1887
Volume 28, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Messinian evaporites of locally more than 3‐km thickness occupy the subduction zone between Cyprus and Eratosthenes Seamount. Based on a dense grid of seismic reflection profiles, we report on compressional salt tectonics and its impact on the Late Miocene to Quaternary structural evolution of the Cyprus subduction zone. Results show that evaporites have experienced significant post‐Messinian shortening along the plate boundary. Shortening has initiated allochthonous salt advance between Cyprus and Eratosthenes Seamount, representing an excellent example of salt which efficiently escapes subduction and accretion. Further east, between Eratosthenes Seamount and the Hecataeus Rise, evaporites were compressionally inflated without having advanced across post‐Messinian strata. Such differences in the magnitude of salt tectonic shortening may reflect a predominately north–south oriented post‐Messinian convergence direction, raising the possibility of a later coupling between the motion of Cyprus and Anatolia than previously thought. Along the area bordered by Cyprus and Eratosthenes Seamount a prominent step in the seafloor represents the northern boundary of a controversially debated semi‐circular depression. Coinciding with the southern edge of the salt sheet, this bathymetric feature is suggested to have formed as a consequence of compressional salt inflation and seamount‐directed salt advance. Topographic lows on top of highly deformed evaporites are locally filled by up to 700 m of late Messinian sediments. The uppermost 200 m of these sediments were drilled in the course of ODP Leg 160 and interpreted to represent Lago Mare‐type deposits (Robertson, , 1998d, , 63‐82). Lago Mare deposits are spatially restricted to the western part of the subduction zone, pinching out towards the east whereas presumably continuing into the Herodotus Basin further west. We suggest a sea level control on late Messinian Lago Mare sedimentation, facilitating sediment delivery into basinal areas whereas inhibiting Lago Mare deposition into the desiccated Levant Basin. Locally, early salt deformation is believed to have provided additional accommodation space for Lago Mare sedimentation, resulting in the presently observed minibasin‐like geometry.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12122
2015-04-21
2020-04-06
Loading full text...

Full text loading...

References

  1. Albertz, M. & Beaumont, C. (2010) An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 2. Comparison of observations with geometrically complex numerical models. Tectonics, 29, TC4017, doi:10.1029/2009TC002539, 29 pp.
    [Google Scholar]
  2. Albertz, M. & Ings, S.J. (2012). Some consequences of mechanical stratification in basin‐scale numerical models of passive‐margin salt tectonics. In: Salt Tectonics, Sediments and Prospectivity (Ed. by AlsopG.I. , ArcherS.G. , HartleyA.J. , GrantN.T. & HodgkinsonR. ), Geol. Soc., Lon. Spec. Publ., 363, 303–330.
    [Google Scholar]
  3. Baykulov, M., Brink, H.‐J., Gajewski, D. & Yoon, M.‐K. (2009) Revisiting the structural setting of the Glueckstadt Graben salt stock family, North German Basin. Tectonophysics, 470, 162–172.
    [Google Scholar]
  4. Ben‐Avraham, Z., Tibor, G., Limonov, A.F., Leybov, M.B., Ivanov, M.K., Tokarev, M.Y. & Woodside, J.M. (1995) Structure and tectonics of the eastern Cyprean Arc. Mar. Petrol. Geol., 12, 263–271.
    [Google Scholar]
  5. Benkhelil, J., Bayerly, M., Branchoux, S., Courp, T., Gonthier, E., Hübscher, C., Maillard, A. & Tahchi, E. (2005) La branche orientale de l'arc de Chypre. Morphostructure d'une frontière de plaques d'après les résultats de la campagne BLAC (2003). C. R. Geosci., 337, 1075–1083.
    [Google Scholar]
  6. Bertoni, C. & Cartwright, J.A. (2005) 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean. J. Geol. Soc., 162, 909–926.
    [Google Scholar]
  7. Bertoni, C. & Cartwright, J.A. (2006) Controls on the basinwide architecture of late Miocene (Messinian) evaporites on the Levant margin (Eastern Mediterranean). Sed. Geol., 188–189, 93–114.
    [Google Scholar]
  8. Bertoni, C. & Cartwright, J.A. (2007) Major erosion at the end of the Messinian Salinity Crisis: evidence from the Levant Basin, Eastern Mediterranean. Basin Res., 19, 1–18.
