1887
Volume 29, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

Integrated analysis of high‐quality three‐dimensional (3D) seismic, seabed geochemistry, and satellite‐based surface slick data from the deep‐water Kwanza Basin documents the widespread occurrence of past and present fluid flow associated with dewatering processes and hydrocarbon migration. Seismic scale fluid flow phenomena are defined by seep‐related seafloor features including pockmarks, mud or asphalt volcanoes, gas hydrate pingoes, as well as shallow subsurface features such as palaeo‐pockmarks, direct hydrocarbon indicators (DHIs), pipes and bottom‐simulating reflections (BSRs). BSR‐derived shallow geothermal gradients show elevated temperatures attributed to fluid advection along inclined stratigraphic carrier beds around salt structures in addition to elevated shallow thermal anomalies above highly conductive salt bodies. Seabed evidences of migrated thermogenic hydrocarbons and surface slicks are used to differentiate thermogenic hydrocarbon migration from fluid flow processes such as dewatering and biogenic gas migration. The analysis constrains the fluid plumbing system defined by the three‐dimensional distribution of stratigraphic carriers and seal bypass systems through time. Detailed integration and iterative interpretation have confirmed the presence of mature source rock and effective migration pathways with significant implications for petroleum prospectivity in the post‐salt interval. Integration of seismic, seabed geochemistry and satellite data represents a robust method to document and interpret fluid flow phenomena along continental margins, and highlights the importance of integrated fluid flow studies with regard to petroleum exploration, submarine geohazards, marine ecosystems and climate change.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12169
2016-01-20
2020-05-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/29/2/bre12169.html?itemId=/content/journals/10.1111/bre.12169&mimeType=html&fmt=ahah

References

  1. Abrams, M.A. (1992) Geophysical and geochemical evidence for subsurface hydrocarbon leakage in the Bering Sea. Alaska Mar. Petrol. Geol., 9(2), 208–221.
    [Google Scholar]
  2. Abrams, M.A. (2005) Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Mar. Pet. Geol., 22(4), 457–477.
    [Google Scholar]
  3. Abrams, M.A. (2013) Best Practices for the Collection, Analysis, and Interpretation of Seabed Geochemical Samples To Evaluate Subsurface Hydrocarbon Generation and Entrapment.
  4. Aharon, P., Roberts, H.H. & Snelling, R. (1992) Submarine venting of brines in the deep Gulf of Mexico: observations and geochemistry. Geology, 20(6), 483–486.
    [Google Scholar]
  5. Ala, M.A. & Selley, R.C. (1997), Chapter 8 The West African Coastal Basins. In: Sedimentary Basins of the World (Ed. by R.C.Selley ), pp. 173–186, Elsevier, The Netherlands.
    [Google Scholar]
  6. Alsop, G.I. (1996) Physical modelling of fold and fracture geometries associated with salt diapirism. Geol. Soc. Lond. Spec. Publ., 100(1), 227–241.
    [Google Scholar]
  7. Andresen, K.J. & Huuse, M. (2011) ‘Bulls‐eye’ pockmarks and polygonal faulting in the Lower Congo Basin: relative timing and implications for fluid expulsion during shallow burial. Mar. Geol., 279(1–4), 111–127.
    [Google Scholar]
  8. Andresen, K.J., Huuse, M., Schødt, N.H., Clausen, L. & Seidler, L. (2011) Hydrocarbon plumbing systems of salt minibasins offshore Angola revealed by three‐dimensional seismic analysis. AAPG Bull., 95(6), 1039–1065.
    [Google Scholar]
  9. Anka, Z., Berndt, C. & Gay, A. (2012) Hydrocarbon leakage through focused fluid flow systems in continental margins. Mar. Geol., 332–334, 1–3.
