1887
Volume 28, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

This paper examines interactions among syn‐rift continental margin extension, evaporites, particularly rocksalt (halite), deposited in the overlying sedimentary basins, and clastic sediment loading. We present dynamically evolving 2D numerical models that combine syn‐rift lithospheric extension, with salt (viscous halite, 1018–1019 Pa s) and clastic (frictional‐plastic) sediment deposition to investigate how salt is distributed and subsequently mobilized during syn‐rift extension. Example results are shown, contrasting salt deposition in the early, mid and late syn‐rift phases of a single lithospheric extension model. The lithospheric model is chosen to give depth‐dependent extension and intermediate width margins with proximal grabens and a hyperextended distal region. The models exhibit diachronous migration of extension towards the rift axis and this is reflected in the faulting of overlying sediments. The models illustrate the roles of timing of salt deposition, relative to rifting and subsequent sedimentation, in defining the location and deformation of syn‐rift salt, with post‐salt sediment progradation in some models. Late deposition of salt leads to increased lateral extent of the original salt body and decreased variation in salt thickness. Seaward flow of salt increases with later deposition; early syn‐rift salt is deposited and trapped in the grabens, whereas mid and late syn‐rift salt tends to flow towards the distal margin or even over the oceanic crust. Prograding clastic post‐salt sediments drive more substantial seaward movement of mid and late syn‐rift salt. A numerical model of the Red Sea with evaporite deposition during the mid to late syn‐rift period, preceded and followed by aggrading and prograding clastic sediment, shows reasonable agreement with observations from the central Red Sea.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12123
2015-05-29
2020-05-29
Loading full text...

Full text loading...

References

  1. Adam, J., Ge, Z. & Sanchez, M. (2012a) Salt‐structural styles and kinematic evolution of the Jequitinhonha deepwater fold belt, central Brazil passive margin. Mar. Pet. Geol., 37, 101–120.
    [Google Scholar]
  2. Adam, J., Ge, Z. & Sanchez, M. (2012b) Post‐rift salt tectonic evolution and key control factors of the Jequitinhonha deepwater fold belt, central Brazil passive margin: Insights from scaled physical experiments. Mar. Pet. Geol., 37, 70–100.
    [Google Scholar]
  3. Albertz, M. & Beaumont, C. (2010) An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 2. Comparison of observations with geometrically complex numerical models. Tectonics, 29, TC4018.
    [Google Scholar]
  4. Albertz, M., Beaumont, C., Shimeld, J.W., Ings, S.J. & Gradmann, S. (2010) An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 1: Comparison of observations with geometrically simple numerical models. Tectonics, 29, TC4017.
    [Google Scholar]
  5. Augustin, N., Devey, C.W., dervan Zwan, F.M., Feldens, P., Tominaga, M., Bantan, R.A. & Kwasnitschka, T. (2014) The rifting to spreading transition in the Red Sea. Earth Planet. Sci. Lett., 395, 217–230.
    [Google Scholar]
  6. van Avendonk, H.J.A., Lavier, L.L., Shillington, D.J. & Manatschal, G. (2009) Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland. Tectonophysics, 468, 131–148.
    [Google Scholar]
  7. Baikpour, S., Zulauf, G., Sebti, A., Kheirolah, H. & Dieti, C. (2010) Analogue and geophysical modelling of the Garmsar Salt Nappe, Iran: constraints on the evolution of the Alborz Mountains. Geophys. J. Int., 182(2), 599–612.
    [Google Scholar]
  8. Beaumont, C., Nguyen, M.H., Jamieson, R.A. & Ellis, S. (2006) Channel flow, ductile extrusion and exhumation on continental collision zones. Geol. Soc. Spec. Pub.268, 91–145.
    [Google Scholar]
  9. Beaumont, C., Jamieson, R.A., Butler, J.P. & Warren, C.J. (2009) Crustal structure: a key constraint on the mechanism of ultra‐high‐pressure rock exhumation. Earth Planet. Sci. Lett., 287(1–2), 116–129.
    [Google Scholar]
  10. Bialas, R.W. & Buck, W.R. (2009) How sediment promotes narrow rifting: application to the Gulf of California. Tectonics, 28, TC4014.
