1887
Volume 28, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

The late Messinian mixed carbonate‐siliciclastic platforms of the Sorbas Basin, known as the Terminal Carbonate Complex, record significant changes in carbonate production and geometry. Their facies and stratigraphic architecture result from complex interactions between base‐level fluctuations, evaporite deformation/dissolution and detrital inputs. A 3D quantitative approach (with DIONISOS software) is used to explore the basin‐scale platform architecture and to quantify the carbonate production of the Terminal Carbonate Complex. The modelling strategy consists in integrating detailed 2D field‐based transects and modern carbonate system parameters (e.g. carbonate production rates, bathymetric and hydrodynamic ranges of production). This approach limits user impact and so provides more objective output results. Tests are carried out on carbonate production rates, subsidence and evaporite deformation/dissolution. Numerical modelling provides accurate predictions of geometries, facies distributions and depositional sequence thicknesses, validated by field data. Comparative statistical testing of the field transects and of the various model outputs are used to discern the relative contribution of the parameters tested to the evolution of basin filling. The 3D visualization and quantification of the main carbonate producers (ooids and microbialites) are discussed in terms of changes in base‐level and detrital supply. This study demonstrates that base‐level fluctuations have the greatest impact on the carbonate budget. Evaporite deformation/dissolution affects the type and amount of carbonate production, inducing a transition from an ooid‐ to microbialite‐dominated system and also has a major effect on stratigraphic architecture by inducing the migration of depocentres. The numerical modelling results obtained using modern carbonate system parameters could also be applied to subsurface ooid‐microbialite reservoirs, and the Terminal Carbonate Complex is a good analogue for such systems.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12125
2015-03-27
2020-07-05
Loading full text...

Full text loading...

References

  1. Aigner, T., Braun, S., Palermo, D. & Blendinger, W. (2007) 3D Geological modelling of a carbonate shoal complex: reservoir analogue study using outcrop data. First Break, 25, 65–72.
    [Google Scholar]
  2. Alsharhan, A.S. (1993) Facies and sedimentary environment of the Permian carbonates (Khuff Formation) in the United Arab Emirates. Sed. Geol., 84, 89–99.
    [Google Scholar]
  3. Alzaga‐Ruiz, H., Granjeon, D., Lopez, M., Seranne, M. & Roure, F. (2009) Gravitational collapse and Neogene sediment transfer across the western margin of the Gulf of Mexico: insights from numerical models. Tectonophysics, 470, 21–41.
    [Google Scholar]
  4. Augier, R., Jolivet, L. & Robin, C. (2005) Late orogenic doming in the eastern Betic Cordilleras: final exhumation of the Nevado‐Filabride complex and its relation to basin genesis. Tectonics, 24, TC4003.
    [Google Scholar]
  5. Aurell, M., McNeill, D.F., Guyomard, T. & Kindler, P. (1995) Pleistocene shallowing‐upward sequences in New Providence, Bahamas: signature of high‐frequency sea‐level fluctuations in shallow carbonate platforms. J. Sediment. Res., 65, 170–182.
    [Google Scholar]
  6. Barrett, S.J. & Webster, J.M. (2012) Holocene evolution of the Great Barrier Reef: insights from 3D numerical modeling. Sed. Geol., 265‐266, 56–71.
    [Google Scholar]
  7. Bassant, P. & Harris, P.M. (2008) Analyzing sequence architecture and reservoir quality of isolated carbonate platforms with forward stratigraphic modeling. In: Controls on Carbonate Platform and Reef Development (Ed. by LukasikJ. & Toni SimoJ.A. ) SEPM Spec. Publ., 89, 343–359. SEPM, Tulsa, OK.
    [Google Scholar]
  8. Bassetti, M.A., Miculan, P. & Sierro, F.J. (2006) Evolution of depositional environments after the end of Messinian Salinity Crisis in Níjar Basin (Se Betic Cordillera). Sed. Geol., 188, 279–295.
    [Google Scholar]
  9. Bathurst, R.G.C. (1975) Carbonate Sediments and Their Diagenesis. Developments in Sedimentology 12. Elsevier, Amsterdam.
    [Google Scholar]
  10. Benson, R.H., Rakic‐El Bied, K. & Bonaduce, G. (1991) An important current reversal (influx) in the Rifian corridor (Morocco) at the Tortonian‐Messinian boundary: the end of Tethys Ocean. Paleoceanography, 6, 164–192.
    [Google Scholar]
  11. Blair, T.C. & McPherson, J.G. (1994) Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res., 64, 450–489.
    [Google Scholar]
  12. Blom, W.M. & Alsop, D.B. (1988) Carbonate mud sedimentation on a temperate shelf: Bass Basin, Southeastern Australia. Sed. Geol., 60, 269–280.
