1887
Volume 29, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The evolution of depositional systems in multiphase rifts is influenced by the selective reactivation of faults between subsequent rift phases. The Middle Jurassic to Palaeocene tectonic history of the Lofoten margin, a segment of the North Atlantic rift system, is characterised by three distinct rift phases separated by long (>20 Myr) inter‐rift periods. The initial rift phase comprised a distinct fault initiation and linkage stage, whereas the later rift phases were characterised by selective reactivation of previously linked through‐going faults which resulted in immediate rift climax. Using 2‐D and 3‐D seismic reflection data in conjunction with shallow core data we present a 100 Myr record of shallow to deep marine depositional environments that includes deltaic clinoform packages, slope aprons and turbidite fans. The rapid re‐establishment of major faults during the later rift phases impacts on drainage systems and sediment supply. Firstly, the immediate localisation of strain and accumulation of displacement on few faults results in pronounced footwall uplift and possible fault block rotation along those faults, which makes it more likely for any antecedent fault‐transverse depositional systems to become reversed. Secondly, any antecedent axially‐sourced depositional systems that are inherited from the foregoing rift phase(s) are likely to be sustained after reactivation because such axial systems have already been directed around fault tips. Hence, the immediate localisation of strain through selective reactivation in the later rift phases restricts fault‐transverse sediment supply more than axial sediment supply, which is likely to be a key aspect of the tectono‐sedimentary evolution of multiphase rifts.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12183
2016-02-15
2020-08-04
Loading full text...

Full text loading...

References

  1. Athmer, W., Groenenberg, R.M., Luthi, S.M., Donselaar, M.E., Sokoutis, D. & Willingshofer, E. (2010) Relay ramps as pathways for turbidity currents: a study combining analogue sandbox experiments and numerical flow simulations. Sedimentology, 57, 806–823.
    [Google Scholar]
  2. Baudon, C. & Cartwright, J. (2008) The kinematics of reactivation of normal faults using high resolution throw mapping. J. Struct. Geol., 30, 1072–1084.
    [Google Scholar]
  3. Bell, R.E., Jackson, C.A.‐L., Whipp, P.S. & Clements, B. (2014) Strain migration during multiphase extension: observations from the northern North Sea. Tectonics, 33, 1936–1963.
    [Google Scholar]
  4. Blystad, P., Brekke, H., Færseth, R.B., Larsen, B.T., Skogseid, J. & Tørudbakken, B. (1995) Structural elements of the Norwegian continental shelf. Part II: the Norwegian Sea Region. Norw. Petrol. Direct. Bull., 8, 1–45.
    [Google Scholar]
  5. Bøe, R., Smelror, M., Davidsen, B. & Walderhaug, O. (2008) Nearshore Mesozoic basins off Nordland, Norway: structure, age and sedimentary environment. Mar. Pet. Geol., 25, 235–253.
    [Google Scholar]
  6. Brekke, H. (2000). The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins. In: Dynamics of the Norwegian Margin (Ed. by NøttvedtA. ). Geological Society, London, Special Publication, 167, 327–378.
    [Google Scholar]
  7. Brekke, H., Sjulstad, H.I., Magnus, C. & Williams, R.W. (2001) Sedimentary environments offshore Norway— an overview. In: Sedimentary Environments Offshore Norway – Palaeozoic to Recent (Ed. by MartinsenO.J. & DreyerT. ). NPF Special Publication, 10, 7–37.
    [Google Scholar]
  8. Carroll, A.R. & Bohacs, K.M. (1999) Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology, 27, 99–102.
    [Google Scholar]
  9. Colella, A. (1988) Fault‐controlled marine Gilbert‐type fan deltas. Geology, 16, 1031–1034.
    [Google Scholar]
  10. Copestake, P., Sims, A., Crittenden, S., Hamar, G., Ineson, J., Rose, P. & Tringham, M. (2003) Lower Creataceous. In: The Millenium Atlas: Petroleum Geology of the Central and Northern North Sea (Ed. by D.Evans , C.Graham , A.Armour , P.Bathurst ), pp. 191–211. Geological Society, London.