    [Google Scholar]
  11. Bonatti, E. (1985) Punctiform initiation of seafloor spreading in the Red‐Sea during transition from a continental to an oceanic rift. Nature, 316(6023), 33–37.
    [Google Scholar]
  12. Bonini, M. (2003) Detachment folding, fold amplification, and diapirism in thrust wedge experiments. Tectonics, 22(6), 1065–1076.
    [Google Scholar]
  13. Bosworth, W., Huchon, P. & McClay, K. (2005) The Red Sea and Gulf of Aden basins. J. Afr. Earth Sc., 43(1–3), 334–378.
    [Google Scholar]
  14. Braun, J. & Beaumont, C. (1989) Dynamical models of the role of crustal shear zones in asymmetric continental extension. Earth Planet. Sci. Lett., 93(3–4), 405–423.
    [Google Scholar]
  15. Brun, J.P. (1998) Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments. Philos. Trans. R. Soc. Lond., 357, 695–712.
    [Google Scholar]
  16. Brun, J.P. & Fort, X. (2011) Salt tectonics at passive margins: geology versus models. Mar. Pet. Geol., 28(6), 1123–1145.
    [Google Scholar]
  17. Brun, J.P. & Mauduit, T.P.O. (2009) Salt rollers: structure and kinematics from analogue modeling. Mar. Pet. Geol., 26(2), 249–258.
    [Google Scholar]
  18. Buck, W.R. (1991) Modes of continental lithospheric extension. J. Geophys. Res., 96(B12), 20161–20178.
    [Google Scholar]
  19. Buck, W.R. (1993) Effect of lithospheric thickness on the formation of high‐ and low‐angle normal faults. Geology, 21, 933–936.
    [Google Scholar]
  20. Buck, W.R., Lavier, L.L. & Poliakov, A.N.B. (1999) How to make a rift wide. Philos. Trans. R. Soc. Lond., 357, 671–693.
    [Google Scholar]
  21. Burchardt, S., Koyi, H. & Schmeling, H. (2011) Strain pattern within and around denser blocks sinking within Newtonian salt structures. J. Struct. Geol., 33(2), 145–153.
    [Google Scholar]
  22. Butler, J.P., Beaumont, C. & Jamieson, R.A. (2014) The Alps 2: Controls on crustal subduction and (ultra) high‐pressure rock exhumation in Alpine‐type orogens. J. Geophys. Res., 119, 5987–6022.
    [Google Scholar]
  23. Carter, N.L., Handin, J., Russell, J.E. & Horseman, S.T. (1993) Rheology of rock salt. J. Struct. Geol., 15, 1257–1271.
    [Google Scholar]
  24. Chemia, Z., Koyi, H. & Schmeling, H. (2008) Numerical modeling of rise and fall of a dense layer in salt diapirs. Geophys. J. Int., 172(2), 798–816.
    [Google Scholar]
  25. Chenin, P. & Beaumont, C. (2013) Influence of offset weak zones in the development of rift basins: activation and abandonment during continental extension and breakup. J. Geophys. Res., 118(4), 1698–1720.
    [Google Scholar]
  26. Choi, E., Buck, W.R., Lavier, L.L. & Petersen, K.D. (2013) Using core complex geometry to constrain fault strength. Geophys. Res. Lett., 40(15), 3863–3867.
    [Google Scholar]
  27. Chu, D.Z. & Gordon, R.G. (1998) Current plate motions across the Red Sea. Geophys. J. Int., 135(2), 313–328.
    [Google Scholar]
  28. Cochran, J.R. (1983) A model for the development of the Red Sea. Am. Assoc. Pet. Geol. Bull., 67, 41–69.
    [Google Scholar]
  29. Cochran, J.R. & Martinez, F. (1988) Evidence from the northern Red‐Sea on the transition from continental to oceanic rifting. Tectonophysics, 153(1–4), 25–53.
    [Google Scholar]
  30. Corti, G., Ranalli, G., Muluget, G., Agostini, A., Sani, F. & Zugu, A. (2010) Control of the rheological structure of the lithosphere on the inward migration of tectonics activity during continental rifting. Tectonophysics, 490, 165–172.
