1887
image of Provenance and tectonic implications of Orán Group foreland basin sediments, Río Iruya canyon, NW Argentina (23° S)

Abstract

Abstract

Foreland basins are important recorders of tectonic and climatic processes in evolving mountain ranges. The Río Iruya canyon of NW Argentina (23° S) exposes . 7500 m of Orán Group foreland basin sediments, spanning over 8 Myr of near continuous deposition in the Central Andes. This study presents a record of sedimentary provenance for the Iruya Section in the context of a revised stratigraphic chronology. We use U‐Pb zircon ages from six interbedded ash layers and new magnetostratigraphy to constrain depositional ages in the section between 1.94 and 6.49 Ma, giving an average sedimentation rate of 0.93 ± 0.02 (2σ) km Myr−1. We then pair U‐Pb detrital zircon dating with quartz trace‐element analysis to track changes in sedimentary provenance from . 7.6 to 1.8 Ma. Results suggest that from . 7.6 to . 6.3 Ma, the Iruya watershed did not tap the Salta Group or Neogene volcanics that are currently exposed in the eastern Cordillera and Puna margin. One explanation is that a long‐lived topographic barrier separated the eastern Puna from the foreland for much of the mid‐late Miocene, and that the arrival of Jurassic‐Neogene zircons records regional tectonic reactivation at . 6.3 Ma. A second major provenance shift at . 4 Ma is marked by changes in the zircon and quartz populations, which appear to be derived from a restricted source region in Proterozoic‐Ordovician meta‐sediments. Considered in conjunction with the onset of coarse conglomerate deposition, we attribute this shift to accelerated uplift of the Santa Victoria range, which currently defines the catchment's western limit. A third shift at . 2.3 Ma records an apparent disconnection of the Iruya with the eastern Puna, perhaps due to defeat of the proto Rio‐Iruya by the rising Santa Victoria range. This study is one of the first applications of quartz trace‐element provenance analysis, which we show to be an effective complement to U‐Pb detrital zircon dating when appropriate statistical methods are applied.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12139
2015-07-15
2024-04-20
Loading full text...

Full text loading...

References

  1. Ackerson, M.R., Tailby, N.D. & Watson, E.B. (2015) Trace elements in quartz shed light on sediment provenance. Geochem. Geophys. Geosyst. doi: 10.1002/2015GC005896.
    [Google Scholar]
  2. Adams, C.J., Miller, H., Acenzola, F.G., Toselli, A.J. & Griffin, W.L. (2011) The pacific Gondwana margin in the late neoproterozoic‐early paleozoic: detrital zircon U‐Pb ages from metasediments in Northwest Argentina reveal their maximum age, provenance and tectonic setting. Gondwana Res., 19, 71–83.
    [Google Scholar]
  3. Allmendinger, R.W., Jordan, T.E., Kay, S.M. & Isacks, B.L. (1997) The evolution of the Altiplano‐Puna Plateau of the central Andes. Annu. Rev. Earth Planet. Sci., 25, 139–174.
    [Google Scholar]
  4. Amidon, W.H., Burbank, D.W. & Gehrels, G.E. (2005a) Construction of Detrital mineral populations: insights from mixing of U‐Pb zircon ages in Himalayan rivers. Basin Res., 17, 463–485.
    [Google Scholar]
  5. Amidon, W.H., Burbank, D.W. & Gehrels, G.E. (2005b) U‐Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth Planet. Sci. Lett., 235, 244–260.
    [Google Scholar]
  6. Augustsson, C., Rüsing, T., Adams, C.J., Chmiel, H., Kocabayoǧlu, M., Büld, M., Zimmermann, U., Berndt, J. & Kooijman, E. (2011) Detrital quartz and zircon combined: the production of mature sand with short transportation paths along the Cambrian West Gondwana margin Northwestern Argentina. J. Sediment. Res., 81, 284–298.
    [Google Scholar]
  7. Bissig, T., Ullrich, T.D., Tosdal, R.M., Friedman, R. & Ebert, S. (2008) The time‐space distribution of eocene to miocene magmatism in the Central Peruvian Polymetallic Province and its metallogenetic implications. J. S. Am. Earth Sci., 26, 16–35.
    [Google Scholar]
  8. Breiter, K., Ackerman, L., Svojtka, M. & Müller, A. (2013) Behavior of trace elements in quartz from Plutons of different geochemical signature: a case study from the Bohemian Massif, Czech Republic. Lithos, 175–176, 54–67.