    [Google Scholar]
  10. Barry, M.A., Boudreau, B.P. & Johnson, B.D. (2012) Gas domes in soft cohesive sediments. Geology, 40(4), 379–382.
    [Google Scholar]
  11. Beglinger, S.E., Doust, H. & Cloetingh, S. (2012) Relating petroleum system and play development to basin evolution: west African South Atlantic basins. Mar. Pet. Geol., 30(1), 1–25.
    [Google Scholar]
  12. Berndt, C. (2005) Focused fluid flow in passive continental margins. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci., 363(1837), 2855–2871.
    [Google Scholar]
  13. Berndt, C., Bünz, S., Clayton, T., Mienert, J. & Saunders, M. (2004) Seismic character of bottom simulating reflectors: examples from the mid‐Norwegian margin. Mar. Pet. Geol., 21(6), 723–733.
    [Google Scholar]
  14. Bjørlykke, K. (1993) Fluid flow in sedimentary basins. Sed. Geol., 86(1–2), 137–158.
    [Google Scholar]
  15. Brice, S.E., Cochran, M.D., Pardo, G. & Edwards, A.D. (1982), Tectonics and sedimentation of the South Atlantic rift sequences: Cabinda, Angola. In: Studies in Continental Margin Geology (Ed. by J.S.Watkins & C.L.Drake ), pp. 5–18, American Association of Petroleum Geologists, Tulsa.
    [Google Scholar]
  16. Brooks, J.M., Kennicutt, M.C.II, Barnard, L.A., Denoux, G.J. & Carey, B.D.Jr (1983) Applications of Total Scanning Fluorescence to Exploration Geochemistry. pp. 393–400, Offshore Technology Conference.
  17. Brownfield, M.E. & Charpentier, R.R. (2006) Geology and total petroleum systems of the West‐Central Coastal Province (7203), West Africa. Geol. Surv. Bull., 2207‐B, 52.
    [Google Scholar]
  18. Burwood, R. (1999) Angola: source rock control for Lower Congo Coastal and Kwanza Basin petroleum systems. Geol. Soc. Lond. Spec. Publ., 153(1), 181–194.
    [Google Scholar]
  19. Cartwright, J. (2007) The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins. J. Geol. Soc., 164(5), 881–893.
    [Google Scholar]
  20. Cartwright, J., Huuse, M. & Aplin, A. (2007) Seal bypass systems. AAPG Bull., 91(8), 1141–1166.
    [Google Scholar]
  21. Cowley, R. & O'Brien, G.W. (2000) Identification and interpretation of leaking hydrocarbons using seismic data; a comparative montage of examples from the major fields in Australia's North West Shelf and Gippsland Basin. APPEA J., 40(1), 121–150.
    [Google Scholar]
  22. Danforth, A. (1997), Petroleum systems of the Coastal Kwanza and Benguela Basins, Angola. In: Hedberg AAPG/ABGP Joint Research Symposium “Petroleum Systems of the South Atlantic Margin”, edited, November 16–19, 1997, Rio de Janeiro, Brazil.
  23. Davies, J.H. (2013) Global map of solid Earth surface heat flow. Geochem. Geophys. Geosyst., 14(10), 4608–4622.
    [Google Scholar]
  24. Dickens, G.R. & Quinby–Hunt, M.S. (1994) Methane hydrate stability in seawater. Geophys. Res. Lett., 21 (19), 2115–2118.
    [Google Scholar]
  25. Dooley, T.P., Hudec, M.R. & Jackson, M.P.A. (2012) The structure and evolution of sutures in allochthonous salt. AAPG Bull., 96(6), 1045–1070.
    [Google Scholar]
  26. Duval, B., Cramez, C. & Jackson, M.P.A. (1992) Raft tectonics in the Kwanza Basin. Angola Mar. Petrol. Geol., 9(4), 389–404.
    [Google Scholar]
  27. Evans, R., Stewart, S. & Davies, R. (2007) Phase‐reversed seabed reflections in seismic data: examples related to mud volcanoes from the South Caspian Sea. Geo‐Mar. Lett., 27(2), 203–212.