    [Google Scholar]
  11. Cowie, P.A., Gupta, S. & Dawers, N.H. (2000) Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Res., 12, 241–261.
    [Google Scholar]
  12. Dalland, A. (1981) Mesozoic sedimentary succession at Andøy, northern Norway, and relation to structural development of the North Atlantic area. In: Geology of the North Atlantic Borderlands (Ed. by KerrandJ.W. & FergussonA.J. ). Canadian Society of Petroleum Geologists Memoir, 7, Canada, 563–584.
    [Google Scholar]
  13. Dalland, A., Worsley, D. & Ofstad, K. (1988) A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid‐ and northernNorway. Norwegian Petroleum Directorate Bulletin, 4, 65 pp.
  14. Dewhurst, D.N. & Jones, R.M. (2003) Influence of physical and diagenetic processes on fault geomechanics and reactivation. J. Geochem. Explor., 78, 153–157.
    [Google Scholar]
  15. Doré, A.G. (1992) Synoptic palaeogeography of the Northeast Atlantic Seaway: late Permian to Cretaceous. In: Basins on the Atlantic Seaboard: Petroleum Geology, Sedimentology and Basin Evolution (Ed. by ParnellJ. ). Geological Society, London, Special Publications, 62, 421–446.
    [Google Scholar]
  16. Doré, A.G., Lundin, E.R., Jensen, L.N., Birkeland, Ø., Eliassen, P.E. & Fichler, C.. (1999) Principal tectonic events in the evolution of the northwest European Atlantic margin. In: Petroleum Geology of Northwest Europe (Ed. by FleetA.J. & BoldyS.A. ). Proceedings of the 5th Conference, 41–62.
    [Google Scholar]
  17. Duffy, O.B., Bell, R.E., Jackson, C.A., Gawthorpe, R.L. & Whipp, P.S. (2015) Fault growth and interactions in a multiphase rift fault network: Horda Platform, Norwegian North Sea. J. Struct. Geol., 80, 99–119.
    [Google Scholar]
  18. Færseth, R.B. (2012) Structural development of the continental shelf offshore Lofoten‐Vesterålen, northern Norway. Norw. J. Geol., 92, 19–40.
    [Google Scholar]
  19. Færseth, R.B. & Lien, T. (2002) Cretaceous evolution in the Norwegian Sea ‐ a period of tectonic quiescence. Mar. Pet. Geol., 19, 1005–1027.
    [Google Scholar]
  20. Gawthorpe, R.L. & Hurst, J.M. (1993) Transfer zones in extensional basins: their structural style and influence on drainage development and stratigraphy. J. Geol. Soc., 150, 1137–1152.
    [Google Scholar]
  21. Gawthorpe, R.L. & Leeder, M.R. (2000) Tectono‐sedimentary evolution of active extensional basins. Basin Res., 12, 195–218.
    [Google Scholar]
  22. Gawthorpe, R.L., Fraser, A.J. & Collier, R.E.L. (1994) Sequence stratigraphy in active extensional basins: implications for the interpretation of ancient basin‐fills. Mar. Pet. Geol., 11, 642–658.
    [Google Scholar]
  23. Gernigon, L., Ringenbach, J.C., Planke, S., le Gall, B. & Jonquet‐Kolstø, H. (2003) Extension, crustal structure and magmatism at the outer Vøring Basin, Norwegian margin. J. Geol. Soc. Lond., 160, 197–208.
    [Google Scholar]
  24. Giba, M., Walsh, J.J. & Nicol, A. (2012) Segmentation and growth of an obliquely reactivated normal fault. J. Struct. Geol., 39, 253–267.
    [Google Scholar]
  25. Gjelberg, J. & Steel, R. (2012) Depositional model for the Lower Cretaceous Helvetiafjellet Formation on Svalbard–diachronous vs. layer‐cake models. Nor. J. Geol., 92, 41–53.
    [Google Scholar]
  26. Gjelberg, J.G., Enoksen, T., Kjærnes, P., Mangerud, G., Martinsen, O.J., Roe, E. & Vågenes, E. (2001) The Maastrichtian and Danian depositional setting along the eastern margin of the Møre Basin (mid‐Norwegian Shelf): implications for reservoir development of the Ormen Lange Field. In: Sedimentary Environments Offshore Norway – Palaeozoic to Recent (Ed. by MartinsenO.J. & DreyerT. ). NPF Special Publication, 10, 421–440.
