
  93. Pirazzoli, P.A., Stiros, S.C., Fontugne, M. & Arnold, M. (2004) Holocene and Quaternary uplift in the central part of the southern coast of the Corinth Gulf (Greece). Mar. Geol., 212, 35–44.
    [Google Scholar]
  94. Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L. & Hilgen, F. (2006) A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev., 25, 3113–3137.
    [Google Scholar]
  95. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Fakahaddin, K., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., Abdullah, A., Paradissis, D., Al‐Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al‐Ghazzi & Karam, G. (2006) GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res., 111, B05411.
    [Google Scholar]
  96. Rohais, S., Eschard, R., Ford, M., Guillocheau, F. & Moretti, I. (2007a) Stratigraphic architecture of the Plio‐Pleistocene infill of the Corinth Rift: implications for its structural evolution. Tectonophysics, 440, 5–28.
    [Google Scholar]
  97. Rohais, S., Joannin, S., Colin, J.‐P., Suc, J.‐P., Guillocheau, F. & Eschard, R. (2007b) Age and environmental evolution of the syn‐rift fill of the southern coast of the Gulf of Corinth (Akrata‐Derveni region, Greece). Bull. Soc. Geol. France, 178, 231–243.
    [Google Scholar]
  98. Rohais, S., Eschard, R. & Guillocheau, F. (2008) Depositional model and stratigraphic architecture of rift climax Gilbert‐type fan deltas (Gulf of Corinth, Greece). Sediment. Geol., 210, 132–145.
    [Google Scholar]
  99. Sachpazi, M., Clément, C., Laigle, M., Hirn, A. & Roussos, N. (2003) Rift structure, evolution, and earthquakes in the Gulf of Corinth, from reflection seismic images. Earth, 216, 243–257.
    [Google Scholar]
  100. Sachpazi, M., Galvé, A., Laigle, M., Hirn, A., Sokos, E. & Serpetsidaki, A. (2007) Moho topography under central Greece and its compensation by Pn time‐terms for the accurate location of hypocenters: the example of the Gulf of Corinth 1995 Aigion earthquake. Tectonophysics, 440, 53–65.
    [Google Scholar]
  101. Sakellariou, D., Lykousis, V., Alexandri, S., Kaberi, H., Rousakis, G., Nomikou, P., Georgiou, P. & Ballas, D. (2007) Faulting, seismic‐stratigraphic architecture and Late Quaternary evolution of the Gulf of Alkyonides Basin‐East Gulf of Corinth, Central Greece. Basin Res., 19, 273–295.
    [Google Scholar]
  102. Schlische, R.W. & Anders, M.H. (1996) Stratigraphic effects and tectonic implications of the growth of normal faults and extensional basins. In: Reconstructing the History of Basin and Range Extension Using Sedimentology and Stratigraphy (Ed. by BeratanK.K. ), Geol. Soc. Am. Spec. Publ., 303, 183–203.
    [Google Scholar]
  103. Schwarcz, H.P. & Latham, A.G. (1989) Dirty calcites 1. Uranium‐series dating of contaminated calcite using leachates alone. Isot. Geosci., 80, 35–43.
    [Google Scholar]
  104. Sharp, I.R., Gawthorpe, R.L., Underhill, J.R. & Gupta, S. (2000) Fault‐propagation folding in extensional settings: examples of structural style and synrift sedimentary response from the Suez rift, Sinai, Egypt. Geol. Soc. Am. Bull., 112, 1877–1899.
    [Google Scholar]
  105. Siddall, M., Rohling, E.J., Almogi‐Labin, A., Hemleben, C., Meischner, M., Schmelzer, I. & Smeed, D.A. (2003) Sea‐level fluctuations during the last glacial cycle. Nature, 423, 853–858.
    [Google Scholar]
  106. Soliva, R., Benedicto, A., Schultz, R.A., Maerten, L. & Micarelli, L. (2008) Displacement and interaction of normal fault segments branched at depth: implications for fault growth and potential earthquake rupture size. J. Struct. Geol., 30, 1288–1299.
    [Google Scholar]
  107. Sprovieri, R., Di Stefano, E., Howell, M., Di Sakamoto, T., Di Stefano, A. & Marino, M. (1998) Integrated calcalreous plankton biostratigraphy and cyclostratigraphy at site 964. In: Proceedings of the Ocean Drilling Program, Scientific Results (Ed. by RobertsonA.H.F. , EmerisK.‐C. , RitcherC. & CamerlenghiC. ), 160, 155–165.