    [Google Scholar]
  13. Bosence, D.W.J. & Waltham, D.A. (1990) Computer modelling of the internal architecture of carbonate platforms. Geology, 18, 26–30.
    [Google Scholar]
  14. Bosscher, H. & Schlager, W. (1992) Computer‐simulation of reef growth. Sedimentology, 39, 503–512.
    [Google Scholar]
  15. Boulvain, F. (2001) Facies architecture and diagenesis of Belgian Late Frasnian carbonate mounds. Sed. Geol., 145, 269–294.
    [Google Scholar]
  16. Bourillot, R. (2009) Évolution des plates‐formes carbonatées pendant la Crise De Salinité Messinienne: de la déformation des évaporites aux communautés microbialithiques (Sud‐est de l'Espagne). PhD Thesis, Université de Bourgogne, Dijon.
  17. Bourillot, R., Vennin, E., Rouchy, J.‐M., Durlet, C., Rommevaux, V., Kolodka, C. & Knap, F. (2010a) Structure and evolution of a Messinian mixed carbonate‐siliciclastic platform: the role of evaporites (Sorbas Basin, South‐east Spain). Sedimentology, 57, 477–512.
    [Google Scholar]
  18. Bourillot, R., Vennin, E., Rouchy, J.‐M., Blanc‐Valleron, M.M., Caruso, A. & Durlet, C. (2010b) The end of the Messinian Salinity Crisis in the Western Mediterranean: insights from the carbonate platforms of South‐Eastern Spain. Sed. Geol., 229, 224–253.
    [Google Scholar]
  19. Braga, J.C., Martin, J.M. & Riding, R. (1995) Controls on microbial dome fabric development along a carbonate‐siliciclastic shelf‐basin transect, Miocene, SE Spain. Palaios, 10, 347–361.
    [Google Scholar]
  20. Broecker, W.S. & Takahashi, T. (1966) Calcium carbonate precipitation on Bahama Banks. J. Geophys. Res., 71, 1575–1602.
    [Google Scholar]
  21. Burchette, T.P., Wright, V.P. & Faulkner, T.J. (1990) Oolitic sand body depositional models and geometries, Mississippian of Southwest Britain: implications for petroleum exploration in carbonate ramp settings. Sed. Geol., 68, 87–115.
    [Google Scholar]
  22. Burgess, P.M. (2012) A brief review of developments in stratigraphic forward modelling 2000‐2009. In: Regional Geology and Tectonics: Principles of Geologic Analysis, 1st edn (Ed. by D.G.Roberts & A.W.Bally ), pp. 379–406. Elsevier Science, Amsterdam.
    [Google Scholar]
  23. Burgess, P.M. & Wright, V.P. (2003) Numerical forward modeling of carbonate platform dynamics: an evaluation of complexity and completeness in carbonate strata. J. Sediment. Res., 73, 637–652.
    [Google Scholar]
  24. Burgess, P.M., Steel, R.J. & Granjeon, D. (2008) Stratigraphic forward modeling of basin‐margin clinoform systems: implications for controls on topset and shelf width and timing of formation of shelf‐edge deltas. In: Recent Advances in Models of Siliciclastic Shallow‐Marine Stratigraphy (Ed. by HampsonG.J. , SteelR.J. , BurgessP.M. & DalrympleR.W. ), SEPM Spec. Publ., 90, 35–45. SEPM, Tulsa, OK.
    [Google Scholar]
  25. Charvin, K., Hampson, G.J., Gallagher, K.L., Storms, J.E.A. & Labourdette, R. (2011) Characterization of controls on high‐resolution stratigraphic architecture in wave‐dominated shoreface‐shelf parasequences using inverse numerical modeling. J. Sediment. Res., 81, 562–578.
    [Google Scholar]
  26. Chivas, A.R., Torgersen, T. & Polach, H.A. (1990) Growth‐rates and Holocene development of stromatolites from Shark Bay, Western‐Australia. Aust. J. Earth Sci., 37, 113–121.
    [Google Scholar]
  27. Csato, I., Granjeon, D., Catuneanu, O. & Baum, G.R. (2012) A three‐dimensional stratigraphic model for the Messinian Crisis in the Pannonian Basin, Eastern Hungary. Basin Res., 25, 121–148.
    [Google Scholar]
  28. Cuevas Castell, J.M., Betzler, C., Rössler, J., Hüssner, H. & Peinl, M. (2007) Integrating outcrop data and forward computer modelling to unravel the development of a Messinian carbonate platform in SE Spain (Sorbas Basin). Sedimentology, 54, 423–441.