    [Google Scholar]
  9. Biryol, C.B., Beck, S.L., Zandt, G. & Özacar, A.A. (2011) Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P‐wave tomography. Geophys. J. Int., 184, 1037–1057.
    [Google Scholar]
  10. Blanc‐Valleron, M.‐M., Rouchy, J.‐M., Pierre, C., Badaut‐Trauth, D. & Schuler, M. (1998) Evidence of Messinian nonmarine deposition at Site 968 (Cyprus lower slope). In: Proc. ODP, Sci. Results, Vol. 160 (Ed. by A.H.F.Robertson , K.‐C.Emeis , C.Richter , A.Camerlenghi ), pp. 437–445. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  11. Bozkurt, E. (2001) Neotectonics of Turkey – a synthesis. Geodin. Acta, 14, 3–30.
    [Google Scholar]
  12. Cartwright, J.A. & Jackson, M.P.A. (2008) Initiation of gravitational collapse of an evaporite basin margin: The Messinian saline giant, Levant Basin, eastern Mediterranean. Geol. Soc. Am. Bull., 120, 399–413.
    [Google Scholar]
  13. Clark, I.R. & Cartwright, J.A. (2009) Interactions between submarine channel systems and deformation in deepwater fold belts: Examples from the Levant Basin, Eastern Mediterranean sea. Mar. Petrol. Geol., 26, 1465–1482.
    [Google Scholar]
  14. Cosentino, D., Federici, I., Cipollari, P. & Gliozzi, E. (2006) Environments and tectonic instability in central Italy (Garigliano Basin) during the late Messinian Lago‐Mare episode: New data from the onshore Mondragone 1 well. Sed. Geol., 188–189, 297–317.
    [Google Scholar]
  15. Costa, E., Camerlenghi, A., Polonia, A., Cooper, C., Fabretti, P., Mosconi, A., Murelli, P., Romanelli, M., Sormani, L. & Wardell, N. (2004) Modeling deformation and salt tectonics in the eastern Mediterranean Ridge accretionary wedge. Geol. Soc. Am. Bull., 116, 880–894.
    [Google Scholar]
  16. Dell, S., Gajewski, D. & Vanelle, C. (2012) Prestack time migration by common‐migrated‐reflector‐element stacking. Geophysics, 77, 73–82.
    [Google Scholar]
  17. Dümmong, S. & Hübscher, C. (2011) Levant Basin. In: Seismic Atlas of the “Messinian Salinity Crisis” Markers in the Mediterranean and Black Seas (Ed. by LofiJ. , DéverchèreJ. , GaullierV. , GilletH. , GoriniC. , GuennocP. , LonckeL. , MaillardA. , SageF. & ThinonI. ), Mém. Soc. Géol. Fr., n.s., 179, and World Geological Map Commission, Paris.
    [Google Scholar]
  18. Eaton, S. & Robertson, A. (1993) The Miocene Pakhna Formation, southern Cyprus and its relationship to the Neogene tectonic evolution of the Eastern Mediterranean. Sed. Geol., 86, 273–296.
    [Google Scholar]
  19. Ehrhardt, A. (2011) RV MARIA S. MERIAN, Cruise Report MSM14/L2 Eratosthenes Seamount/Eastern Mediterranean Sea 2010. DFG Senatskommission für Ozeanographie, Bremen.
    [Google Scholar]
  20. Ergün, M., Okay, S., Sari, C., Oral, E.Z., Ash, M., Hall, J. & Miller, H. (2005) Gravity anomalies of the Cyprus Arc and their tectonic implications. Mar. Geol., 221, 349–358.
    [Google Scholar]
  21. Faccenna, C., Bellier, O., Martinod, J., Piromallo, C. & Regard, V. (2006) Slab detachment beneath eastern Anatolia: a possible cause for the formation of the North Anatolian fault. Earth Planet. Sci. Lett., 242, 85–97.
    [Google Scholar]
  22. Fort, X. & Brun, J.‐P. (2012) Kinematics of regional salt flow in the northern Gulf of Mexico. In: Salt Tectonics, Sediments and Prospectivity (Ed. by AlsopG.I. , ArcherS.G. , HartleyA.J. , GrantN.T. & HodgkinsonR. ), Geol. Soc., Lon. Spec. Publ., 363, 265–287.