    [Google Scholar]
  31. Corti, G., Ranalli, G., Agostini, A. & Sokouti, D. (2013) Inward migration of faulting during continental rifting: effects of pre‐existing lithospheric structure and extension rate. Tectonophysics, 594, 137–148.
    [Google Scholar]
  32. Costa, E. & Vendeville, B.C. (2002) Experimental insights on the geometry and kinematics of fold‐and‐thrust belts above weak, viscous evaporitic decollement. J. Struct. Geol., 24(11), 1729–1739.
    [Google Scholar]
  33. Ebinger, C., Ayele, A., Keir, D., Rowland, J., Yirgu, G., Wright, T., Belachew, M. & Hamlings, I. (2010) Length and timescales of rift faulting and magma intrusion: the Afar rifting cycle from 2005 to present. Ann. Rev. Earth Planet. Sci., 38, 439–466.
    [Google Scholar]
  34. Fort, X. & Brun, J.P. (2012) Kinematics of regional salt flow in the northern Gulf of Mexico. Geol. Soc. London. Spec. Publ., 363, 265–287.
    [Google Scholar]
  35. Fullsack, P. (1995) An arbitrary Lagrangian‐Eulerian formulation for creeping flows and its application in tectonic models. Geophys. J. Int., 120(1), 1–23.
    [Google Scholar]
  36. Ge, H.X., Jackson, M.P.A. & Vendeville, B.C. (1997) Kinematics and dynamics of salt tectonics driven by progradation. Am. Assoc. Pet. Geol. Bull., 81(3), 398–423.
    [Google Scholar]
  37. Gleason, G.C. & Tullis, J. (1995) A flow law for dislocation creep of quartz aggregates determined with the molten‐salt cell. Tectonophysics, 247(1–4), 1–23.
    [Google Scholar]
  38. Goteti, R., Ings, S.J. & Beaumont, C. (2012) Development of salt minibasins initiated by sedimentary topographic relief. Earth Planet. Sci. Lett., 339, 103–116.
    [Google Scholar]
  39. Goteti, R., Beaumont, C. & Ings, S.J. (2013) Factors controlling early stage salt tectonics at rifted continental margins and their thermal consequences. J. Geophys. Res. – Solid Earth, 118(6), 3190–3220.
    [Google Scholar]
  40. Gueydan, F., Morency, C. & Brun, J.P. (2008) Continental rifting as a function of lithosphere mantle strength. Tectonophysics, 460, 83–93.
    [Google Scholar]
  41. Haq, B.U., Hardenbol, J. & Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167.
    [Google Scholar]
  42. Hopper, J.R. & Buck, W.R. (1996) The effect of lower crustal flow on continental extension and passive margin formation. J. Geophys. Res., 101(B9), 175–194.
    [Google Scholar]
  43. Hopper, J.R. & Buck, W.R. (1998) Styles of extensional decoupling. Geology, 26(8), 699–702.
    [Google Scholar]
  44. Hudec, M.R. & Jackson, M.P.A. (2007) Terra Infirma: understanding salt tectonics. Earth‐Sci. Rev., 82(1–2), 1–28.
    [Google Scholar]
  45. Hudec, M.R., Jackson, M.P.A. & Schultz‐Ela, D.D. (2009) The paradox of minibasin subsidence into salt: clues to the evolution of crustal basins. Geol. Soc. Am. Bull., 121(1–2), 201–221.
    [Google Scholar]
  46. Hughes, G.W. & Filatoff, J. (1995) New biostratigraphic constraints on Saudi Arabian Red Sea pre‐ and syn‐ rift sequences. In: Middle East Petroleum Geosciences, Geo ‘94, vol. 2 (Ed. by M.I.Al‐Husseini ), pp. 517–528. Gulf PetroLink, Bahrain.
    [Google Scholar]
  47. Huismans, R. & Beaumont, C. (2005) Effect of plastic‐viscous layering and strain softening on mode selection during lithospheric extension. J. Geophys. Res. – Solid Earth, 110(B2), B02406.
    [Google Scholar]
  48. Huismans, R. & Beaumont, C. (2008) Complex rifted continental margins explained by dynamical models of depth‐dependent lithospheric extension. Geology, 36(2), 163–166.
    [Google Scholar]
  49. Huismans, R. & Beaumont, C. (2011) Depth‐dependent extension, two‐stage breakup and cratonic underplating at rifted margins. Nature, 473(7345), 74–U85.