    [Google Scholar]
  29. Cunningham, K.J., Benson, R.H., Rakic‐El Bied, K. & McKenna, L.W. (1997) Eustatic implications of Late Miocene depositional sequences in the Melilla Basin, Northeastern Morocco. Sed. Geol., 107, 147–165.
    [Google Scholar]
  30. Dabrio, C.J. & Polo, M.D. (1995) Oscilaciones eustaticas de alta frecuencia en el Neogeno Superior de Sorbas (Sorbas, Sureste de Espana). Geogaceta, 18, 75–78.
    [Google Scholar]
  31. Davies, J.A., James, R.O. & Leckie, J.O. (1978) Surface ionization and complexation at the oxide/water interface. J. Colloid Interface Sci., 63, 480–499.
    [Google Scholar]
  32. Dill, R.F., Shinn, E.A., Jones, A.T., Kelly, K. & Steinen, R.P. (1986) Giant subtidal stromatolites forming in normal salinity water. Nature, 324, 55–58.
    [Google Scholar]
  33. Dill, R.F., Kendall, C.G. & Shinn, E.A. (1989) Giant subtidal stromatolites and related sedimentary features, Lee Stocking Island, Exumas, Bahamas. 28th International Geological Congress Field Trip Guidebook. American Geophysical Union, Washington, DC.
    [Google Scholar]
  34. Dronkert, H. (1985) Evaporite Models and Sedimentology of Messinian and Recent Evaporites. GUA Papers of Geology, Series 1, 24. Amsterdam, Netherlands.
    [Google Scholar]
  35. Dupraz, C. & Visscher, P.T. (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol., 13, 429–438.
    [Google Scholar]
  36. Dupraz, C., Visscher, P.T., Baumgartner, L.K. & Reid, R.P. (2004) Microbe‐mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 51, 745–765.
    [Google Scholar]
  37. Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S. & Visscher, P.T. (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci. Rev., 96, 141–162.
    [Google Scholar]
  38. Ehrenberg, A.N., Nadeau, P.H. & Aqrawi, A.A.M. (2007) A comparison of Khuff and Arab reservoir potential throughout the Middle East. AAPG Bull., 91, 275–286.
    [Google Scholar]
  39. Enos, P. (1977) Holocene sediment accumulations of the South Florida shelf margin. In: Quaternary Sedimentation in South Florida (Ed. by P.Enos & R.D.Perkins ), Geological Society of America, Memoir, 147, pp. 1–130. Geological Society of America, Boulder, Colorado.
    [Google Scholar]
  40. Esteban, M. (1979) Significance of the Upper Miocene coral reefs of the Western Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 29, 169–188.
    [Google Scholar]
  41. Feldmann, M. & McKenzie, J.A. (1998) Stromatolite‐thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. Palaios, 13, 201–212.
    [Google Scholar]
  42. Flügel, E. (1982) Microfacies Analysis of Limestones. Springer‐Verlag, Berlin.
    [Google Scholar]
  43. Folk, R.L. (1973) Carbonate petrography in the post‐Sorbian age. In: Evolving Concepts in Sedimentology (Ed. By R.N.Ginsburg ), pp. 118–159. Johns Hopkins Press, Baltimore, MD.
    [Google Scholar]
  44. Fortuin, A.R. & Krijgsman, W. (2003) The Messinian of the Níjar Basin (SE Spain): sedimentation, depositional environments and paleogeographic evolution. Sed. Geol., 160, 213–242.
    [Google Scholar]
  45. Fortuin, A.R., Krijgsman, W., Hilgen, F.J. & Sierro, F.J. (2000) Late Miocene Mediterranean desiccation: topography and significance of the ‘Salinity Crisis’ erosion surface on‐land in Southeast Spain: comment. Sed. Geol., 133, 167–174.
    [Google Scholar]
  46. Franseen, E.K., Goldstein, R.H. & Farr, M.R. (1998) Quantitative controls on location and architecture of carbonate depositional sequences: upper Miocene, Cabo De Gata Region, SE Spain. J. Sediment. Res., 68, 283–298.
    [Google Scholar]
  47. Gautier, F., Clauzon, G., Suc, J.‐P., Cravette, J. & Violant, D. (1994) Age et durée de la Crise de Salinité Messinienne. Compte Rendu de l'Académie des Sciences de Paris, Série 2, 318, 495–510.
    [Google Scholar]
  48. Glunk, C., Dupraz, C., Braissant, O., Gallagher, K.L., Verrecchia, E.P. & Visscher, P.T. (2011) Microbially mediated carbonate precipitation in a hypersaline lake, Big Pond (Eleuthera, Bahamas). Sedimentology, 58, 720–738.