    [Google Scholar]
  28. Garcia‐Pineda, O., MacDonald, I., Zimmer, B., Shedd, B. & Roberts, H. (2010) Remote‐sensing evaluation of geophysical anomaly sites in the outer continental slope, northern Gulf of Mexico. Deep Sea Res. Part II, 57(21–23), 1859–1869.
    [Google Scholar]
  29. Gay, A., Lopez, M., Cochonat, P. & Sermondadaz, G. (2004) Polygonal faults‐furrows system related to early stages of compaction – upper Miocene to recent sediments of the Lower Congo Basin. Basin Res., 16(1), 101–116.
    [Google Scholar]
  30. Gay, A., Lopez, M., Berndt, C. & Séranne, M. (2007) Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Mar. Geol., 244(1–4), 68–92.
    [Google Scholar]
  31. Gay, A., Lopez, M., Ondreas, H., Charlou, J.L., Sermondadaz, G. & Cochonat, P. (2006) Seafloor Facies Related to Upward Methane Flux within a Giant Pockmark of the Lower Congo Basin. Mar. Geol., 226, 81–95.
    [Google Scholar]
  32. Goldhammer, R.K., Cope, M.J. & Tuitjer, E. (2002), Cretaceous Sequence Stratigraphic and Paleogeographic Evolution of the Southern Kwanza Basin, Angola: Implications for Upper Cretaceous Siliciclastic Reservoirs (abs). in AAPG Annual Meeting, edited, March 10–13, 2002, Houston, Texas.
  33. Grevemeyer, I. & Villinger, H. (2001) Gas hydrate stability and the assessment of heat flow through continental margins. Geophys. J. Int., 145, 647–660.
    [Google Scholar]
  34. Grevemeyer, I., Kopf, A.J., Fekete, N., Kaul, N., Villinger, H.W., Heesemann, M., Wallmann, K., Spieβ, V., Gennerich, H.‐H., MÜller, M. & Weinrebe, W. (2004) Fluid flow through active mud dome Mound Culebra offshore Nicoya Peninsula. Costa Rica: Evidence Heat Flow Surv. Mar. Geol., 207(1–4), 145–157.
    [Google Scholar]
  35. Guiraud, R. & Maurin, J.‐C. (1992) Early cretaceous rifts of Western and Central Africa: an overview. Tectonophysics, 213(1–2), 153–168.
    [Google Scholar]
  36. Hadley, C., Peters, D., Vaughan, A. & Bean, D. (2008) Gumusut‐Kakap Project: Geohazard Characterisation and Impact on Field Development Plans, edited, International Petroleum Technology Conference.
  37. Haq, B.U., Hardenbol, J. & Vail, P.R. (1987) Chronology of fluctuating sea levels since the triassic. Science, 235(4793), 1156–1167.
    [Google Scholar]
  38. Hartwig, A., di Primio, R., Anka, Z. & Horsfield, B. (2012) Source rock characteristics and compositional kinetic models of Cretaceous organic rich black shales offshore southwestern Africa. Org. Geochem., 51, 17–34.
    [Google Scholar]
  39. Hay, D.C. (2012), Stratigraphic Evolution of a Tortuous Corridor From The Stepped Slope of Angola. In: Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogues (Ed. by B.E.Prather , M.E.Deptuck , D.Mohrig , B.Van Hoorn , and R.B.Wynn ), pp. 163–180, SEPM (Society for Sedimentary Geology), Tulsa, OK.
    [Google Scholar]
  40. Heggland, R. (2004) Definition of geohazards in exploration 3‐D seismic data using attributes and neural‐network analysis. AAPG Bull., 88(6), 857–868.
    [Google Scholar]
  41. Hermanrud, C., Venstad, J., Cartwright, J., Rennan, L., Hermanrud, K. & Nordgård Bolås, H. (2013) Consequences of water level drops for soft sediment deformation and vertical fluid leakage. Math. Geosci., 45(1), 1–30.