    [Google Scholar]
  9. Brown, S.J.A. & Fletcher, I.R. (1999) Shrimp U‐Pb dating of the Preeruption growth history of zircons from the 340 Ka Whakamaru Ignimbrite, New Zealand: evidence for >250 K.Y. Magma Residence Times. Geology, 27, 1035–1038.
    [Google Scholar]
  10. Caffe, P.J., Trumbull, R.B., Coira, B.L. & Romer, R.L. (2002) Petrogenesis of early Neogene Magmatism in the Northern Puna; implications for magma genesis and crustal processes in the Central Andean Plateau. J. Petrol., 43, 907–942.
    [Google Scholar]
  11. Carrapa, B., Bywater‐Reyes, S., Decelles, P.G., Mortimer, E. & Gehrels, G.E. (2012) Late eocene‐pliocene basin evolution in the eastern Cordillera of Northwestern Argentina (25°–26°S): regional implications for Andean Orogenic wedge development. Basin Res., 24, 249–268.
    [Google Scholar]
  12. Carrera, N. & Muñoz, J.A. (2008) Thrusting evolution in the Southern Cordillera oriental (Northern Argentine Andes): constraints from Growth Strata. Tectonophysics, 459, 107–122.
    [Google Scholar]
  13. Cladouhos, T.T., Allmendinger, R.W., Coira, B. & Farrar, E. (1994) Late Cenozoic deformation in the central Andes; fault kinematics from the Northern Puna, Northwestern Argentina and Southwestern Bolivia. J. S. Am. Earth Sci., 7, 209–228.
    [Google Scholar]
  14. Coira, B., Kay, S.M. & Viramonte, J.M. (1993) Upper cenozoic magmatic evolution of the Argentine Puna; a model for changing subduction geometry. Int. Geol. Rev., 35, 677–720.
    [Google Scholar]
  15. Coutand, I., Carrapa, B., Deeken, A., Schmitt, A.K., Sobel, E.R. & Strecker, M.R. (2006) Propagation of orographic barriers along an active range front: insights from sandstone petrography and detrital apatite fission‐track thermochronology in the intramontane Angastaco Basin, NW Argentina. Basin Res., 18, 1–26.
    [Google Scholar]
  16. Decelles, P.G. & Horton, B.K. (2003) Early to middle tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geol. Soc. Am. Bull., 115, 58–77.
    [Google Scholar]
  17. Decelles, P.G., Carrapa, B., Horton, B.K. & Gehrels, G.E. (2011) Cenozoic foreland basin system in the Central Andes of Northwestern Argentina: implications for Andean geodynamics and modes of deformation. Tectonics, 30, TC6013. doi: 10.1029/2011TC002948.
    [Google Scholar]
  18. Deeken, A., Sobel, E.R., Coutand, I., Haschke, M., Riller, U. & Strecker, M.R. (2006) Development of the Southern Eastern Cordillera, NW Argentina, constrained by Apatite fission track thermochronology: from early cretaceous extension to middle Miocene shortening. Tectonics, TC6003. doi:10.1029/2005TC001894.
    [Google Scholar]
  19. Del Papa, C., Hongn, F., Powell, J., Payrola, P., Do Campo, M., Strecker, M.R., Petrinovic, I., Schmitt, A.K. & Pereyra, R. (2013) Middle Eocene‐Oligocene broken‐foreland evolution in the Andean Calchaqui Valley, NW Argentina: insights from stratigraphic, structural and provenance studies. Basin Res., 25, 574–593.
    [Google Scholar]
  20. Echavarria, L., Hernández, R., Allmendinger, R. & Reynolds, J. (2003) Subandean thrust and fold belt of Northwestern Argentina: geometry and timing of the Andean evolution. AAPG Bull., 87, 965–985.
    [Google Scholar]
  21. Ege, H., Sobel, E.R., Scheuber, E. & Jacobshagen, V. (2007) Exhumation history of the Southern Altiplano Plateau (Southern Bolivia) constrained by apatite fission‐track thermochronology. Tectonics, 26, 24.
    [Google Scholar]
  22. Elger, K., Oncken, O. & Glodny, J. (2005) Plateau‐style accumulation of deformation: Southern Altiplano. Tectonics, 24, 1–19.
    [Google Scholar]
  23. Götze, J. (2009) Chemistry, textures and physical properties of quartz – geological interpretation and technical application. Mineral. Mag., 73, 645–671.
    [Google Scholar]
  24. Gubbels, T.L., Isacks, B.L. & Farrar, E. (1993) High‐level surfaces, plateau uplift, and foreland development, Bolivian central andes. Geology, 21, 695–698.