    [Google Scholar]
  49. Goldstein, R.H. & Franseen, E.K. (1995) Pinning points ‐ a method providing quantitative constraints on relative sea‐level history. Sed. Geol., 95, 1–10.
    [Google Scholar]
  50. Granjeon, D. (1997) Modélisation stratigraphique déterministe: conception et applications d'un modèle diffusif 3D multilithologique. PhD Thesis, Université de Rennes 1.
  51. Granjeon, D. (2009) 3‐D Stratigraphic Modeling of Sedimentary Basins. AAPG Annual Convention and Exhibition, Denver, CO.
    [Google Scholar]
  52. Granjeon, D. (2010) Dionisos – 3D stratigraphic modelling of sedimentary basins. AAPG R&D Stud., 5, 4–5.
    [Google Scholar]
  53. Granjeon, D. & Joseph, P. (1999) Concepts and application of a 3D multiple lithology, diffusive model in stratigraphic modeling. In: Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations (Ed. by HarbaughJ.W. , WatneyW.L. , RankeyE.C. , SlingerlandR. , GoldsteinR.H. & FranseenE.K. ), SEPM Spec. Publ., 62, 197–210. SEPM, Tulsa, OK.
    [Google Scholar]
  54. Gratacós, O., Bitzer, K., Casamor, J.L., Cabrera, L., Calafat, A., Canals, M. & Roca, E. (2009) Simulating transport and deposition of clastic sediments in an elongate basin using the SIMSAFADIM‐CLASTIC program: the Camarasa artificial lake case study (NE Spain). Sed. Geol., 222, 16–26.
    [Google Scholar]
  55. Halley, R.B., Shinn, E.A., Hudson, J.H. & Lidz, B. (1977) Recent and relict topography of Boo Bee patch reef, Belize. 3rd International Coral Reef Symposium, 2, Miami, 29–35.
  56. Harris, P.M. (1979) Facies Anatomy and Diagenesis of a Bahamian Ooid Shoal. Sedimenta VII. The University of Miami, The Comparative Sedimentology Laboratory, Miami, Florida.
    [Google Scholar]
  57. Harris, P.M., Purkis, S.J. & Ellis, J. (2011) Analyzing spatial patterns in modern carbonate sand bodies from Great Bahama Bank. J. Sediment. Res., 81, 185–206.
    [Google Scholar]
  58. Jahnert, R.J. & Collins, L.B. (2012) Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia. Mar. Geol., 303, 115–136.
    [Google Scholar]
  59. James, N.P. (1997) The cool‐water carbonate depositional realm. In: Cool‐Water Carbonates (Ed. by JamesN.P. & ClarkeJ.A.D. ), SEPM Spec. Publ., 56, 1–20. SEPM, Tulsa, OK.
    [Google Scholar]
  60. Jiménez‐Moreno, G., Pérez‐Asensio, J.N., Larrasoaña, J.C., Aguirre, J., Civis, J., Rivas‐Carballo, M.R., Valle‐Hernández, M.F. & Gonzáles‐Delgado, J.A. (2013) Vegetation, sea‐level and climate changes during the Messinian salinity crisis. GSA Bull., 125, 432–444.
    [Google Scholar]
  61. Jolivet, L., Faccenna, C. & Piromallo, C. (2009) From mantle to crust: stretching the Mediterranean. Earth Planet. Sci. Lett., 285, 198–209.
    [Google Scholar]
  62. Karátson, D., Németh, K., Székely, B., Ruszkiczay‐Rüdiger, Zs. & Pécskay, Z. (2006) Incision of a river curvature due to exhumed Miocene volcanic landforms: Danube Bend, Hungary. Int. J. Earth Sci., 95, 929–944.
    [Google Scholar]
  63. Kendall, C., Strobel, J., Cannon, R., Bezdek, J. & Biswas, G. (1991) The simulation of the sedimentary fill of basins. J. Geophys. Res., 96, 6911–6929.
    [Google Scholar]
  64. Kindler, P. & Hearty, P.J. (1996) Carbonate petrography as an indicator of climate and sea‐level changes: new data from Bahamian Quaternary units. Sedimentology, 43, 381–399.
    [Google Scholar]
  65. Kotarba, M. & Wagner, R. (2007) Generation potential of the Zechstein Main Dolomite (Ca2) carbonates in the Gorzów Wielkopolski‐Międzychód‐Lubiatów area: geological and geochemical approach to microbial‐algal source rock. Przegląd Geologiczny, 55, 1025–1036.
    [Google Scholar]
  66. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S. (1999) Chronology, causes and progression of the Messinian Salinity Crisis. Nature, 400, 655–662.