    [Google Scholar]
  23. Galindo‐Zaldívar, J., Nieto, L.M., Robertson, A.H.F. & Woodside, J.M. (2001) Recent tectonics of Eratosthenes Seamount: an example of seamount deformation during incipient continental collision. Geo‐Mar. Lett., 20, 233–242.
    [Google Scholar]
  24. Garfunkel, Z. (1984) Large‐scale submarine rotational slumps and growth faults in the Eastern Mediterranean. Mar. Geol., 55, 305–324.
    [Google Scholar]
  25. Gargani, J. & Rigollet, C. (2007) Mediterranean Sea level variations during the Messinian salinity crisis. Geophys. Res. Lett., 34, L10405. doi: 10.1029/2007GL029885, 5 pp.
    [Google Scholar]
  26. Gaullier, V., Mart, Y., Bellaiche, G., Mascle, J., Vendeville, B.C. & Zitter, T. & Second Leg Prismed II Scientific Party (2000) Salt tectonics in and around the Nile deep‐sea fan: insights from the PRISMED II cruise. In: Salt, Shale and Igneous Diapirs in and Around Europe (Ed. by VendevilleB.C. , MartY. & VigneresseJ.‐L. ), Geol. Soc., Lon. Spec. Publ., 174, 111–129.
    [Google Scholar]
  27. Gaullier, V., Chanier, F., Lymer, G., Vendeville, B.C., Maillard, A., Thinon, I., Lofi, J., Sage, F. & Loncke, L. (2014) Salt tectonics and crustal tectonics along the Eastern Sardinian margin, Western Tyrrhenian: New insights from the “METYSS 1” cruise. Tectonophysics, 615–616, 69–84.
    [Google Scholar]
  28. Gradmann, S., Hübscher, C., Ben‐Avraham, Z., Gajewski, D. & Netzeband, G. (2005) Salt tectonics off northern Israel. Mar. Petrol. Geol., 22, 597–611.
    [Google Scholar]
  29. Gvirtzman, Z., Reshef, M., Buch‐Leviatan, O. & Ben‐Avraham, Z. (2013) Intense salt deformation in the Levant Basin in the middle of the Messinian Salinity Crisis. Earth Planet. Sci. Lett., 379, 108–119.
    [Google Scholar]
  30. Hall, S.H. (2002) The role of autochthonous salt inflation and deflation in the northern Gulf of Mexico. Mar. Petrol. Geol., 19, 649–682.
    [Google Scholar]
  31. Hall, J., Calon, T.J., Aksu, A.E. & Meade, S.R. (2005) Structural evolution of the Latakia Ridge and Cyprus Basin at the front of the Cyprus Arc, Eastern Mediterranean Sea. Mar. Geol., 221, 261–297.
    [Google Scholar]
  32. Hall, J., Aksu, A.E., King, H., Gogacz, A., Yaltirak, C. & Çifçi, G. (2014) Miocene‐Recent evolution of the western Antalya Basin and its linkage with the Isparta Angle, eastern Mediterranean. Mar. Geol., 349, 1–23.
    [Google Scholar]
  33. Harrison, R.W., Tsiolakis, E., Stone, B.D., Lord, A., Mcgeehin, J.P., Mahan, S.A. & Chirico, P. (2013) Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate. In: Geological Development of Anatolia and the Easternmost Mediterranean Region (Ed. by RobertsonA.H.F. , ParlakO. & ÜnlügençU.C. ), Geol. Soc., Lon. Spec. Publ., 372, 561–584.
    [Google Scholar]
  34. Hsü, K.J., Cita, M.B. & Ryan, W.B.F. (1973) The origin of the Mediterranean evaporites. In: Initial Reports of the Deep Sea Drilling Project, Vol. 13 (Ed. by W.B.F.Ryan & K.J.Hsü , et al.), pp.1203–1231. U.S. Government Printing Office, Washington D.C.
    [Google Scholar]
  35. Hübscher, C. (2012) RV MARIA S. RV MARIA S. MERIAN, Cruise Report MSM14/L3 Eratosthenes Seamount/Eastern Mediterranean Sea 2010. DFG Senatskommission für Ozeanographie, Bremen.