    [Google Scholar]
  25. Hain, M.P., Strecker, M.R., Bookhagen, B., Alonso, R.N., Pingel, H. & Schmitt, A.K. (2011) Neogene to quaternary broken foreland formation and sedimentation dynamics in the Andes of Nw Argentina (25°S). Tectonics, 30, TC2006. doi: 10.1029/2010TC002703.
    [Google Scholar]
  26. Hernández, R. & Boll, A. (1986) Interpretacion estructural del area tres cruces. Bol. Inf. Petroleras, AXO III, 2–14.
    [Google Scholar]
  27. Hernández, R. & Echavarria, L. (2009) Subandean fold and thrust belt of Northwest Argentina: stratigraphy, geometry, and chronology of deformation. Rev. Asoc. Geol. Argent., 65, 68–80.
    [Google Scholar]
  28. Hernández, R., Reynolds, J. & Disalvo, A. (1996) Análisis tectosedimentario Y Ubicación Geocronológica Del Grupo Orán En El Río Iruya. Bol. Inf. Petroleras, 13, 80–93.
    [Google Scholar]
  29. Hernández, R., Galli, C.I. & Reynolds, J. (1999) Estratigrafía Del Terciario en el Noroeste Argentino. 15° Congreso Geológico Argentino. G. González Bonorino, R. Omarini & J. Viramonte. Salta, 316–328.
  30. Hongn, F., Papa, C.D., Powell, J., Petrinovic, I., et al. (2007) Middle eocene deformation and sedimentation in the Puna‐Eastern Cordillera transition (23°–26°S): control by preexisting heterogeneities on the pattern of initial Andean shortening. Geology, 35, 271.
    [Google Scholar]
  31. Horton, B., Parra, M., Nie, J., Saylor, J., Mora, A., Torres, V., Stockli, D. & Strecker, M. (2010) Resolving uplift of the Northern Andes using detrital zircon age signatures. GSA Today, 20, 4–10.
    [Google Scholar]
  32. Insel, N., Grove, M., Haschke, M., Barnes, J.B., Schmitt, A.K. & Strecker, M.R. (2012) Paleozoic to early cenozoic cooling and exhumation of the basement underlying the Eastern Puna Plateau margin prior to plateau growth. Tectonics, 31, TC6006. doi: 10.1029/2012TC003168.
    [Google Scholar]
  33. Jackson, S.E., Pearson, N.J., Griffin, W.L. & Belousova, E.A. (2004) The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U‐Pb zircon geochronology. Chem. Geol., 211, 47–69.
    [Google Scholar]
  34. James, D.E. & Sacks, I.S. (1999) Cenozoic formation of the Central Andes; a geophysical perspective. Special PublicationSoc. Econ. Geol., 7, 1–25.
    [Google Scholar]
  35. Jones, C.H. (2002) User‐driven integrated software lives: “Paleomag” paleomagnetics analysis on the Macintosh. Comput. Geosci., 28 (10), 1145–1151.
    [Google Scholar]
  36. Kay, S.M. & Coira, B.L. (2009) Shallowing and steepening subduction zones, continental lithospheric loss, Magmatism, and crustal flow under the central Andean Altiplano‐Puna plateau. Geol. Soc. Am. Mem., 204, 229–259.
    [Google Scholar]
  37. Kirschvink, J.L. (1980) The least‐squares line and plane and the analysis of palaeomagnetic data. Geophy. J. Int., 62, 699–718.
    [Google Scholar]
  38. Kirschvink, J.L., Kopp, R.E., Raub, T.D., Baumgartner, C.T. & Holt, J.W. (2008) Rapid, precise, and high‐sensitivity acquisition of paleomagnetic and rock‐magnetic data: development of a low‐noise automatic sample changing system for superconducting rock magnetometers. Geochem. Geophys. Geosyst., 9, Q05Y01. doi: 10.1029/2007GC001856.
    [Google Scholar]
  39. Kleinert, K. & Strecker, M.R. (2001) Climate change in response to orographic barrier uplift: paleosol and stable isotope evidence from the late neogene Santa Maria Basin, Northwestern Argentina. Geol. Soc. Am. Bull., 113, 728–742.
    [Google Scholar]
  40. Kley, J., Müller, J., Tawackoli, S., Jacobshagen, V. & Manutsoglu, E. (1997) Pre‐Andean and Andean‐age deformation in the Eastern Cordillera of Southern Bolivia. J. S. Am. Earth Sci., 10, 1–19.
    [Google Scholar]
  41. Kylander‐Clark, A.R.C., Hacker, B.R. & Cottle, J.M. (2013) Laser‐ablation split‐stream ICP petrochronology. Chem. Geol., 345, 99–112.