    [Google Scholar]
  67. Krijgsman, W., Fortuin, A., Hilgen, F. & Sierro, F. (2001) Astrochronology for the Messinian Sorbas Basin (SE Spain) and orbital (precessional) forcing evaporite cyclicity. Sed. Geol., 140, 43–60.
    [Google Scholar]
  68. Laskar, J., Joutel, F. & Boudin, F. (1993) Orbital, precessional, and insolation quantities for the Earth from −20 Myr to +10 Myr. Astron. Astrophys., 270, 522–533.
    [Google Scholar]
  69. Lawrence, D.T., Doyle, M. & Aigner, T. (1990) Stratigraphic simulation of sedimentary basins – concepts and calibration. AAPG Bull., 74, 273–295.
    [Google Scholar]
  70. Lees, A. (1975) Possible influence of salinity and temperature on modern shelf carbonate sedimentation. Mar. Geol., 19, 159–198.
    [Google Scholar]
  71. Lees, A. & Buller, A.T. (1972) Modern temperate‐water and warm‐water shelf carbonate sediments contrasted. Mar. Geol., 13, 67–73.
    [Google Scholar]
  72. Leinfelder, R.R., Nose, M., Schmid, D.U. & Werner, W. (1993) Microbial crusts of the Late Jurassic: composition, palaeoecological significance and importance in reef construction. Facies, 29, 195–229.
    [Google Scholar]
  73. Li, Y.Y., Lerche, I. & Perlmutter, M.A. (1993) Global cyclostratigraphy: a model of carbonate growth patterns. Mar. Pet. Geol., 10, 620–631.
    [Google Scholar]
  74. Lisitzin, A.P. & Rodolfo, K.S. (1972) Sedimentation in the World. SEPM Spec. Publ., 17, SEPM, Tulsa, Oklahoma.
    [Google Scholar]
  75. Lloyd, R.M., Perkins, R.D. & Kerr, S.D. (1987) Beach and shoreface ooid deposition on shallow interior banks, Turks and Caicos Islands, British West‐Indies. J. Sediment. Petrol., 57, 976–982.
    [Google Scholar]
  76. Logan, B.W. & Cebulski, D.E. (1970) Sedimentary environments of Shark Bay, Western Australia. In: Carbonate Sedimentation and Environments, Shark Bay, Western Australia (Ed. by B.W.Logan , G.R.Davies , J.F.Read & D.E.Cebulski ), AAPG Memoir, 13, pp. 1–37. American Association of Petroleum Geology, Tulsa, Oklahoma.
    [Google Scholar]
  77. Logan, B.W., Hoffman, P. & Gebelein, C.D. (1974) Algal mats, cryptalgal fabrics and structures, Hamelin Pool, Western Australia. AAPG Bull., 22, 140–194.
    [Google Scholar]
  78. Loreau, J.‐P. (1982) Les sédiments aragonitiques et leur genèse. Mémoire du Muséum d'Histoire Naturelle de Paris, série C, 47.
  79. Mann, C.J. & Nelson, W.M. (1989) Microbialitic structures in Storr's Lake, San Salvador Island, Bahama Islands. Palaios, 4, 287–293.
    [Google Scholar]
  80. Martin, J.M. & Braga, J.C. (1994) Messinian events in the Sorbas Basin in Southeastern Spain and their implications in the recent history of the Mediterranean. Sed. Geol., 90, 257–268.
    [Google Scholar]
  81. Megias, A.G. (1985) Relaciones tectonosedimentarias entre arrecifes y evaporitas del Mio‐Plioceno de las cuencas de Almeria y Sorbas. Trabajos des geologia, 15, 153–157.
    [Google Scholar]
  82. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie‐Blick, N. & Pekar, S.F. (2005) The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  83. Milliman, J.D., Freile, D., Steinen, R.P. & Wilber, R.J. (1993) Great Bahama Bank aragonitic muds – mostly inorganically precipitated, mostly exported. J. Sediment. Petrol., 63, 589–595.
    [Google Scholar]
  84. Montaggioni, L.F., Borgomano, J., Fournier, F. & Granjeon, D. (2015) Quaternary atoll development: new insights from the two‐dimensional stratigraphic forward modelling of Mururoa Island (Central Pacific Ocean). Sedimentology, 62, 466–500.
    [Google Scholar]
  85. Montenat, C., Ott D'estevou, P., Larouziere, F.D.D.E. & Bedu, P. (1987) Originalité géodynamique des bassins Néogènes du domaine bétique oriental (Espagne). Notes et Mémoires Total‐CFP., 21, 11–50.
    [Google Scholar]
  86. Montgomery, P., Farr, M.R., Franseen, E.K. & Goldstein, R.H. (2001) Constraining controls on carbonate sequences with high‐resolution chronostratigraphy: upper Miocene, Cabo De Gata region, SE Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol., 176, 11–45.