    [Google Scholar]
  108. Stefatos, A., Papatheodorou, G., Ferentinos, G., Leeder, M. & Collier, R.E.L. (2002) Seismic reflection imaging of active offshore faults in the Gulf of Corinth: their seismotectonic significance. Basin Res., 14, 487–502.
    [Google Scholar]
  109. Stewart, I.S. (1996) Holocene uplift and paleoseismicity on the Eliki fault, western Gulf of Corinth, Greece. Ann. Geophys., 39, 575–588.
    [Google Scholar]
  110. Stewart, I.S. & Vita‐Finzi, C. (1996) Coastal uplift on active normal faults: the Eliki Fault, Greece. Geophys. Res. Lett., 23, 1853–1856.
    [Google Scholar]
  111. Taylor, B., Weiss, J.R., Goodliffe, A.M., Sachpazi, M., Laigle, M. & Hirn, A. (2011) The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece. Geophys. J. Int., 185, 1189–1219.
    [Google Scholar]
  112. Theye, T., Seidel, E. & Vidal, O. (1992) Carpholite, sudoite and chloritoid in low‐grade high‐pressure metapelites from Crete and the Peloponnese. Eur. J. Mineral., 4, 487–507.
    [Google Scholar]
  113. Trotet, F., Goffe, B., Vidal, O. & Jolivet, L. (2006) Evidence of retrograde Mg‐carpholite in the Phyllite‐Quartzite nappe of Peloponnese from thermobarometric modelisation ‐ geodynamic implications. Geodin. Acta, 19, 323–343.
    [Google Scholar]
  114. Trudgill, B.D. (2002) Structural controls on drainage development in the Canyonlands grabens of southeast Utah. Am. Assoc. Pet. Geol. Bull., 86, 1095–1112.
    [Google Scholar]
  115. Trudgill, B.D. & Cartwright, J.A. (1994) Relay‐ramp forms and normal‐fault linkages, Canyonlands National Park, Utah. Geol. Soc. Am. Bull., 106, 1143–1157.
    [Google Scholar]
  116. Tselentis, G.‐A. & Makropoulos, K. (1986) Rates of crustal deformation on in the Gulf of Corinth (central greece) as determined from seismicity. Tectonophysics, 124, 55–66.
    [Google Scholar]
  117. Van Hinsbergen, D.J.J., Hafkenscheid, E., Spakman, W., Meulenkamp, J.E. & Wortel, R. (2005) Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geol. Soc. Am., 33, 325–328.
    [Google Scholar]
  118. Walsh, J.J. & Watterson, J. (1988) Analysis of the relationship between displacements and dimensions of faults. J. Struct. Geol., 10, 239–247.
    [Google Scholar]
  119. Walsh, J.J. & Watterson, J. (1991) Geometric and kinematic coherence and scale effects in normal fault systems. Geol. Soc. Spec. Publ., 56, 193–203.
    [Google Scholar]
  120. Walsh, J.J., Watterson, J., Bailey, W.R. & Childs, C. (1999) Fault relays, bends and branch‐lines. J. Struct. Geol., 21, 1019–1026.
    [Google Scholar]
  121. Walsh, J.J., Nicol, A. & Childs, C. (2002) An alternative model for the growth of faults. J. Struct. Geol., 24, 1669–1675.
    [Google Scholar]
  122. Walsh, J.J., Bailey, W.R., Childs, C., Nicol, A. & Bonson, C. (2003) Formation of segmented normal faults: a 3‐D perspective. J. Struct. Geol., 25, 1251–1262.
    [Google Scholar]
  123. Weiss, J.R. (2004) A geophysical investigation of the gulf of Corinth, Greece. Msc Thesis, University of Hawaii.
  124. Young, M.J., Gawthorpe, R.L. & Hardy, S. (2001) Growth and linkage of a segmented normal fault zone; the Late Jurassic Murchison‐Stratjord North Fault, northern North Sea. J. Struct. Geol., 23, 1933–1952.
    [Google Scholar]
  125. Zelt, B.C., Taylor, B., Weiss, J.R., Goodliffe, A.M., Sachpazi, M. & Hirn, A. (2004) Streamer tomography velocity models for the Gulf of Corinth and Gulf of Itea, Greece. Geophys. J. Int., 159, 333–346.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12101
Loading
/content/journals/10.1111/bre.12101
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error