    [Google Scholar]
  50. Huismans, R. & Beaumont, C. (2014) Rifted continental margins: the case for depth‐dependent extension. Earth Planet. Sci. Lett., 407, 148–162.
    [Google Scholar]
  51. Izzeldin, A.Y. (1987) Seismic, gravity and magnetic surveys in the central part of the Red Sea: their interpretation and implications for the structure and evolution of the Red Sea. Tectonophysics, 143, 269–306.
    [Google Scholar]
  52. Jammes, S., Manatschal, G. & Lavier, L. (2010) Interaction between prerift salt and detachment faulting in hyperextended rift systems: the example of the Parentis and Mauleon basins (Bay of Biscay and western Pyrenees). Am. Assoc. Pet. Geol. Bull., 94(7), 957–975.
    [Google Scholar]
  53. Karato, S. & Wu, P. (1993) Rheology of the upper mantle – a synthesis. Science, 260(5109), 771–778.
    [Google Scholar]
  54. Karner, G.D. & Driscoll, N.W. (1999) Tectonic and stratigraphic development of the West African and eastern Brazilian Margins: insights from quatitative basin modeling. In: The Oil & Gas Habitats of the South Atlantic (Ed. by CameronN.R. , BateR.H. & ClureV.S. ) Geological Society, London, Speci. Publ., 153, 11–40.
    [Google Scholar]
  55. Karner, G.C. & Gamboa, L.A.P. (2007) Timing and origin of the South Atlantic pre‐salt sag basins and their capping evaporites. Geol. Soc. London. Spec. Publ., 285, 15–35.
    [Google Scholar]
  56. Keken, P.E., Spiers, C.T., van den Berg, A.P. & Muyzert, E.J. (1993) The effective viscosity of rocksalt: implementation of steady‐state creep laws in numerical models of salt diapirism. Tectonophysics, 225, 457–476.
    [Google Scholar]
  57. Lavier, L.L. & Buck, W.R. (2002) Half graben versus large‐offset low‐angle normal fault: importance of keeping cool during normal faulting. J. Geophys. Res., 107(B6), 2122.
    [Google Scholar]
  58. Lavier, L.L. & Manatschal, G. (2006) A mechanism to thin the continental lithosphere at magma‐poor margins. Nature, 440, 324–328.
    [Google Scholar]
  59. Lavier, L.L., Buck, W.R. & Poliakov, A.N.B. (1999) Self‐consistent rolling‐ hinge model for the evolution of large‐offset low‐angle normal faults. Geology, 27, 1127–1130.
    [Google Scholar]
  60. Ligi, M., Bonatti, E., Bortoluzzi, G., Cipriani, A., Cocchi, L., Tontini, F.C., Carminati, E., Ottolini, L. & Schettino, A. (2012) Birth of an ocean in the Red Sea: initial pangs. Geochem. Geophys. Geosyst., 13, Q08009.
    [Google Scholar]
  61. Lister, G.S., Etheridge, M.A. & Symonds, P.A. (1986) Detachment faulting and the evolution of passive continental margins. Geology, 14(3), 246–250.
    [Google Scholar]
  62. Listeri, G.S., Etheridge, M.A. & Symonds, P.A. (1991) Detachment models for the formation of passive continental margins. Tectonics, 10(5), 1038–1064.
    [Google Scholar]
  63. Longoni, M., Malossi, A.C.I. & Villa, A. (2010) A robust and efficient conservative technique for simulating three‐dimensional sedimentary basin dynamics. Comput. Fluids, 39(10), 1964–1976.
    [Google Scholar]
  64. Mackwell, S., Zimmerman, M. & Kohlstedt, D. (1998) High‐temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res.‐Solid Earth, 103, 975–984.
    [Google Scholar]
  65. McKenzie, D. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  66. Mitchell, N.C., Ligi, M., Ferrante, V., Bonatti, E. & Rutter, E. (2010) Submarine salt flows in the central Red Sea. Geol. Soc. Am. Bull., 122(5–6), 701–713.