    [Google Scholar]
  36. Hübscher, C. & Netzeband, G.L. (2007) Evolution of a young salt giant: the example of the Messinian evaporites in the Levantine Basin. In: The Mechanical Behavior of Salt – Understanding of THMC Processes in Salt (Ed. by M.Wallner , K.‐H.Lux , W.Minkley , H.R.HardyJr ), pp. 175–184. Taylor & Francis Group, London.
    [Google Scholar]
  37. Hübscher, C., Cartwright, J., Cypionka, H., De Lange, G.J., Robertson, A., Suc, J.‐P. & Urai, J.L. (2007) Global look at salt giants. Eos, 88, 177–179.
    [Google Scholar]
  38. Hudec, M.R. & Jackson, M.P.A. (2004) Regional restoration across the Kwanza Basin, Angola: Salt tectonics triggered by repeated uplift of a metastable passive margin. AAPG Bull., 88, 971–990.
    [Google Scholar]
  39. Hudec, M.R. & Jackson, M.P.A. (2006) Advance of allochthonous salt sheets in passive margins and orogens. AAPG Bull., 90, 1535–1564.
    [Google Scholar]
  40. Hudec, M.R. & Jackson, M.P.A. (2009) Interaction between spreading salt canopies and their peripheral thrust systems. J. Struct. Geol., 31, 1114–1129.
    [Google Scholar]
  41. Hudec, M.R., Jackson, M.P.A. & Schultz‐Ela, D.D. (2009) The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. Geol. Soc. Am. Bull., 121, 201–221.
    [Google Scholar]
  42. Imprescia, P., Pondrelli, S., Vannucci, G. & Gresta, S. (2012) Regional centroid moment tensor solutions in Cyprus from 1977 to the present and seismotectonic implications. J. Seismol., 16, 147–167.
    [Google Scholar]
  43. Jackson, M.P.A., Hudec, M.R. & Dooley, T.P. (2010) Some emerging concepts in salt tectonics in the deepwater Gulf of Mexico: intrusive plumes, canopy‐margin thrusts, minibasin triggers and allochthonous fragments. In: Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference (Ed. by B.A.Vining & S.C.Pickering ), pp. 889–912. Petroleum Geology Conference series, Geological Society, London.
    [Google Scholar]
  44. Jäger, R., Mann, J., Höcht, G. & Hubral, P. (2001) Common‐reflection‐surface stack: Image and attributes. Geophysics, 66, 97–109.
    [Google Scholar]
  45. Kempler, D. (1998) Eratosthenes Seamount: The possible spearhead of incipient continental collision in the Eastern Mediterranean. In: Proc. ODP, Sci. Results, Vol. 160 (Ed. by A.H.F.Robertson , K.‐C.Emeis , C.Richter , A.Camerlenghi ), pp. 709–721. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  46. Kinnaird, T. & Robertson, A. (2012) Tectonic and sedimentary response to subduction and incipient continental collision in southern Cyprus, easternmost Mediterranean region. In: Geological Development of Anatolia and the Easternmost Mediterranean Region (Ed. by RobertsonA.H.F. , ParlakO. & ÜnlügençU.C. ), Geol. Soc., Lon. Spec. Publ., 372, 585–614.
    [Google Scholar]
  47. Kinnaird, T.C., Robertson, A.H.F. & Morris, A. (2011) Timing of uplift of the Trodoos Massif (Cyprus) constrained by sedimentary and magnetic polarity evidence. J. Geol. Soc., 168, 457–470.
    [Google Scholar]
  48. Klimke, J. & Ehrhardt, A. (2014) Impact and implications of the Afro‐Eurasian collision south of Cyprus from reflection seismic data. Tectonophysics, 626, 105–119.
    [Google Scholar]
  49. Kopf, A., Vidal, N., Klaeschen, D., Von Huene, R. & Krasheninnikov, V.A. (2005) Multi‐Channel Seismic Profiles across Eratosthenes Seamount and the Florence Rise Reflecting the Incipient Collision between Africa and Eurasia near the Island of Cyprus, Eastern Mediterranean. In: Geological Framework of the Levant Volume II: The Levantine Basin and Israel (Ed. by J.K.Hall , V.A.Krasheninnikov , F.Hirsch , C.Benjamini , A.Flexer ), pp. 57–71. Historical Productions‐Hall, Jerusalem.