    [Google Scholar]
  87. Morse, J.W. & MacKenzie, F.T. (1990) Geochemistry of sedimentary carbonates. Developments in Sedimentology 48. Elsevier, Amsterdam.
    [Google Scholar]
  88. Morse, J.W., Thurmond, W., Brown, E. & Ostlund, H.G. (1984) The carbonate chemistry of Great Bahamas Bank waters: after 18 years another look. J. Geophys. Res., 89, 3604–3614.
    [Google Scholar]
  89. Morse, J.W., Arvidson, R.D. & Lüttge, A. (2007) Calcium carbonate formation and dissolution. Chem. Rev., 107, 342–381.
    [Google Scholar]
  90. Müller, D.W. & Hsü, K.J. (1987) Event stratigraphy and paleoceanography in the Fortuna Basin (Southeast Spain): a scenario for the Messinian Salinity Crisis. Paleoceanography, 2, 679–696.
    [Google Scholar]
  91. Mutti, M. & Hallock, P. (2003) Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. Int. J. Earth Sci., 92, 465–475.
    [Google Scholar]
  92. Neumann, A.C. & Land, L.S. (1975) Lime mud deposition and calcareous algae in Bight of Abaco, Bahamas: a budget. J. Sediment. Petrol., 45, 763–786.
    [Google Scholar]
  93. Neuweiler, F., Gautret, P., Thiel, V., Lange, R., Michaelis, W. & REITNER, J. (1999) Petrology of Lower Cretaceous carbonate mud mounds (Albian, N Spain): insights into organomineralic deposits of the geological record. Sedimentology, 46, 837–859.
    [Google Scholar]
  94. Ott D'estevou, P. (1980) évolution dynamique du bassin Néogène de Sorbas (cordillières bétiques orientales‐Espagne). PhD Thesis, Université de Paris VII, Paris.
  95. Ott D'estevou, P. & Montenat, C. (1990) Le bassin de Sorbas‐Tabernas. In: Les Bassins Néogènes du domaine bétique oriental (Espagne). Tectonique et Sédimentation dans un Couloir de Décrochement. Première Partie: Étude Régionale (Ed. by C.Montenat ), 12–13, pp. 101–128. Documents et Travaux IGAL, Paris.
    [Google Scholar]
  96. Pacton, M., Ariztegui, D., Wacey, D., Kilburn, M.R., Rollion‐Bard, C., Farah, R. & Vasconcelos, C. (2012) Going Nano: a new step toward understanding the processes governing freshwater ooid formation. Geology, 40, 547–550.
    [Google Scholar]
  97. Palermo, D., Aigner, T., Nardon, S. & Blendinger, W. (2011) Three‐dimensional facies modeling of carbonate sand bodies: outcrop analog study in an epicontinental basin (Triassic, Southwest Germany). AAPG Bull., 94, 475–512.
    [Google Scholar]
  98. Paterson, R.J., Whitaker, F.F., Jones, G.D., Smart, P.L., Waltham, D. & Felce, G. (2006) Accommodation and sedimentary architecture of isolated icehouse carbonate platforms: insights from forward modeling with CARB3D(+). J. Sediment. Res., 76, 1162–1182.
    [Google Scholar]
  99. Paull, C.K., Neumann, A.C., Bebout, B., Zabielski, V. & Showers, W. (1992) Growth‐rate and stable isotopic character of modern stromatolites from San‐Salvador, Bahamas. Palaeogeogr. Palaeoclimatol. Palaeoecol., 95, 335–344.
    [Google Scholar]
  100. Perry, C.T., Salter, M.A., Harborne, A.R., Crowley, S.F., Jelks, H.L. & Wilson, R.W. (2011) Fish as major carbonate mud producers and missing components of the tropical carbonate factory. Proc. Natl Acad. Sci. USA, 108, 3865–3869.
    [Google Scholar]
  101. Pierre, A., Jones, G., Harris, P.M. & Durlet, C. (2009) Simulating the stratigraphic evolution of a Jurassic carbonate ramp outcrop analogue using the forward stratigraphic model DIONISOS. AAPG Annual Convention. Denver, CO.
    [Google Scholar]
  102. Pinckney, J., Paerl, H.W. & Bebout, B.M. (1995) Salinity control of benthic microbial mat community production in a Bahamian hypersaline lagoon. J. Exp. Mar. Biol. Ecol., 187, 223–237.
    [Google Scholar]
  103. Planavsky, N. & Ginsburg, R.N. (2009) Taphonomy of modern marine Bahamian microbialites. Palaios, 24, 5–17.
    [Google Scholar]
  104. Quiquerez, A., Allemand, P. & Dromart, G. (2000) Dibafill: a 3‐D two‐lithology diffusive model for basin infilling. Comput. Geosci., 26, 1029–1042.