    [Google Scholar]
  42. Ho, S., Cartwright, J.A. & Imbert, P. (2012) Vertical evolution of fluid venting structures in relation to gas flux, in the Neogene‐Quaternary of the Lower Congo Basin. Offshore Angola Mar. Geol., 332–334, 40–55.
    [Google Scholar]
  43. Holder, G.D., Malone, R.D. & Lawson, W.F. (1987) Effects of gas composition and geothermal properties on the thickness and depth of natural‐gas‐hydrate zones. J. Petrol. Technol., 39(9), 1147–1152.
    [Google Scholar]
  44. Hood, K.C., Wenger, L., Gross, O. & Harrison, S. (2002), Hydrocarbon Systems Analysis of the Northern Gulf of Mexico: Delineation of Hydrocarbon Migration Pathways Using Seeps and Seismic Imaging. In: Surface Exploration Case Histories: Applications of Geochemistry, Magnetics, and Remote Sensing (Ed. by D.Schumacher & L.A.LeSchack ), pp. 25–40. American Association of Petroleum Geologists and the Society of Exploration Geophysicists, Tulsa, OK.
    [Google Scholar]
  45. Hornbach, M.J., Bangs, N.L. & Berndt, C. (2012) Detecting hydrate and fluid flow from bottom simulating reflector depth anomalies. Geology, 40(3), 227–230.
    [Google Scholar]
  46. Horsfield, B. & Rullkotter, J. (1994), Diagenesis, catagenesis, and metagenisis of organic matter. In: The Petroleum System – From Source to Trap (Ed. by L.B.Magoon & W.G.Dow ), pp. 189–199. American Association of Petroleum Geologists, Tulsa.
    [Google Scholar]
  47. Hudec, M.R. & Jackson, M.P.A. (2004) Regional restoration across the Kwanza Basin, Angola: Salt tectonics triggered by repeated uplift of a metastable passive margin. AAPG Bull., 88(7), 971–990.
    [Google Scholar]
  48. Hudec, M.R. & Jackson, M.P.A. (2007) Terra infirma: Understanding salt tectonics. Earth Sci. Rev., 82(1–2), 1–28.
    [Google Scholar]
  49. Huuse, M., Jackson, C.A.L., Van Rensbergen, P., Davies, R.J., Flemings, P.B. & Dixon, R.J. (2010) Subsurface sediment remobilization and fluid flow in sedimentary basins: an overview. Basin Res., 22(4), 342–360.
    [Google Scholar]
  50. Imbert, P. & Ho, S. (2012) Seismic‐scale funnel‐shaped collapse features from the Paleocene‐Eocene of the North West Shelf of Australia. Mar. Geol., 332–334, 198–221.
    [Google Scholar]
  51. Jackson, M.P.A., Hudec, M.R. & Hegarty, K.A. (2005) The great West African Tertiary coastal uplift: fact or fiction? A perspective from the Angolan divergent margin. Tectonics, 24 (6), TC6014.
    [Google Scholar]
  52. Jones, D.O.B., Walls, A., Clare, M., Fiske, M.S., Weiland, R.J., O'Brien, R. & Touzel, D.F. (2014) Asphalt mounds and associated biota on the Angolan margin. Deep Sea Res. Part I, 94, 124–136.
    [Google Scholar]
  53. Judd, A.G. & Hovland, M. (2007) Seabed Fluid Flow: The Impact of Geology, Biology and the Marine Environment. Cambridge University Press, Cambridge.
    [Google Scholar]
  54. Karner, G.D. & Driscoll, N.W. (1999) Tectonic and stratigraphic development of the West African and eastern Brazilian Margins: insights from quantitative basin modelling. Geol. Soc. Lond. Spec. Publ., 153(1), 11–40.