    [Google Scholar]
  42. Linares, E. & Gonzales, R.R. (1990) Catálogo de edades radiométricas de la República Argentina, 1957–1987. Asoc. Geol. Argent.Publicationes Especiales, 19B, 628.
    [Google Scholar]
  43. Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J. & Wilson, D. (2004) The neogene period. In: A Geologic Time Scale (Ed. by F. M.Gradstein, J. G.Ogg & A. G.Smith), Cambridge University Press, Cambridge.
    [Google Scholar]
  44. Ludwig, K.R. (1998) On the treatment of concordant uranium‐lead ages. Geochim. Cosmochim. Acta, 62, 665–676.
    [Google Scholar]
  45. Mazzuoli, R., Vezzoli, L., Omarini, R., Acocella, V., Gioncada, A., Matteini, M., Dini, A., Guillou, H., Hauser, N., Uttini, A. & Scaillet, S. (2008) Miocene magmatism and tectonics of the easternmost sector of the calama‐olacapato‐El Toro fault system in Central Andes at ~24 degree S: insights into the evolution of the eastern Cordillera. Geol. Soc. Am. Bull., 120, 1493–1517.
    [Google Scholar]
  46. Mcbride, S. (2008) Sediment provenance and tectonic significance of the cretaceous Pirgua subgroup, NW Argentina. M.Sc. Thesis, University of Arizona.
  47. McQuarrie, N., Horton, B.K., Zandt, G., Beck, S. & DeCelles, P.G. (2005) Lithospheric evolution of the Andean fold‐thrust belt, Bolivia, and the origin of the central Andean plateau. Tectonophysics, 399, 15–37.
    [Google Scholar]
  48. Monecke, T., Kempe, U. & Goetze, J. (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz; a reconnaissance study. Earth Planet. Sci. Lett., 202, 709–724.
    [Google Scholar]
  49. Mulch, A., Uba, C.E., Strecker, M.R., Schoenberg, R. & Chamberlain, C.P. (2010) Late miocene climate variability and surface elevation in the central Andes. Earth Planet. Sci. Lett., 290, 173–182.
    [Google Scholar]
  50. Muller, A. & Koch‐Mueller, M. (2009) Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineral. Mag., 73, 569–583.
    [Google Scholar]
  51. Müller, J.P., Kley, J. & Jacobshagen, V. (2002) Structure and cenozoic kinematics of the eastern Cordillera, Southern Bolivia (21°S). Tectonics, 21, 1–24.
    [Google Scholar]
  52. Petrinovic, I.A., Mitjavila, J., Viramonte, J.G., Marti, J., Becchio, R., Arnosio, M. & Colombo, F. (1999) Descripcion geoquimica y geocronologica de secuencias volcanicas neogenas de Trasarco, En El Extremo oriental de la Cadena Volcanica transversal del Quevar (Noroeste De Argentina). Acta Geol. Hisp., 34, 255–272.
    [Google Scholar]
  53. Pingel, H., Strecker, M.R., Alonso, R.N. & Schmitt, A.K. (2013) Neotectonic basin and landscape evolution in the Eastern Cordillera of Nw Argentina, Humahuaca Basin (~24°S). Basin Res., 25, 554–573.
    [Google Scholar]
  54. Prezzi, C. & Gõtze, H.‐J. (2006) 3d modeling of buried intrusives in Pan De Azucar zone (Northern Puna, Argentina) from ground magnetic data. J. S. Am. Earth Sci., 22, 89–97.
    [Google Scholar]
  55. Reynolds, J.H., Galli, C.I., Hernández, R.M., Idleman, B.D., Kotila, J.M., Hilliard, R.V. & Naeser, C.W. (2000) Middle miocene tectonic development of the transition zone, Salta Province, Northwest Argentina: magnetic stratigraphy from the Metán subgroup, Sierra De González. Geol. Soc. Am. Bull., 112, 1736–1751.
    [Google Scholar]
  56. Reynolds, J.H., Hernández, R.M., Galli, C.I. & Idleman, B.D. (2001) Magnetostratigraphy of the Quebrada La Porcelana section, Sierra De Ramos, Salta Province, Argentina: age limits for the Neogene Orán group and uplift of the Southern Sierras Subandinas. J. S. Am. Earth Sci., 14, 681–692.
    [Google Scholar]
  57. Rubiolo, D. (2003) Hoja Geologica 2366‐II/2166‐IV; La Quiaca. Programa Nacional de Cartas Geologicas de la Republica Argentina, Servicio Geologico Minero Argentina, 246.
