1887
Volume 29, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Intrusive magmatism is an integral and understudied component in both volcanic and nonvolcanic passive margins. Here, we investigate the thermal effects of widespread (. 20 000 km2) intrusive magmatism on the thermal evolution of organic‐rich sedimentary rocks on the nonvolcanic Newfoundland passive margin. ODP 210‐1276 (45.41°N, 44.79°W) intersects two sills: an older, upper sill and a younger, lower sill that are believed to correspond to the high amplitude ‘U‐reflector’ observed across the Newfoundland Basin. A compilation of previous work collectively provides; (1) emplacement depth constraints, (2) vitrinite reflectance data and (3) 40Ar/39Ar dates. Collectively, these data sets provide a unique opportunity to model the conductive cooling of the sills and how they affect thermal maturity of the sedimentary sequence. A finite differences method was used to model the cooling of the sills, with the model outputs then being entered into the EASY%R vitrinite reflectance model. The modelled maturation profile for ODP 210‐1276 shows a significant but localized effect on sediment maturity as a result of the intrusions. Our results suggest that even on nonvolcanic margins, intrusive magmatism can significantly influence the thermal evolution in the vicinity of igneous intrusions. In addition, the presence of widespread sills on nonvolcanic passive margins such as offshore Newfoundland may be indicative of regional‐scale thermal perturbations that should be considered in source rock maturation studies.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12131
2015-05-14
2020-05-30
Loading full text...

Full text loading...

References

  1. Aarnes, I., Svensen, H., Connolly, J.A.D. & Podladchikov, Y.Y. (2010) How contact metamorphism can trigger global climate changes: modeling gas generation around igneous sills in sedimentary basins. Geochim. Cosmochim. Acta, 74, 7179–7195.
    [Google Scholar]
  2. Allen, P.A. & Allen, J.R. (2005) Basin Analysis. Blackwell Publishing, Malden, MA, USA.
    [Google Scholar]
  3. Barker, C.E., Bone, Y. & Lewan, M.D. (1998) Fluid inclusion and vitrinite‐reflectance geothermometry compared to heat‐flow models of maximum paleotemperature next to dikes, western onshore Gippsland Basin, Australia. Int. J. Coal Geol., 37, 73–111.
    [Google Scholar]
  4. Beglinger, S.E., Doust, H. & Cloetingh, S. (2012) Relating petroleum system and play development to basin evolution: West African South Atlantic Basins. Mar. Pet. Geol., 30, 1–25.
    [Google Scholar]
  5. Bostick, N.H. & Alpern, B. (1977) Principles of sampling, preparation and constituent selection for microphotometry in measurement of maturation of sedimentary organic matter. J. Microsc., 109, 41–47.
    [Google Scholar]
  6. Burnham, A.K. & Sweeney, J.J. (1989) A chemical kinetic model of vitrinite maturation and reflectance. Geochim. Cosmochim. Acta, 53, 2649–2657.
    [Google Scholar]
  7. Deemer, S., Hurich, C. & Hall, J. (2010) Post‐rift flood‐basalt‐like volcanism on the Newfoundland Basin nonvolcanic margin: the U event mapped with spectral decomposition. Tectonophysics, 494, 1–16.
    [Google Scholar]
  8. DeSilva, N.R. (1999) Sedimentary basins and petroleum systems offshore Newfoundland and Labrador. Geol. Soc. Lond. Petrol. Geol. Conf. Ser., 5, 501–515.
    [Google Scholar]
  9. Eldholm, O. & Sundvor, E. (1979) Geological events during the early formation of a passive margin. Tectonophysics, 59, 233–237.
    [Google Scholar]
  10. England, G.L., Rasmussen, B., Krapez, B. & Groves, D.I. (2002) Archaean oil migration in the Witwatersrand Basin of South Africa. J. Geol. Soc., 159, 189–201.