    [Google Scholar]
  55. Katz, B.J. & Mello, M.R. (2000), Petroleum systems of the South Atlantic marginal basins‐an overview. In: Petroleum Systems of South Atlantic Margins (Ed. by M.R.Mello & B.J.Katz ), pp. 1–13. American Association of Petroleum Geologists, Tulsa, OK.
    [Google Scholar]
  56. Kopf, A.J. (2002) Significance of mud volcanism. Rev. Geophys., 40(2), 1005–1057.
    [Google Scholar]
  57. Lawrence, G., Fleming, A., de Farago Botella, M. & Witt, T. (1998) Offshore Basin Screening: a viable commercial application of satellite radar to oil exploration, paper presented at Integrated Systems for Commercial Remote Sensing Applications (Ref. No. 1998/207), IEE Colloquium on Integrated Systems for Commercial Remote Sensing Applications 28 Apr 1998.
  58. Ligtenberg, J.H. (2005) Detection of fluid migration pathways in seismic data: implications for fault seal analysis. Basin Res., 17(1), 141–153.
    [Google Scholar]
  59. Liu, X. & Flemings, P. (2009) Dynamic response of oceanic hydrates to sea level drop. Geophys. Res. Lett., 36 (17), L17308.
    [Google Scholar]
  60. Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., Zweng, M.M. & Johnson, D.R. (2010) World Ocean Atlas 2009, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, D.C., 184 pp.
  61. Logan, G.A., Jones, A.T., Kennard, J.M., Ryan, G.J. & Rollet, N. (2010) Australian offshore natural hydrocarbon seepage studies, a review and re‐evaluation. Mar. Pet. Geol., 27(1), 26–45.
    [Google Scholar]
  62. Løseth, H., Gading, M. & Wensaas, L. (2009) Hydrocarbon leakage interpreted on seismic data. Mar. Pet. Geol., 26(7), 1304–1319.
    [Google Scholar]
  63. Lu, Z. & Sultan, N. (2008) Empirical expressions for gas hydrate stability law, its volume fraction and mass‐density at temperatures 273.15 K to 290.15 K. Geochem. J., 42(2), 163–175.
    [Google Scholar]
  64. Lucazeau, F., Brigaud, F. & Bouroullec, J.L. (2004) High‐resolution heat flow density in the lower Congo basin. Geochem. Geophys. Geosyst., 5(3), Q03001.
    [Google Scholar]
  65. Lunde, G., Aubert, K., Lauritzen, O. & Lorange, E. (1992), Tertiary uplift of the Kwanza Basin in Angola. In: Géologie Africaine: Bulletin des Centres de Recherches Exploration‐Production Elf‐Aquitaine (Ed. by R.Curnelle ), pp. 99–117. Exploration‐Production Elf‐Aquitaine, Pau, France.
    [Google Scholar]
  66. Lundin, E.R. (1992) Thin‐skinned extensional tectonics on a salt detachment, northern Kwanza Basin. Angola Mar. Petrol. Geol., 9(4), 405–411.
    [Google Scholar]
  67. MacDonald, I.R., et al. (2004) Asphalt Volcanism and Chemosynthetic Life in the Campeche Knolls. Gulf Mexico Sci., 304(5673), 999–1002.
    [Google Scholar]
  68. Martin, V., Henry, P., Nouzé, H., Noble, M., Ashi, J. & Pascal, G. (2004) Erosion and sedimentation as processes controlling the BSR‐derived heat flow on the Eastern Nankai margin. Earth Planet. Sci. Lett., 222(1), 131–144.
    [Google Scholar]
  69. Marton, L.G., Tari, G.C. & Lehmann, C.T. (2000), Evolution of the Angolan passive margin, West Africa, with emphasis on post‐salt structural style. In: Atlantic Rifts and Continental Margins (Ed. by W.Mohriak & M.Talwani ), pp. 129–149. AGU, Washington, DC.
    [Google Scholar]
  70. Maslin, M., Owen, M., Betts, R., Day, S., Dunkley Jones, T. & Ridgwell, A. (2010) Gas hydrates: past and future geohazard?Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci., 368(1919), 2369–2393.