    [Google Scholar]
  105. Rankey, E.C. & Reeder, S.L. (2010) Controls on platform‐scale patterns of surface sediments, shallow Holocene platforms, Bahamas. Sedimentology, 57, 1545–1565.
    [Google Scholar]
  106. Rankey, E.C., Reeder, S.L. & Garza‐Perez, J.R. (2011) Controls on links between geomorphical and surface sedimentological variability: Aitutaki and Maupiti atolls, South Pacific Ocean. J. Sediment. Res., 81, 885–900.
    [Google Scholar]
  107. Reeder, S.L. & Rankey, E.C. (2008) Interactions between tidal flows and ooid shoals, Northern Bahamas. J. Sediment. Res., 78, 175–186.
    [Google Scholar]
  108. Reid, R.P. & Browne, K.M. (1991) Intertidal stromatolites in a fringing Holocene reef complex, Bahamas. Geology, 19, 15–18.
    [Google Scholar]
  109. Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.F., Bebout, B.M., Dupraz, C., MacIntyre, L.G., Paerl, H.W., Pinckney, J.L., Prufert‐Bebout, L., Steppe, T.F. & Desmarais, D.J. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989–992.
    [Google Scholar]
  110. Reid, R.P., James, N.P., MacInthyre, I.G., Dupraz, C. & Burne, R.V. (2003) Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies, 49, 299–324.
    [Google Scholar]
  111. Reid, R.P., Foster, J.S., Radtke, G. & Golubic, S. (2011) Modern marine stromatolites of Little Darby Island, Exuma Archipelago, Bahamas: environmental setting, accretion mechanisms and role of euendoliths. In: Advances in Stromatolite Geobiology (Ed. by J.Reitner , N.‐V.Query & G.Arp ), pp. 77–89. Springer‐Verlag, Berlin.
    [Google Scholar]
  112. Reijmer, J.J.G., Palmieri, P. & Groen, R. (2012) Compositional variations in calciturbidites and calcidebrites in response to sea‐level fluctuations (Exuma Sound, Bahamas). Facies, 58, 493–507.
    [Google Scholar]
  113. Riding, R., Braga, J.C., Martin, J.M. & Sanchez‐Almazo, I.M. (1998) Mediterranean Messinian Salinity Crisis: constraints from a coeval marginal basin, Sorbas, Southeastern Spain. Mar. Geol., 146, 1–20.
    [Google Scholar]
  114. Robbins, L.L., Tao, Y. & Evans, C.A. (1997) Temporal and spatial distribution of whitings on Great Bahama Bank and a new lime mud budget. Geology, 25, 947–950.
    [Google Scholar]
  115. Rohais, S., Ventra, D. & De Boer, P.L. (2008) Quantifying climatic and tectonic forcing alluvial‐fan stratigraphy by 3D numerical modeling and comparison with outcrop examples. AAPG Annual Convention. San Antonio, TX.
  116. Rouchy, J.‐M. & Caruso, A. (2006) The Messinian Salinity Crisis in the Mediterranean Basin: a reassessment of the data and an integrated scenario. Sed. Geol., 188, 35–67.
    [Google Scholar]
  117. Rouchy, J.‐M. & Saint‐Martin, J.‐P. (1992) Late Miocene events in the Mediterranean as recorded by carbonate‐evaporite relations. Geology, 20, 629–632.
    [Google Scholar]
  118. Rouchy, J.‐M., Saint‐Martin, J.‐P., Maurin, A. & Bernet‐Rollande, M.‐C. (1986) évolution et antagonisme des communautés bioconstructrices animales et végétales à la fin du Miocène en Méditerranée occidentale: biologie et sédimentologie. Bull. Centre Rech. Explor. Prod. Elf Aquitaine, 10, 333–348.
    [Google Scholar]
  119. Saura, E., Embry, J.‐C., Vergés, J., Hunt, D.W., Casciello, E. & Homke, S. (2012) Growth fold controls on carbonate distribution in mixed foreland basins: insights from the Amiran foreland Basin (NW Zagros, Iran) and stratigraphic numerical modelling. Basin Res., 25, 149–171.
    [Google Scholar]
  120. Schlager, W. (2005) Carbonate Sedimentology and Sequence Stratigraphy. SEPM Concepts Sedimentol., 8, SEPM, Tulsa, OK.
    [Google Scholar]
  121. Schlager, W., Reijmer, J.J.G. & Droxler, A.W. (1994) Highstand shedding of carbonate platforms. J. Sediment. Res., 64, 274–281.
