1887
image of Linking sedimentation rates and large‐scale architecture for facies prediction in nonmarine basins (Paleogene, Almazán Basin, Spain)

Abstract

Abstract

This article focuses on the relationships between the large‐scale stratigraphic architecture of the Almazán basin infill and the sedimentation rates (SR) calculated for precise time intervals. Our aim was to improve the understanding of the timing and causes of the architectural changes, their significance in terms of accommodation space and sediment supply and their relationship with climate and tectonics. The study area includes the Gómara fluvial fan, the main sediment transfer system of the Almazán basin during Paleogene times. Its large‐scale architecture shifted through time between a stacking pattern of low density ribbon‐like and high density sheet‐like channel fills. Laterally to the fluvial system, mudstone and evaporitic mudstone units represented evaporitic mudflats which passed laterally into palustrine/lacustrine limestone units interpreted as lakes and ponds. Stacked calcretes occurred in distal alluvial and distal floodplain settings. A magnetostratigraphy encompassing 2600 m guided by available fossil mammal biochronology has provided a temporal framework that spans the complete Paleogene infill of the basin, from Late Lutetian to Late Oligocene, filling a gap in the Cenozoic chronostratigraphy of Spanish basins. This permits to constrain the kinematics of the structures both in the basin and in its margins, and to provide the timing for the depositional sequences. These data, combined with a magnetostratigraphic map, where magnetic reversals were traced through the Gómara monocline, allow a detailed analysis of the SR variability across the fluvial system and its adjacent depositional environments. The results show that high sedimentation rates (around 30–40 cm kyr−1) are related to fluvial environments with low density ribbon‐shaped channels, while low SR (around or below 10 cm kyr−1) are related to high density sheet‐like channels. Laterally, mud dominated environments with high SR (15–20 cm kyr−1) grade into palustrine/lacustrine carbonated environments with low SR (around 9 cm ky−1). The lowest SR (about 3 cm kyr−1) are related to the development of stacked calcrete profiles in distal floodplain and in the connection of distal alluvial and palustrine/lacustrine units.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12145
2015-07-20
2024-04-20
Loading full text...

Full text loading...

References

  1. Abdul‐Aziz, H., Hilgen, F., Krijgsman, W., Sanz, E. & Calvo, J.P. (2000) Astronomical forcing of sedimentary cycles in the middle to late Miocene continental Calatayud Basin (NE Spain). Earth Planet. Sci. Lett., 177, 9–22.
    [Google Scholar]
  2. Abels, H.A., Dupont‐Nivet, G., Xiao, G.Q., Bosboom, R. & Krijgsman, W. (2011) Step‐wise change of Asian interior climate preceeding the Eocene‐Oligocene Transition (EOT). Paleogeogr. Paleoclimatol. Palaeocol., 299, 399–412.
    [Google Scholar]
  3. Abels, H.A., Kraus, M.J. & Gingerich, P.D. (2013) Precession‐scale cyclicity in the fluvial lower Eocene Willwood Formation of the Bighorn Basin, Wyoming (USA). Sedimentology, 60, 1467–1483.
    [Google Scholar]
  4. Allen, J.R.L. (1978) Studies in fluviatile sedimentation: an exploratory quantitative model for the architecture of avulsion‐controlled alluvial suites. Sediment. Geol., 21, 129–147.
    [Google Scholar]
  5. Alonso‐Zarza, A.M. (2003) Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth‐Sci. Rev., 60, 261–298.
    [Google Scholar]
  6. Alonso‐Zarza, A.M., Calvo, J.P. & García Del Cura, M.A. (1992) Palustrine sedimentation and associated features ‐grainification and pseudo‐microkarst‐ in the Middle Miocene (Intermediate Unit) of the Madrid Basin, Spain. Sediment. Geol., 76, 43–61.
    [Google Scholar]
  7. Alonso‐Zarza, A.M., Sopeña, A. & Sanchez‐Moya, Y. (1999) Contrasting palaeosol development in two different tectonic settings: the Upper Buntsandstein of the Western Iberian Ranges, Central Spain. Terra Nova, 11, 23–29.
    [Google Scholar]
  8. Alonso‐Zarza, A.M., Dorado‐Valiño, M., Valdeolmillos‐Rodríguez, A. & Ruiz‐Zapata, M.B. (2006) A recent analogue for palustrine carbonate environments: the Quaternary deposits of Las Tablas de Daimiel wetlands, Ciudad Real, Spain. In: Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates (Ed. by Alonso‐ZarzaA.M. & TannerL.H.) Geol. Soc. London. Spec. Publ., 416, 153–168.