    [Google Scholar]
  71. McConnell, D.R., Zhang, Z. & Boswell, R. (2012) Review of progress in evaluating gas hydrate drilling hazards. Mar. Pet. Geol., 34(1), 209–223.
    [Google Scholar]
  72. Milkov, A.V. & Sassen, R. (2002) Economic geology of offshore gas hydrate accumulations and provinces. Mar. Pet. Geol., 19(1), 1–11.
    [Google Scholar]
  73. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie‐Blick, N. & Pekar, S.F. (2005) The phanerozoic record of global sea‐level change. Science, 310(5752), 1293–1298.
    [Google Scholar]
  74. Minshull, T.A. & Keddie, A. (2010) Measuring the geotherm with gas hydrate bottom‐simulating reflectors: a novel approach using three‐dimensional seismic data from the eastern Black Sea. Terra Nova, 22(2), 131–136.
    [Google Scholar]
  75. Mitchum, R.M., Vail, P.R. & Sangree, J.B. (1977), Stratigraphic interpretation of seismic reflection patterns in depositional sequences, Part 6: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: Seismic Stratigraphy‐Application to Hydrocarbon Exploration (Ed. by C.E.Payton ), pp. 117–133. American Association of Petroleum Geologists, Tulsa, OK.
    [Google Scholar]
  76. Nagihara, S., Sclater, J.G., Beckley, L.M., Behrens, E.W. & Lawver, L.A. (1992) High heat flow anomalies over salt structures on the texas continental slope, gulf of Mexico. Geophys. Res. Lett., 19, 1687–1690.
    [Google Scholar]
  77. von Nicolai, C. (2011), The Interplay of Salt Movements and Regional Tectonics at the Passive Continental Margin of the South Atlantic, Kwanza Basin. 143 pp, University of Potsdam, Potsdam.
    [Google Scholar]
  78. O'Brien, G.W., Lawrence, G.M., Williams, A.K., Glenn, K., Barrett, A.G., Lech, M., Edwards, D.S., Cowley, R., Boreham, C.J. & Summons, R.E. (2005) Yampi Shelf, Browse Basin, North‐West Shelf, Australia: a test‐bed for constraining hydrocarbon migration and seepage rates using combinations of 2D and 3D seismic data and multiple, independent remote sensing technologies. Mar. Pet. Geol., 22(4), 517–549.
    [Google Scholar]
  79. Party, S.S. (1998) Site 1078, In Wefer, G., Berger, W.H., Richter, C., Proc. ODP, Init. Repts.175, 143–176.
  80. Pufahl, P.K., Maslin, M.A., Anderson, L., Brüchert, V., Jansen, F., Lin, H., Perez, M. & Vidal, L. (1998) Lithostratigraphic summary for Leg 175: Angola‐Benguela upwelling system, Proc. ODP . Init. Repts., 175, 533–542.
    [Google Scholar]
  81. Quirk, D.G., Schødt, N., Lassen, B., Ings, S.J., Hsu, D., Hirsch, K.K. & Von Nicolai, C. (2012) Salt tectonics on passive margins: examples from Santos. Campos Kwanza Basins Geol. Soc. Lond. Spec. Publ., 363(1), 207–244.
    [Google Scholar]
  82. Roberts, H.H. (2001), Fluid and gas expulsion on the northern Gulf of Mexico continental slope: Mud‐prone to mineral‐prone responses. In: Natural gas Hydrates: Occurrence, Distribution and Detection (Ed. by C.K.Paull & W.P.Dillon ), pp. 145–161, Geophysical Monograph 124, AGU, Washington, DC.
    [Google Scholar]
  83. Roberts, H.H., Hardage, B.A., Shedd, W.W. & Hunt, J.J. (2006) Seafloor reflectivity—An important seismic property for interpreting fluid/gas expulsion geology and the presence of gas hydrate. Lead. Edge, 25(5), 620–628.