    [Google Scholar]
  11. Fjeldskaar, W., Helset, H.M., Johansen, H., Grunnaleite, I. & Horstad, I. (2008) Thermal modelling of magmatic intrusions in the Gjallar Ridge, Norwegian Sea: implications for vitrinite reflectance and hydrocarbon maturation. Basin Res., 20, 143–159.
    [Google Scholar]
  12. Franke, D. (2013) Rifting, lithosphere breakup and volcanism: comparison of magma‐poor and volcanic rifted margins. Mar. Pet. Geol., 43, 63–87.
    [Google Scholar]
  13. Galushkin, Y.I. (1997) Thermal effects of igneous intrusions on maturity of organic matter: a possible mechanism of intrusion. Org Geochem., 26, 645–658.
    [Google Scholar]
  14. Geoffroy, L. (2005) Volcanic passive margins. C.R. Geosci., 337, 1395–1408.
    [Google Scholar]
  15. Goutorbe, B., Drab, L., Loubet, N. & Lucazeau, F. (2007) Heat flow of the Eastern Canadian rifted continental margin revisited. Terra Nova, 19, 381–386.
    [Google Scholar]
  16. Hart, S.R. & Blusztajn, J. (2006) Age and geochemistry of the mafic sills, Odp Site 1276, Newfoundland margin. Chem. Geol., 235, 222–237.
    [Google Scholar]
  17. Heroux, Y., Chagnon, A. & Bertrand, R. (1979) Compilation and correlation of major thermal maturation indicators. AAPG Bull., 63, 2128–2144.
    [Google Scholar]
  18. Holford, S.P., Schofield, N., MacDonald, J.D., Duddy, I.R. & Green, P.F. (2012) Seismic analysis of igneous systems in sedimentary basins and their impacts on hydrocarbon prospectivity: examples from the Southern Australian margin. APPEA J., 52, 229–252.
    [Google Scholar]
  19. Holford, S.P., Schofield, N., Jackson, C.A.‐L., Magee, C., Green, P.F. & Duddy, I.R. (2013) Impacts of Igneous Intrusions on Source and Reservoir Potential in Prospective Sedimentary Basins Along the Western Australian Continental Margin. West Australian Basins Symposium 18–21 August 2013.
  20. Hopper, J.R., Funck, T., Tucholke, B.E., Larsen, H.C., Holbrook, W.S., Louden, K.E., Shillington, D. & Lau, H. (2004) Continental breakup and the onset of ultra‐slow spreading off flemish cap on the Newfoundland rifted margin. Geology, 32, 93–96.
    [Google Scholar]
  21. Karner, G.D. & Shillington, D.J. (2005) Basalt sills of the U reflector, Newfoundland basin: a serendipitous dating technique. Geology, 33, 985–988.
    [Google Scholar]
  22. Keen, C.E. (1979) Thermal history and subsidence of rifted continental margins—evidence from wells on the Nova Scotian and Labrador Shelves. Can. J. Earth Sci., 16, 505–522.
    [Google Scholar]
  23. Magee, C., Jackson, C.A.L. & Schofield, N. (2014) Diachronous sub‐volcanic intrusion along deep‐water margins: insights from the Irish Rockall Basin. Basin Res., 26, 85–105.
    [Google Scholar]
  24. Melankholina, E.N. (2011) Passive margins of the North and Central Atlantic: a comparative study. Geotectonics, 45, 291–301.
    [Google Scholar]
  25. Peron‐Pinvidic, G., Shillington, D.J. & Tucholke, B.E. (2010) Characterization of sills associated with the U reflection on the Newfoundland margin: evidence for widespread early post‐rift magmatism on a magma‐poor rifted margin. Geophys. J. Int., 182, 113–136.
    [Google Scholar]
  26. Peron‐Pinvidic, G., Manatschal, G. & Osmundsen, P.T. (2013) Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar. Pet. Geol., 43, 21–47.