    [Google Scholar]
  50. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S. (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655.
    [Google Scholar]
  51. Krijgsman, W., Blanc‐Valleron, M.‐M., Flecker, R., Hilgen, F.J., Kouwenhoven, T.J., Merle, D., Orszag‐Sperber, F. & Rouchy, J.‐M. (2002) The onset of the Messinian salinity crisis in the Eastern Mediterranean (Pissouri Basin, Cyprus). Earth Planet. Sci. Lett., 194, 299–310.
    [Google Scholar]
  52. Le Pichon, X. & Kreemer, C. (2010) The Miocene‐to‐Present Kinematic Evolution of the Eastern Mediterranean and Middle East and Its Implications for Dynamics. Annu. Revi. Earth Planet. Sci., 38, 323–351.
    [Google Scholar]
  53. Limonov, A.F., Woodside, J.M. & Ivanov, M.K. (1994) Mud volcanism in the Mediterranean and Black Seas and shallow structure of the Eratosthenes Seamount. Initial results of the geological and geophysical investigation during the Third UNESCO‐ESF “Training‐through‐Research” Cruise of RV Gelendzhik (June‐July 1993). UNESCO reports in marine science 64, Paris.
  54. Lofi, J., Déverchère, J., Gaullier, V., Gillet, H., Gorini, C., Guennoc, P., Loncke, L., Maillard, A., Sage, F. & Thinon, I. (2011) Seismic Atlas of the “Messinian Salinity Crisis” markers in the Mediterranean and Black Seas. Mém. Soc. Géol. Fr., n.s., 179, and World Geological Map Commission, Paris.
    [Google Scholar]
  55. Loncke, L., Gaullier, V., Bellaiche, G. & Mascle, J. (2002) Recent depositional patterns of the Nile deep‐sea fan from echo‐character mapping. AAPG Bull., 86, 1165–1186.
    [Google Scholar]
  56. Loncke, L., Gaullier, V., Mascle, J., Vendeville, B. & Camera, L. (2006) The Nile deep‐sea fan: An example of interacting sedimentation, salt tectonics, and inherited subsalt paleotopographic features. Mar. Petrol. Geol., 23, 297–315.
    [Google Scholar]
  57. Loncke, L., Gaullier, V., Droz, L., Ducassou, E., Migeon, S. & Mascle, J. (2009) Multi‐scale slope instabilities along the Nile deep‐sea fan, Egyptian margin: a general overview. Mar. Petrol. Geol., 26, 633–646.
    [Google Scholar]
  58. Loncke, L., Vendeville, B.C., Gaullier, V. & Mascle, J. (2010) Respective contributions of tectonic and gravity‐driven processes on the structural pattern in the Eastern Nile deep‐sea fan: insights from physical experiments. Basin Res., 22, 765–782.
    [Google Scholar]
  59. Loncke, L., Sellier, N. & Mascle, J. (2011) Florence Ridge & South Antalya Basin. In: Seismic Atlas of the “Messinian Salinity Crisis” Markers in the Mediterranean and Black Seas (Ed. by LofiJ. , DéverchèreJ. , GaullierV. , GilletH. , GoriniC. , GuennocP. , LonckeL. , MaillardA. , SageF. & ThinonI. ), Mém. Soc. Géol. Fr., n.s., 179, and World Geological Map Commission, Paris.
    [Google Scholar]
  60. Maillard, A., Hübscher, C., Benkhelil, J. & Tahchi, E. (2011) Deformed Messinian markers in the Cyprus Arc: tectonic and/or Messinian Salinity Crisis indicators?Basin Res., 23, 146–170.
    [Google Scholar]
  61. Major, C.O., Ryan, W.B.F. & Jurado‐Rodríguez, M.J. (1998) Evolution of paleoenvironments of Eratosthenes Seamount based on downhole logging integrated with carbonate petrology and reflection profiles. In: Proc. ODP, Sci. Results, Vol. 160 (Ed. by A.H.F.Robertson , K.‐C.Emeis , C.Richter , A.Camerlenghi ), pp. 483–508. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  62. Manzi, V., Lugli, S., Roveri, M., Pierre, F.D., Gennari, R., Lozar, F., Natalicchio, M., Schreiber, B.C., Taviani, M. & Turco, E. (2014) The Messinian Salinity Crisis in Cyprus: a further step toward a new stratigraphic framework for Eastern Mediterranean. Basin Res., doi: 10.1111/bre.12107.