    [Google Scholar]
  9. Alonso‐Zarza, A., Meléndez, A., Martín‐García, R., Herrero, M.J. & Martín‐Pérez, A. (2012) Discriminating between tectonism and climate signatures in palustrine deposits: lessons from the Miocene of the Teruel Graben, NE Spain. Earth‐Sci. Rev., 113, 141–160.
    [Google Scholar]
  10. Armenteros, I. & Huerta, P. (2006) The role of clastic sediment influx in the formation of calcrete and palustrine facies: a response to paleographic and climatic conditions in the southeastern Tertiary Duero basin (northern Spain). Geol. Soc. Am. Spec., 416, 119–132.
    [Google Scholar]
  11. Armenteros, I., Daley, B. & Garcia, E. (1997) Lacustrine and palustrine facies in the Bembridge Limestone (late Eocene, Hampshire Basin) of the Isle of Wight, southern England. Palaeogeogr. Palaeoclimatol. Palaeoecol., 128, 111–132.
    [Google Scholar]
  12. Armenteros, I., Bustillo, M.A. & Huerta, P. (2006) Ciclos climáticos en un sistema lacustre marginal perenne carbonatado‐evaporítico. Formación Deza, Eoceno superior, cuenca de Almazán. Geo‐temas, 9, 25–30.
    [Google Scholar]
  13. Armitage, J.J., Duller, R.A., Whittaker, A.C. & Allen, P. (2011) Transformation of tectonic and climatic signals from source to sedimentary archive. Nat. Geosci., 1–5, doi: 10.1038/NGEO1087.
    [Google Scholar]
  14. Badiola, A., Checa, L., Cuesta, M.A., Quer, R., Hooker, J.J., Astibia, H., Natural, T. & Museum, H. (2009) The role of new Iberian finds in understanding European Eocene mammalian paleobiogeography. Geol. Acta, 7, 243–258.
    [Google Scholar]
  15. Bohacs, K.M., Carroll, A.R., Nede, J.E. & Mankirowicz, P.J. (2000) Lake‐Basin type, source potential and hydrocarbon character: An integrated sequence‐stratigraphic‐geochemical framework. In: Lake Basins through Space and Time (Ed. by E.H.Gierlowski‐Kordesch & K.R.Kelts) Aapg Stud. Geol., 46, 3–33. American Association of Petroleum Geologists, Tulsa, OK, U.S.A.
    [Google Scholar]
  16. Bridge, J.S. & Leeder, M.R. (1979) A simulation model of alluvial stratigraphy. Sedimentology, 26, 617–644.
    [Google Scholar]
  17. Bryant, M., Falk, P. & Paola, C. (1995) Experimental study of avulsion frequency and rate of deposition. Geology, 23, 365–368.
    [Google Scholar]
  18. Calvo, J.P., Daams, R., Morales, J., López Martínez, N., Agustí, J., Anadón, P., Armenteros, I., Cabrera, L., Civis, J., Corrochano, A., Díaz Molina, M., Elizaga, E., Hoyos, M., Martín‐Suárez, E., Martínez, J., Moissenet, E., Muñoz, A. & Pérez García, A. (1993) Up‐to‐date Spanish continental neogene synthesis and paleoclimatic interpretation. Revista de la Sociedad Geológica de España, 6, 29–40.
    [Google Scholar]
  19. Carroll, A.R. & Bohacs, K.M. (1999) Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology, 27, 99–102.
    [Google Scholar]
  20. Casas, A.M. (1990) El frente Norte de la Sierra de Cameros: Estructuras cabalgantes y campo de esfuerzos. PhD Thesis, Universidad de Zaragoza, Zaragoza.
  21. Casas‐Sainz, A.M. (1993) Oblique tectonic inversion and basement thrusting in the Cameros Massif (Northern Spain). Geodin. Acta, 6, 202–216.
    [Google Scholar]
  22. Casas‐Sainz, A.M., Cortés‐García, A.L. & Maestro‐González, A. (2000) Intraplate deformation and basin formation during the Tertiary within the northern Iberian plate: origin and evolution of the Almazán basin. Tectonics, 19, 258–289.
    [Google Scholar]
  23. Casas‐Sainz, A.M., Cortés, A.L. & Maestro, A. (2002) Sequential limb rotation and kink‐band migration recorded by growth strata, Almazán Basin, North Spain. Sediment. Geol., 146, 25–45.
    [Google Scholar]
  24. Castelltort, S. & Van Der Driessche, J. (2003) How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sediment. Geol., 157, 3–13.