    [Google Scholar]
  122. Schmoker, J.W. & Halley, R.B. (1982) Carbonate porosity versus depth – a predictable relation for South Florida. AAPG Bull., 66, 2561–2570.
    [Google Scholar]
  123. Scoffin, T.P. (1987) An Introduction to Carbonate Sediments and Rocks. Chapman & Hall, New‐York.
    [Google Scholar]
  124. Seard, C., Borgomano, J., Granjeon, D. & Camoin, G. (2013) Impact of environmental parameters on coral reef development and drowning: forward modeling of the last deglacial reefs from Tahiti (French Polynesia; IODP Expedition #310). Sedimentology doi: 10.1111/sed.12030.
    [Google Scholar]
  125. Shinn, E.A., Steinen, R.P., Lidz, B.H. & Swart, P.K. (1989) Whitings, a sedimentologic dilemma. J. Sediment. Res., 59, 147–161.
    [Google Scholar]
  126. Sømme, T., Helland‐Hansen, W. & Granjeon, D. (2009) Impact of eustatic amplitude variations on shelf morphology, sediment dispersal, and sequence stratigraphic interpretation: icehouse versus greenhouse systems. Geology, 37, 587–590.
    [Google Scholar]
  127. Stockman, K.W., Ginsburg, R.N. & Shinn, E.A. (1967) Production of lime mud by algae in South Florida. J. Sediment. Petrol., 37, 633–648.
    [Google Scholar]
  128. Strohmenger, C. & Strauss, C. (1996) Sedimentology and playnofacies of the Zechstein 2 carbonate (Upper Permian, Northwest 2063 Germany). In: Approaches to Sequence Stratigraphy (Ed. by GauppR. & de Van WeerdA.A. ) Sed. Geol., 102, 55–77.
    [Google Scholar]
  129. Thompson, J.B. (2001) Microbial whitings. In: Microbial Sediments (Ed. by R.Riding & S.M.Awramik ), pp. 250–269. Springer‐Verlag, Berlin.
    [Google Scholar]
  130. Vasconcelos, C. & McKenzie, J.A. (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J. Sediment. Res., 67, 378–390.
    [Google Scholar]
  131. Vasconcelos, C., Visscher, P.T., Warthmann, R. & McKenzie, J.A. (2006) Formation of lamination in modern stromatolites from Lagoa Vermelha, Brazil: an example for Precambrian relics?Geochim. Cosmochim. Acta, 70, A669–A669.
    [Google Scholar]
  132. Visscher, P.T., Reid, R.P. & Bebout, B.M. (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28, 919–922.
    [Google Scholar]
  133. Warrlich, G., Waltham, D. & Bosence, D. (2002) Quantifying the sequence stratigraphy and drowning mechanisms of atolls using a new 3‐D forward stratigraphic modelling program (CARBONATE 3D). Basin Res., 14, 379–400.
    [Google Scholar]
  134. Warrlich, G., Bosence, D., Waltham, D., Wood, C., Boylan, A. & Badenas, B. (2008) 3D stratigraphic forward modelling for analysis and prediction of carbonate platform stratigraphies in exploration and production. Mar. Pet. Geol., 25, 35–58.
    [Google Scholar]
  135. Wilber, R.J., Milliman, J.D. & Halley, R.B. (1990) Accumulation of bank‐top sediment on the Western slope of Great Bahama Bank ‐ rapid progradation of a carbonate megabank. Geology, 18, 970–974.
    [Google Scholar]
  136. Williams, H., Burgess, P., Wright, V., Della Porta, G. & Granjeon, D. (2011) Investigating carbonate platform types: multiple controls and a continuum of geometries. J. Sediment. Res., 81, 18–37.
    [Google Scholar]
  137. Wilson, R.C.L. (1967) Particle nomenclature in carbonate sediments. Neues Jahrb. Geol. Paläontol. Monatsh., 68, 498–510.
    [Google Scholar]
  138. Wright, V.P. & Burchette, T.P. (1996) Shallow‐water carbonate environments. In: Sedimentary Environments, Processes, Facies and Stratigraphy (Ed. by H.G.Reading ), pp. 325–394. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  139. Wright, V.P. & Burgess, P.M. (2005) The carbonate factory continuum, facies mosaics and microfacies: an appraisal of some of the key concepts underpinning carbonate sedimentology. Facies, 51, 17–23.
    [Google Scholar]
  140. Yates, K.K. & Robbins, L.L. (1999) Radioisotope tracer studies of inorganic carbon and Ca in microbially derived Caco3. Geochim. Cosmochim. Acta, 63, 129–136.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12125
Loading
/content/journals/10.1111/bre.12125
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error