    [Google Scholar]
  63. Mascle, J., Zitter, T., Bellaiche, G., Droz, L., Gaullier, V., Loncke, L. & Prismed Scientific Party (2001) The Nile deep sea fan: preliminary results from a swath bathymetry survey. Mar. Petrol. Geol., 18, 471–477.
    [Google Scholar]
  64. Mascle, J., Sardou, O., Loncke, L., Migeon, S., Caméra, L. & Gaullier, V. (2006) Morphostructure of the Egyptian continental margin: Insights from swath bathymetry surveys. Mar. Geophys. Res., 27, 49–59.
    [Google Scholar]
  65. McCarthy, J. & Scholl, D.W. (1985) Mechanisms of subduction accretion along the central Aleutian Trench. Geol. Soc. Am. Bull., 96, 691–701.
    [Google Scholar]
  66. Mccay, G.A. & Robertson, A.H.F. (2013) Upper Miocene‐Pleistocene deformation of the Girne (Kyrenia) Range and Dar Dere (Ovgos) lineaments, northern Cyprus: role in collision and tectonic escape in the easternmost Mediterranean region. In: Geological Development of Anatolia and the Easternmost Mediterranean Region (Ed. by RobertsonA.H.F. , ParlakO. & ÜnlügençU.C. ), Geol. Soc., Lon. Spec. Publ., 372, 421–445.
    [Google Scholar]
  67. McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D. & Tealeb, A. (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys. J. Int., 155, 126–138.
    [Google Scholar]
  68. Menyoli, E., Gajewski, D. & Hübscher, C. (2004) Imaging of complex basin structures with the common reflection surface (CRS) stack method. Geophys. J. Int., 157, 1206–1216.
    [Google Scholar]
  69. Minelli, L., Billi, A., Faccenna, C., Gervasi, A., Guerra, I., Orecchio, B. & Speranza, G. (2013) Discovery of a gliding salt‐detached megaslide, Calabria, Ionian Sea. Italy. Geophys. Res. Lett., 40, 4220–4224.
    [Google Scholar]
  70. Moeremans, R., Singh, S.C., Mukti, M., McArdle, J. & Johansen, K. (2014) Seismic images of structural variations along the deformation front of the Andaman‐Sumatra subduction zone: Implications for rupture propagation and tsunamigenesis. Earth Planet. Sci. Lett., 386, 75–85.
    [Google Scholar]
  71. Montadert, L., Nicolaides, S., Semb, P.H. & Lie, Ø. (2014) Petroleum Systems Offshore Cyprus. In: Petroleum Systems of the Tethyan Region (Ed. by MarlowL. , KendallC.C.G. & YoseL.A. ), AAPG Memoir106, 301–334.
    [Google Scholar]
  72. Netzeband, G.L., Gohl, K., Hübscher, C.P., Ben‐Avraham, Z., Dehghani, G.A., Gajewski, D. & Liersch, P. (2006a) The Levantine Basin – crustal structure and origin. Tectonophysics, 418, 167–188.
    [Google Scholar]
  73. Netzeband, G.L., Hübscher, C.P. & Gajewski, D. (2006b) The structural evolution of the Messinian evaporites in the Levantine Basin. Mar. Geol., 230, 249–273.
    [Google Scholar]
  74. Orszag‐Sperber, F. (2006) Changing perspectives in the concept of “Lago‐Mare” in Mediterranean Late Miocene evolution. Sed. Geol., 188–189, 259–277.
    [Google Scholar]
  75. Orszag‐Sperber, F., Caruso, A., Blanc‐Valleron, M.‐M., Merle, D. & Rouchy, J.M. (2009) The onset of the Messinian salinity crisis: Insights from Cyprus sections. Sed. Geol., 217, 52–64.