    [Google Scholar]
  84. Schollnberger, E.M. (2001) Seismic sequence stratigraphy of the Lower Congo, Kwanza, and Benguela basins, offshore Angola, Africa, PhD thesis. Rice University, Houston, TX.
  85. Serié, C. (2013) Geophysical and geochemical characterization of fluid flow phenomena in the southern Kwanza Basin, offshore Angola: implications for petroleum systems analysis and hydrocarbon prospectivity in deep‐water settings, PhD thesis. The University of Manchester, Manchester.
  86. Serié, C., Huuse, M. & Schødt, N.H. (2012) Gas hydrate pingoes: deep seafloor evidence of focused fluid flow on continental margins. Geology, 40(3), 207–210.
    [Google Scholar]
  87. Shedd, W., Boswell, R., Frye, M., Godfriaux, P. & Kramer, K. (2012) Occurrence and nature of “bottom simulating reflectors” in the northern Gulf of Mexico. Mar. Pet. Geol., 34(1), 31–40.
    [Google Scholar]
  88. Sheriff, R.E. (1985) Aspect of seismic resolution. In: Seismic Stratigraphy II: An Integrated Approach to Hydrocarbon Exploration (Ed. by O.R.Berg & D.G.Woolverton ), pp. 1–10. American Association of Petroleum Geologists, Tulsa.
    [Google Scholar]
  89. Shipley, T.H., Houston, M.H., Buffler, R.T., Shaub, F.J., McMillen, K.J., Ladd, J.W. & Worzel, J.L. (1979) Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bull., 63(12), 2204–2213.
    [Google Scholar]
  90. Singh, S.C., Minshull, T.A. & Spence, G.D. (1993) Velocity structure of a gas hydrate reflector. Science, 260(5105), 204–207.
    [Google Scholar]
  91. Sloan, E.D. & Koh, C.A. (2008), Clathrate hydrates of natural gases.
  92. Sultan, N., Cochonat, P., Foucher, J.P. & Mienert, J. (2004) Effect of gas hydrates melting on seafloor slope instability. Mar. Geol., 213(1–4), 379–401.
    [Google Scholar]
  93. Uncini, G., Brandao, M. & Giovannelli, A. (1998) Neocomian – Upper Aptian Pre‐Salt Sequence of Southern Kwanza Basin: A Regional View (abs). In: AAPG International Conference and Exhibition, edited, November 8–11, 1998, Riode Janeiro, Brazil.
    [Google Scholar]
  94. Van Rensbergen, P., Hillis, R.R., Maltman, A.J. & Morley, C.K. (2003) Subsurface sediment mobilization: introduction. Geol. Soc. Lond. Spec. Publ., 216(1), 1–8.
    [Google Scholar]
  95. Von Herzen, R.P., Hoskins, H. & Van Andel, T.H. (1972) Geophysical studies in the angola diapir field. Geol. Soc. Am. Bull., 83(7), 1901–1910.
    [Google Scholar]
  96. White, N., Thompson, M. & Barwise, T. (2003) Understanding the thermal evolution of deep‐water continental margins. Nature, 426(6964), 334–343.
    [Google Scholar]
  97. Williams, A. & Lawrence, G. (2002) The role of satellite seep detection in exploring the south atlantic's ultradeep water. In: Surface Exploration Case Histories: Applications of Geochemistry, Magnetics, and Remote Sensing (Ed. by D.Schumacher & L.A.LeSchack ), pp. 327–344, AAPG Studies in Geology No. 48 and SEG Geophysical References Series No. 11.
    [Google Scholar]
  98. Yamano, M., Uyeda, S., Aoki, Y. & Shipley, T.H. (1982) Estimates of heat flow derived from gas hydrates. Geology, 10(7), 339–343.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12169
Loading
/content/journals/10.1111/bre.12169
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error