    [Google Scholar]
  27. Polyansky, O.P., Reverdatto, V.V., Khomenko, A.V. & Kuznetsova, E.N. (2003) Modeling of fluid flow and heat transfer induced by basaltic near‐surface magmatism in the Lena‐Tunguska Petroleum Basin (Eastern Siberia, Russia). J. Geochem. Explor., 78–79, 687–692.
    [Google Scholar]
  28. Pross, J., Pletsch, T., Shillington, D.J., Ligouis, B., Schellenberg, F. & Kus, J. (2007) Thermal alteration of terrestrial palynomorphs in mid‐cretaceous organic‐rich mudstones intruded by an igneous sill (Newfoundland Margin, Odp Hole 1276a). Int. J. Coal Geol., 70, 277–291.
    [Google Scholar]
  29. Shillington, D.J., Holbrook, W.S., Tucholke, B.E., Hopper, J.R., Louden, K.E., Larsen, H.C., Van Avendonk, H.J.A., Deemer, S. & Hall, J. (2004) 5. Data Report: Marine Geophysical Data on the Newfoundland Nonvolcanic Rifted Margin around Screech Transect 2. Proceedings of the Ocean Drilling Program, Initial Reports, 210, 1–36.
    [Google Scholar]
  30. Smith, W.H.F. & Sandwell, D.T. (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 1957–1962.
    [Google Scholar]
  31. Spear, F.S. & Peacock, S.M. (1989) Metamorphic Pressure‐Temperature‐Time Paths. American Geophysical Union, Washington, DC.
    [Google Scholar]
  32. Sweeney, J.J. & Burnham, A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull., 74, 1559–1570.
    [Google Scholar]
  33. Tucholke, B.E., Sibuet, J.‐C. & Klaus, A. (2004a) 1. Leg 210 Summary. Proc. Ocean Drill. Program, Initial Rep., 210, 1–78.
    [Google Scholar]
  34. Tucholke, B.E., Sibuet, J.‐C. & Klaus, A. (2004b) 3. Site 1276. Proc. Ocean Drill. Program, Initial Rep., 210, 1–358.
    [Google Scholar]
  35. Tucholke, B.E., Sibuet, J.‐C. & Klaus, A. (2007) 1. Leg 210 synthesis: tectonic, magmatic, and sedimentary evolution of the Newfoundland‐Iberia rift. Proc. ODP Sci. Results, 210, 1–56.
    [Google Scholar]
  36. Van Avendonk, H.J.A., Holbrook, W.S., Nunes, G.T., Shillington, D.J., Tucholke, B.E., Louden, K.E., Larsen, H.C. & Hopper, J.R. (2006) Seismic velocity structure of the rifted margin of the Eastern Grand Banks of Newfoundland, Canada. J. Geophys. Res. Solid Earth, 111, B11404.
    [Google Scholar]
  37. Wang, D., Lu, X., Zhang, X., Xu, S., Hu, W. & Wang, L. (2007) Heat‐model analysis of wall rocks below a diabase sill in Huimin Sag, China Compared with thermal alteration of mudstone to carbargilite and hornfels and with increase of vitrinite reflectance. Geophys. Res. Lett., 34, L16312.
    [Google Scholar]
  38. Wang, D., Lu, X., Song, Y., Shao, R. & Qi, T. (2010) Influence of the temperature dependence of thermal parameters of heat conduction models on the reconstruction of thermal history of igneous‐intrusion‐bearing basins. Comput. Geosci., 36, 1339–1344.
    [Google Scholar]
  39. Wang, K., Lu, X., Chen, M., Ma, Y., Liu, K., Liu, L., Li, X. & Hu, W. (2012) Numerical modelling of the hydrocarbon generation of tertiary source rocks intruded by doleritic sills in the Zhanhua depression, Bohai Bay Basin, China. Basin Res., 24, 234–247.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12131
Loading
/content/journals/10.1111/bre.12131
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error