    [Google Scholar]
  67. Mohriak, W.U. & Leroy, S. (2012) Architecture of rifted continental margins and break‐up evolution: insights from the South Atlantic, North Atlantic and Red Sea‐Gulf of Aden conjugate margins. Geol. Soc. Lond. Speci. Publ., 369, 497–535.
    [Google Scholar]
  68. Nagel, T.J. & Buck, W.R. (2004) Symmetric alternative to asymmetric rifting models. Geology, 32(11), 937–940.
    [Google Scholar]
  69. Nagel, T.J. & Buck, W.R. (2007) Control of rheological stratification on rifting geometry: a symmetric model resolving the upper plate paradox. Int. J. Earth Sci., 96, 1047–1057.
    [Google Scholar]
  70. Orszag‐Sperber, F., Hardwood, G., Kendall, A. & Purser, B.H. (1998) A Review of the evaporites of the Red Sea – Gulf of Suez rift. In: Sedimentation and Tectonics of Rift Basins: Red Sea – Gulf of Aden (Ed. by B.H.Purser & D.W.J.Bosence ), pp. 409–426. Chapman & Hall, London.
    [Google Scholar]
  71. Peron‐Pinvidic, G. & Manatschal, G. (2009) The final rifting evolution at deep magma‐ poor passive margins from IberiaeNewfoundland: a new point of view. Int. J. Earth Sci., 98, 1581–1597.
    [Google Scholar]
  72. Peron‐Pinvidic, G., Manatschal, G. & Osmundsen, P.T. (2013) Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar. Pet. Geol., 43, 21–47.
    [Google Scholar]
  73. Richardson, M. & Arthur, M.A. (1988) The Gulf of Suez‐Northern Red‐Sea neogene rift – a quantitative basin analysis. Mar. Pet. Geol., 5(3), 247–270.
    [Google Scholar]
  74. Rowan, M.G. (2014) Passive‐margin salt basins: hyperextension, evaporite deposition, and salt tectonics. Basin Res., 26, 154–182.
    [Google Scholar]
  75. Schubert, G., Turcotte, D. & Olson, P. (2001) Mantle Convection in the Earth and Planets. Cambridge University Press, Los Angeles.
    [Google Scholar]
  76. Scott, R.W. & Govean, F.M. (1985) Early depositional history of a rift basin – Miocene in Western Sinai. Palaeogeo. Palaeolimatol. Palaeoecol., 52(1–2), 143–158.
    [Google Scholar]
  77. Searle, R.C. & Ross, D.A. (1975) Geophysical study of Red‐Sea axial trough between 20.5degrees and 22degrees N. Geophys. J. Roy. Astron. Soc., 43(2), 555–572.
    [Google Scholar]
  78. Sokoutis, D., Cortio, G., Bonini, M., Brun, J.P., Cloetingh, S., Maudiot, T. & Manetti, P. (2007) Modelling the extension of heterogeneous hot lithosphere. Tectonophyics, 444, 63–79.
    [Google Scholar]
  79. Tirel, C., Brun, J.P. & Sokoutis, D. (2006) Extension of thickened and hot lithospheres: Inferences from laboratory modeling. Tectonics, 25, TC1005.
    [Google Scholar]
  80. del Ventisette, C., Montanari, D., Sani, F. & Bonini, M. (2004) Basin inversion and fault reactivation in laboratory experiments. J. Struct. Geol., 28(11), 2067–2083.
    [Google Scholar]
  81. del Ventisette, C., Montanari, D., Bonini, M. & Sani, F. (2005) Positive fault inversion triggering ‘intrusive diapirism’: an analogue modeling perspective. Terra Nova, 17, 478–485.
    [Google Scholar]
  82. Warren, J.K. (2006) Evaporites: Sediments, Resources and Hydrocarbons. Springer, Berlin.
    [Google Scholar]
  83. Warren, J.K. (2010) Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Sci. Rev., 98, 217–268.
    [Google Scholar]
  84. Wernicke, B. (1985) Low‐angle normal faults in the basin and range province – nappe tectonics in an extending orogen. Nature, 291(5817), 645–648.
    [Google Scholar]
  85. Wernicke, B. (1981) Uniform‐sense normal simple shear of the continental lithosphere. Can. J. Earth Sci., 22(1), 108–125.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12123
Loading
/content/journals/10.1111/bre.12123
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error