    [Google Scholar]
  76. Peace, D.G., Stieglitz, T. & Spoors, R. (2012) Imaging new opportunities and play concepts in the Adriatic Sea and Levantine Basin. Petrol. Geosci., 18, 405–416.
    [Google Scholar]
  77. Reiche, S., Hübscher, C. & Beitz, M. (2014) Fault‐controlled evaporite deformation in the Levant Basin, Eastern Mediterranean. Mar. Geol., 354, 53–68.
    [Google Scholar]
  78. Robertson, A.H.F. & Shipboard Scientific Party (1996) Role of the Eratosthenes Seamount in collisional processes in the Eastern Mediterranean. In: Proc, ODP, Initial Reports, Vol. 160 (Ed. by K.‐C.Emeis , A.H.F.Robertson , C.Richter , et al.), pp. 513–520. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  79. Robertson, A.H.F. (1998a) Formation and destruction of the Eratosthenes Seamount, Eastern Mediterranean Sea, and implications for collisional processes. In: Proc. ODP, Sci. Results, Vol. 160 (Ed. by A.H.F.Robertson , K.‐C.Emeis , C.Richter , A.Camerlenghi ), pp. 681–699. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  80. Robertson, A.H.F. (1998b) Late Miocene paleoenvironments and tectonic setting of the southern margin of Cyprus and the Eratosthenes Seamount. In: Proc. ODP, Sci. Results, Vol. 160 (Ed. by A.H.F.Robertson , K.‐C.Emeis , C.Richter , A.Camerlenghi ), pp. 453–463. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  81. Robertson, A.H.F. (1998c) Mesozoic‐Tertiary tectonic evolution of the easternmost Mediterranean area: Integration of marine and land evidence. In: Proc. ODP, Sci. Results, Vol. 160 (Ed. by A.H.F.Robertson , K.‐C.Emeis , C.Richter , A.Camerlenghi ), pp. 723–782. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  82. Robertson, A.H.F. (1998d) Tectonic significance of the Eratosthenes Seamount: a continental fragment in the process of collision with a subduction zone in the eastern Mediterranean (Ocean Drilling Program Leg 160). Tectonophysics, 298, 63–82.
    [Google Scholar]
  83. Robertson, A.H.F., Eaton, S., Follows, E.J. & Mccallum, J.E. (1991) The role of local tectonics versus glob al sea‐level change in the Neogene evolution of the Cyprus active margin. In: Sedimentation, Tectonics and Eustasy: Sea‐Level Changes at Active Margins (Ed. by MacdonaldD.I.M. ), Int. Assoc. Sedimentol. Spec. Publ., 12, 331–372.
    [Google Scholar]
  84. Robertson, A.H.F., Eaton, S., Follows, E.J. & Payne, A.S. (1995a) Depositional processes and basin analysis of Messinian evaporites in Cyprus. Terr. Nov., 7, 233–253.
    [Google Scholar]
  85. Robertson, A.H.F., Kidd, R.B., Ivanov, M.K., Limonov, A.F., Woodside, J.M., Galindo‐Zaldivar, J., Nieto, L. & Scientific Party of the 1993 TTR‐3 Cruise (1995b) Eratosthenes Seamount: collisional processes in the easternmost Mediterranean in relation to the Plio‐Quaternary uplift of southern Cyprus. Terr. Nov., 7, 254–264.
    [Google Scholar]
  86. Rouchy, J.M., Orszag‐Sperber, F., Blanc‐Valleron, M.‐M., Pierre, C., Rivière, M., Combourieu‐Nebout, N. & Panayides, I. (2001) Paleoenvironmental changes at the Messinian‐Pliocene boundary in the eastern Mediterranean (southern Cyprus basins): significance of the Messinian Lago‐Mare. Sed. Geol., 145, 93–117.
    [Google Scholar]
  87. Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., Sierro, F.J., Bertini, A., Camerlenghi, A., De Lange, G., Govers, R., Hilgen, F.J., Hübscher, C., Meijer, P.T.H. & Stoica, M. (2014) The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Mar. Geol., 352, 25–58.
    [Google Scholar]
  88. Rowan, M.G., Peel, F.J., Vendeville, B.C. & Gaullier, V. (2012) Salt tectonics at passive margins: Geology versus models – Discussion. Mar. Petrol. Geol., 37, 184–194.