  58. Russo, A. (1975) Estratigrafía Del Terciario En El Noroeste Argentino. YPF, Buenos Aires.
    [Google Scholar]
  59. Salfity, J.A. & Marquillas, R.A. (1994) Tectonic and Sedimentary Evolution of the Cretaceous‐Eocene Salta Group Basin, Argentina. Cretaceous Tectonics of the Andes. J. A. Salfity, Verlag, Teubner.
    [Google Scholar]
  60. Salisbury, M.J., Jicha, B.R., de Silva, S.L., Singer, B.S., Jiménez, N.C. & Ort, M.H. (2011) 40Ar/39Ar chronostratigraphy of Altiplano‐Puna volcanic complex ignimbrites reveals the development of a major Magmatic Province. Geol. Soc. Am. Bull., 123, 821–840.
    [Google Scholar]
  61. Sandeman, H.A., Clark, A.H. & Farrar, E. (1995) An integrated tectono‐magmatic model for the evolution of the southern Peruvian Andes (13–20°S) since 55 Ma. Int. Geol. Rev., 37, 1039–1073.
    [Google Scholar]
  62. Schaerer, U. (1984) The Effect of initial 230Th disequilibrium on young U‐Pb ages; the Makalu case, Himalaya. Earth Planet. Sci. Lett., 67, 191–204.
    [Google Scholar]
  63. Schoene, B. (2013) U‐Th‐Pb geochronology. In: Treatise on Geochemistry (Ed. by H. D.Holland & K. K.Turekian), 4, pp. 341–378. Elsevier, Oxford.
    [Google Scholar]
  64. Siks, B.C. & Horton, B.K. (2011) Growth and fragmentation of the Andean foreland basin during eastward advance of fold‐thrust deformation, Puna plateau and Eastern Cordillera, Northern Argentina. Tectonics, 30, TC6017. doi: 10.1029/2011TC00294.
    [Google Scholar]
  65. Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N. & Whitehouse, M.J. (2008) Plešovice zircon ‐ a new natural reference material for U‐Pb and Hf isotopic microanalysis. Chem. Geol., 249, 1–35.
    [Google Scholar]
  66. Stacey, J.S. & Kramers, J.D. (1975) Approximation of terrestrial lead isotope evolution by a 2‐stage model. Earth Planet. Sci. Lett., 2, 207–221.
    [Google Scholar]
  67. Starck, D., Anzotegui, L.M., Gonzalez‐Bonorino, G., Kraemar, P. & Re, G. (2001) The late miocene climatic change; persistence of a climatic signal through the orogenic stratigraphic record in Northwestern Argentina. J. S. Am. Earth Sci., 14, 763–774.
    [Google Scholar]
  68. Strecker, M.R., Alonso, R.N., Bookhagen, B., Carrapa, B., Hilley, G.E., Sobel, E.R. & Trauth, M.H. (2007) Tectonics and climate of the southern central Andes. Annu. Rev. Earth Planet. Sci., 35, 747–787.
    [Google Scholar]
  69. Streit, R.L., Burbank, D.W., Strecker, M.R., Alonso, R.N., Cottle, J.M. & Kylander‐Clark, AR. (2015) Controls on intermontane basin filling, isolation, and incision on the margin of the Puna Plateau, NW Argentina (~23°S). Basin Res.Suppl., 1, 131–155.
    [Google Scholar]
  70. Tauxe, L. & Watson, G.S. (1994) The fold test: an Eigen analysis approach. Earth Planet. Sci. Lett., 122, 331–341.
    [Google Scholar]
  71. Uba, C.E., Kley, J., Strecker, M.R. & Schmitt, A.K. (2009) Unsteady evolution of the Bolivian Subandean thrust belt: the role of enhanced erosion and Clastic wedge Progradation. Earth Planet. Sci. Lett., 281, 134–146.
    [Google Scholar]
  72. Viramonte, J.G., Kay, S.M., Becchio, R., Escayola, M. & Novitski, I. (1999) Cretaceous rift related Magmatism in central‐western South America. J. S. Am. Earth Sci., 12, 109–121.
    [Google Scholar]
  73. Wark, D.A. & Watson, E.B. (2006) Titaniq: a titanium‐in‐quartz Geothermometer. Contrib. Miner. Petrol., 152, 743–754.
    [Google Scholar]
  74. Wiedenbeck, M. (1995) Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and Ree analyses. Geostandards Newslett., 19, 1–23.
    [Google Scholar]
  75. Woodhead, J.D., Hellstrom, J., Hergt, J.M., Greig, A. & Maas, R. (2007) Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma‐mass spectrometry. Geostand. Geoanal. Res., 31, 331–343.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12139
Loading
/content/journals/10.1111/bre.12139
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error