    [Google Scholar]
  25. Catuneanu, O. (2006) Principles of Sequence Stratigraphy. Elsevier, Amsterdam.
    [Google Scholar]
  26. Catuneanu, O. & Elango, H.N. (2001) Tectonic control on fluvial styles: the Balfour formation of the Karoo Basin, South Africa. Sediment. Geol., 140, 291–313.
    [Google Scholar]
  27. Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrookl, J.M., Jordan, R., Kendall, C.G.S.T.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E. & Winker, C. (2009) Towards the standardization of sequence stratigraphy. Earth Sci. Rev., 92, 1–33.
    [Google Scholar]
  28. Colombera, L., Mountney, N.P. & Mccaffrey, W.D. (2015) A meta‐study of relationships between fluvial channel‐body stacking pattern and aggradation rate: implications for sequence stratigraphy. Geology, 43 (4), 283–286.
    [Google Scholar]
  29. Cuesta, M.A. & Jiménez, E. (1994) Síntesis del Paleógeno del borde oriental de la cuenca de Almazán (Soria): Vertebrados de Mazaterón. Stud. Geol. Salmatic., XXIX, 157–170.
    [Google Scholar]
  30. Daniels, J.M. (2003) Floodplain aggradation and pedogenesis in a semiarid environment. Geomorphology, 56, 2252242.
    [Google Scholar]
  31. Del Rio, P., Barbero, L. & Stuart, F.M. (2009) Exhumation of the Sierra de Cameros (Iberian Range, Spain): constraints from low‐temperature thermochronology. Geol. Soc. London. Spec. Publ., 324, 153–166.
    [Google Scholar]
  32. Edgar, K.M., Wilson, P.A., Sexton, P.F., Gibbs, S.J., Roberts, A.P. & Norris, R.D. (2010) New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 297, 670–682.
    [Google Scholar]
  33. Ezquerro, L., Luzón, A., Navarro, M., Liesa, C.L. & Simón, J.L. (2014) Climatic vs. tectonic signals in a continental extensional basin (Teruel, Ne Spain) from stable isotope (δ18O) and sequence stratigraphical evolution. Terra Nova, 26, 337–346.
    [Google Scholar]
  34. Gradstein, F.M., Ogg, J.G., Schmitz, M. & Ogg, G. (2012) The Geologic Time Scale 2012. Elsevier, Cambridge University Press, Cambridge.
    [Google Scholar]
  35. Guimerà, J., Alonso, A. & Mas, R. (1995) Inversion of an Extensional Ramp Basin by a Neoformed thrust: the Cameros Basin (N Spain). In: Basin Inversion (Ed. by BuchananJ.G. & BuchananP.G.) Geol. Soc. Spec. Pub., 88, 433–453.
    [Google Scholar]
  36. Hajek, E.A., Heller, P.L. & Schur, E.L. (2012) Field test of autogenic control on alluvial stratigraphy (Ferris Formation, Upper Cretaceous‐Paleogene, Wyoming). Geol. Soc. Am. Bull., 124, 1898–1912.
    [Google Scholar]
  37. Heller, P.L. & Paola, C. (1996) Downstream changes in alluvial architecture: an exploration of controls on channel‐stacking patterns. J. Sediment. Res., 66, 297–306.
    [Google Scholar]
  38. Hickson, T.A., Sheets, B.A., Paola, C. & Kelberer, M. (2005) Experimental test of tectonic controls on three‐dimensional alluvial facies architecture. J. Sediment. Res., 75, 710–722.
    [Google Scholar]
  39. Hilgen, F.J., Hinnov, L.A., Abdul Aziz, H., Abels, H.A., Batenburg, S., Bosmans, J.H.C., De Boer, B., Hüsing, S.K., Kuiper, K.F., Lourens, L.J., Rivera, T., Tuenter, E., Van De Wal, R.S.W., Wotzlaw, J.‐F. & Zeeden, C. (2014) Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy. In: Strata and Time: Probing the Gaps in Our Understanding (Ed. by SmithD.G., BaileyR.J., BurgessP.M. & FraserA.J.) Geol. Soc. London. Spec. Publ., 404. doi: 10.1144/SP404.12.
    [Google Scholar]
  40. Huerta, P. (2007) El Paleógeno de la cuenca de Almazán. Relleno de una cuenca piggyback. PhD Thesis, Universidad de Salamanca, Salamanca, Spain.
  41. Huerta, P. & Armenteros, I. (2004) Asociaciones de carbonatos continentales en el Eoceno de la Cuenca de Almazán. Geo‐temas, 6, 75–78.