    [Google Scholar]
  89. Ryan, W.B.F., Carbotte, S.M., Coplan, J.O., O'hara, S., Melkonian, A., Arko, R., Weissel, R.A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J. & Zemsky, R. (2009) Global Multi‐Resolution Topography synthesis. Geochem. Geophys. Geosyst., 10, Q03014.
    [Google Scholar]
  90. Schattner, U. (2010) What triggered the early‐to‐mid Pleistocene tectonic transition across the entire eastern Mediterranean? Earth Planet . Sci. Lett., 289, 539–548.
    [Google Scholar]
  91. Schattner, U. & Lazar, M. (2014) Flip convergence across the Phoenician basin through nucleation of subduction. Gondwana Res., 25, 729–735.
    [Google Scholar]
  92. Shipboard Scientific Party
    Shipboard Scientific Party (1996a) Site 967. In: Proc, ODP, Initial Reports, Vol. 160 (Ed. by K.‐C.Emeis , A.H.F.Robertson , C.Richter , et al.), pp. 251–287. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  93. Shipboard Scientific Party
    Shipboard Scientific Party (1996b) Site 968. In: Proc, ODP, Initial Reports, Vol. 160 (Ed. by K.‐C.Emeis , A.H.F.Robertson , C.Richter , et al.), pp. 289–333. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  94. Sick, C., Yoon, M.‐K., Rauch, K., Buske, S., Lüth, S., Araneda, M., Bataille, K., Chong, G., Giese, P., Krawczyk, C., Mechie, J., Meyer, H., Oncken, O., Reichert, C., Schmitz, M., Shapiro, S., Stiller, M. & Wigger, P. (2006) Seismic Images of Accretive and Erosive Subduction Zones from the Chilean Margin. In: The Andes (Ed. by O.Oncken , G.Chong , G.Franz , P.Giese , H.‐J.Götze , V.A.Ramos , M.R.Strecker , P.Wigger ), pp. 147–169. Springer, Berlin, Heidelberg.
    [Google Scholar]
  95. Steinberg, J., Gvirtzman, Z., Folkman, Y. & Garfunkel, Z. (2011) Origin and nature of the rapid late Tertiary filling of the Levant Basin. Geology, 39, 355–358.
    [Google Scholar]
  96. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center
    U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center (2006) 2‐minute Gridded Global Relief Data (ETOPO2v2). http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html
  97. Vidal, N., Alvarez‐Marrón, J. & Klaeschen, D. (2000a) Internal configuration of the Levantine Basin from seismic reflection data (eastern Mediterranean). Earth Planet. Sci. Lett., 180, 77–89.
    [Google Scholar]
  98. Vidal, N., Klaeschen, D., Kopf, A., Docherty, C., Von Huene, R. & Krasheninnikov, V.A. (2000b) Seismic images at the convergence zone from south of Cyprus to the Syrian coast, eastern Mediterranean. Tectonophysics, 329, 157–170.
    [Google Scholar]
  99. Wdowinski, S., Ben‐Avraham, Z., Arvidsson, R. & Ekström, G. (2006) Seismotectonics of the Cyprian Arc. Geophys. J. Int., 164, 176–181.
    [Google Scholar]
  100. Welford, J.K., Hall, J., Hübscher, C., Reiche, S. & Louden, K. (2015) Crustal seismic velocity structure from Eratosthenes Seamount to Hecataeus Rise across the Cyprus Arc, eastern Mediterranean. Geophys. J. Int., 200, 933–951.
    [Google Scholar]
  101. Whiting, B.M. (1998) Subsidence record of early‐stage continental collision, Eratosthenes platform (Sites 966 and 967). In: Proc. ODP, Sci. Results, Vol. 160 (Ed. by A.H.F.Robertson , K.‐C.Emeis , C.Richter , A.Camerlenghi ), pp. 509–515. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  102. Yoon, M.‐K., Baykulov, M., Dümmong, S., Brink, H.‐J. & Gajewski, D. (2008) New insights into the crustal structure of the North German Basin from reprocessing of seismic reflection data using the Common Reflection Surface stack. Int. J. Earth Sci., 97, 887–898.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12122
Loading
/content/journals/10.1111/bre.12122
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error