    [Google Scholar]
  42. Huerta, P. & Armenteros, I. (2005) Calcrete and palustrine assemblages on a distal alluvial‐floodplain: a response to local subsidence (Miocene of the Duero basin, Spain). Sediment. Geol., 177, 253–270.
    [Google Scholar]
  43. Huerta, P., Armenteros, I., Recio, C. & Blanco, J.A. (2010) Palaeogroundwater evolution in playa–lake environments. Sedimentary facies and stable isotope record (Palaeogene, Almazán basin, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol., 286, 135–148.
    [Google Scholar]
  44. Huerta, P., Armenteros, I. & Silva, P.G. (2011) Large‐scale architecture in non‐marine basins: the response to the interplay between accommodation space and sediment supply. Sedimentology, 58, 1716–1736.
    [Google Scholar]
  45. Ji, J., Luo, P., White, P., Jiang, H., Gao, L. & Ding, Z. (2008) Episodic uplift of the Tianshan Mountains sice the Late Oligocene constrained by magnetostratigraphy of the Jingou River section, in the southern margin of the Junggar Basin, China. J. Geophys. Res., 113, B05102.
    [Google Scholar]
  46. Jo, H.R. & Chough, S.K. (2001) Architectural analysis of fluvial sequences in the northwestern part of Kyongsang Basin (Early Cretaceous), SE Korea. Sed. Geol., 144, 307–334.
    [Google Scholar]
  47. Johnson, N.M., Sheikh, K.A., Dawson‐Saunders, E. & Mcrae, L.E. (1988) The use of magnetic‐reversal time lines in stratigraphic analysis: a case study in measuring variability in sedimentation rates. In: New Perspectives in Basin Analysis (Ed. by K.L.Kleinspehn & C.Paola), pp. 189–200. Springer‐Verlag, New York.
    [Google Scholar]
  48. Kirschvink, J.L. (1980) The least‐squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Int., 62, 699–718.
    [Google Scholar]
  49. Leeder, M.R. (1993) Tectonic controls upon drainage basin development, river channel migration and alluvial architecture: implications for hydrocarbon reservoir development characterization. In: Characterization of Fluvial and Aeolian Reservoirs (Ed. by North ColinP. & ProsserD.J.) Geol. Soc. Spec. Pub., 73, 7–22. Geological Society of London, London.
    [Google Scholar]
  50. Legarreta, L. & Uliana, M.A. (1998) Anatomy of hinterland depositional sequences: upper Cretaceous fluvial strata, Neuquén basin, west‐central Argentina. In: Relative role of Eustasy, Climate, Tectonism in Continental Rocks (Ed. by K.W.Shanley & P.J.McCabe) SEPM Spec. Publ., 59, 83–92. Society of Economic Paleontologists and Mineralogists, Tulsa, OK, USA.
    [Google Scholar]
  51. López Martínez, N., Agustí, J., Cabrera, L., Calvo, J.P., Civis, J., Corrochano, A., Daams, R., Díaz, M., Elízaga, E., Hoyos, M., Martínez, J., Morales, J., Portero, J., Robles, F., Santisteban, C. & Torres, T. (1987) Approach to the Spanish continental neogene synthesis and paleoclimatic interpretation. Ann. Inst. Geol. Public. Hung., 70, 383–391.
    [Google Scholar]
  52. Machette, M.N. (1985) Calcic soils of southwestern United States. In: Soil and Quaternary Geology of the Southwestern United States (Ed. by WeideD.L.) Geol. Soc. Am. Spec., 203, 1221.
    [Google Scholar]
  53. Mackey, S.D. & Bridge, J.S. (1995) Three‐dimensional model of alluvial stratigraphy: theory and application. J. Sediment. Res., 65, 7–31.
    [Google Scholar]
  54. Miall, A.D. (2014) Fluvial Depositional Systems. Springer, New York.
    [Google Scholar]
  55. Michael, N.A., Whittaker, A.C., Carter, A. & Allen, P.A. (2014) Volumetric budget and grain‐size fractionation of a geological sediment routing system: Eocene Escanilla Formation, south‐central Pyrenees. Geol. Soc. Am. Bull., 126, 585–599.
    [Google Scholar]
  56. Mitchum, R.M.Jr, Vail, P.R. & Thompson, S.III (1977) Seismic stratigraphy and global changes of sea level. Part 2: The depositional sequence as a basic unit for stratigraphic analysis. In: Seismic Stratigraphy; Applications to Hydrocarbon Exploration (Ed. by C.E.Payton) AAPG Mem., 26, 53–62. American Association of Petroleum Geologists, Tulsa, OK.
    [Google Scholar]
  57. Muñoz‐Jiménez, A. & Casas‐Sainz, A.M. (1997) The Rioja Trough (N Spain): Tectosedimentary Evolution of a Symmetric Foreland Basin. Basin Res., 9, 65–85.
    [Google Scholar]
  58. Muto, T. & Steel, R.J. (1997) Principles of regression and transgression: the nature of the interplay between accommodation and sediment supply. J. Sediment. Res., 67, 994–1000.
    [Google Scholar]
  59. Muto, T. & Steel, R.J. (2000) The accommodation concept in sequence stratigraphy: some dimensional problems and possible redefinition. Sediment. Geol., 130, 1–10.
    [Google Scholar]
  60. Navarro Váquez, D. (1991.Mapa Geológico de España 1:50000, Hoja 350 (Soria), ITGE. Madrid.
  61. Paola, C. & Martin, J.M. (2012) Mass‐balance effects in depositional systems. J. Sediment. Res., 82, 435–450.
    [Google Scholar]
  62. Posamentier, H.W. & Vail, P.R. (1988) Eustatic controls on clastic deposition. II: Sequence and systems tract models. In: Sea‐Level Changes‐An Integrated Approach (Ed. by C.K.Wilgus, B.S.Hastings, C.S.C.Kendall, H.W.Posamentier, C.A.Ross & J.C.Van Wagoner) SEPM, 42, 125–154. OK, USA.
    [Google Scholar]
  63. Rosenbaum, G., Lister, G.S. & Duboz, C. (2002) Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics, 359, 117–129.
    [Google Scholar]
  64. Shanley, K.W. & McCabe, P.J. (1991) Predicting facies architecture through sequence stratigraphy ‐an example from the Kaiparowits Plateau, Utah. Geology, 19, 742–745.
    [Google Scholar]
  65. Sheets, B.A., Hickson, T.A. & Paola, C. (2002) Assembling the stratigraphic record: depositional paterns and time‐scales in an experimental alluvial basin. Basin Res., 14, 287–301.
    [Google Scholar]
  66. Smith, M.E., Carroll, A.R. & Singer, B.S. (2008) Synoptic reconstruction of a major Ancient Lake System: Eocene Green River Formation Western United States. Geol. Soc. Am. Bull., 120, 54–84.
    [Google Scholar]
  67. Strong, N., Sheets, B.A., Hickson, T.A. & Paola, C. (2005) A mass‐balance framework for quantifying downstream changes in fluvial architecture. In: Fluvial Sedimentology VII (Ed. by BlumM.D., MarriottS.B. & LeclairS.) Int. As. Sed., 35, 243–253. Blackwell.
    [Google Scholar]
  68. Tandon, S.K., Andrews, J.E., Sood, A. & Mittal, S. (1998) Shrinkage and sediment supply control on multiple calcrete profile development: a case study from the Maastrichtian of Central India. Sediment. Geol., 119, 25–45.
    [Google Scholar]
  69. Törnqvist, T.E. (1994) Middle and late Holocene avulsion history of the River Rhine (Rhine‐Meuse delta, Netherlands). Geology, 22, 711–714.
    [Google Scholar]
  70. Vail, P.R. & Mitchum, R.M.Jr (1977) Seismic Stratigraphy and global changes of sea level. Part 1: Overview. In: Seismic Stratigraphy ‐ Applications to Hydrocarbon Exploration (Ed. by C.E.Payton) AAPG Mem., 26, 51–52. American Association of Petroleum Geologists, Tulsa, OK.
    [Google Scholar]
  71. Valero, L., Garcés, M., Cabrera, L., Costa, E. & Sáez, A. (2014) 20 Myr of eccentricity paced lacustrine cycles in the Cenozoic Ebro Basin. Earth Planet. Sci. Lett., 408, 183–193.
    [Google Scholar]
  72. Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M.Jr, Vail, P.R., Sarg, J.F., Loutit, T.S. & Hardenbol, J. (1988) An overview of the fundamentals of sequence stratigraphy and key definitions. In: Sea‐Level Changes‐An Integrated Approach (Ed. by C.K.Wilgus, B.S.Hastings, C.S.C.Kendall, H.W.Posamentier, C.A.Ross & J.C.Van Wagoner) SEPM, 42, 39–45. OK, USA.
    [Google Scholar]
  73. Wright, V.P. & Marriott, S.B. (1993) The sequence stratigraphy of fluvial depositional systems: the role of floodplain sediment storage. Sediment. Geol., 86, 203–210.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12145
Loading
/content/journals/10.1111/bre.12145
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error