    [Google Scholar]
  27. Grant, N., Bouma, N. & McIntyre, A. (1999) The Turonian play in the Faeroe–Shetland Basin. In: Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference (Ed. by A.J.Fleet & S.A.R Boldy ), pp. 661–673. Geological Society, London.
    [Google Scholar]
  28. Hansen, J.W., Bakke, S. & Fanavoll, S. (1992) Shallow drilling Nordland VI and VII 1992. IKU report 23.
  29. Hansen, J.‐A., Bergh, S.G. & Henningsen, T. (2012) Mesozoic rifting and basin evolution on the Lofoten and Vesterålen Margin, North‐Norway; time constraints and regional implications. Norw. J. Geol., 91, 203–228.
    [Google Scholar]
  30. Haq, B.U. (2014) Cretaceous eustasy revisited. Global Planet. Change, 113, 44–58.
    [Google Scholar]
  31. Helland‐Hansen, W. & Gjelberg, H. (2012) Towards a hierarchical classification of clinoforms. AAPG Search and Discovery Article #90142. AAPG Annual Convention and Exhibition, April 22–25, 2012, Long Beach.
  32. Hendriks, B.W.H., Osmundsen, P.T. & Redfield, T.F. (2010) Normal faulting and block tilting in Lofoten and Vesterålen constrained by Apatite Fission Track data. Tectonophysics, 485, 154–163.
    [Google Scholar]
  33. Henstra, G.A., Rotevatn, A., Gawthorpe, R.L. & Ravnås, R. (2015) Evolution of a major segmented normal fault during multiphase rifting: the origin of plan‐view zigzag geometry. J. Struct. Geol., 74, 45–63.
    [Google Scholar]
  34. Henza, A.A., Withjack, M.O. & Schlische, R.W. (2011) How do the properties of a pre‐existing normal‐fault population influence fault development during a subsequent phase of extension?J. Struct. Geol., 33, 1312–1324.
    [Google Scholar]
  35. Huismans, R.S. & Beaumont, C. (2007) Roles of lithospheric strain softening and heterogeneity in determining the geometry of rifts and continental margins. Geol. Soc. London Spl. Publ., 282 , 111–138.
    [Google Scholar]
  36. Jackson, C.A.L., Gawthorpe, R.L. & Sharp, I.R. (2002) Growth and linkage of the East Tanka fault zone, Suez rift: structural style and syn‐rift stratigraphic response. J. Geol. Soc., 159, 175–187.
    [Google Scholar]
  37. Jackson, C.A.L. & Rotevatn, A. (2013) 3D seismic analysis of the structure and evolution of a salt‐influenced normal fault zone: a test of competing fault growth models. J. Struct. Geol., 54, 215–234.
    [Google Scholar]
  38. Kane, I.A., Catterall, V., McCaffrey, W.D. & Martinsen, O.J. (2010) Submarine channel response to intrabasinal tectonics: the influence of lateral tilt. AAPG Bull., 94, 189–219.
    [Google Scholar]
  39. Kelly, S.R.A., Whitham, A.G., Koraini, A.M. & Price, S.R. (1998) Lithostratigraphy of the Cretaceous (Barremian‐Santonian) Hold with Hope Group, NE Greenland. J. Geol. Soc. Lond., 155, 993–1008.
    [Google Scholar]
  40. Larsen, M., Hamberg, L., Olaussen, S., Preuss, T. & Stemmerik, L. (1999) Sandstone wedges of the Cretaceous‐Lower Tertiary Kangerlussuaq Basin, East Greenland ‐ outcrop analogues to the offshore North Atlantic. In: Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference. (Ed. by A.J.Fleet & S.A.R.Boldy ), pp. 337–348. Petroleum Geology ‘86 Ltd. Published by the Geological Society, London.
    [Google Scholar]
  41. Larsen, M., Nedkvitne, T. & Olaussen, S. (2001) Lower Cretaceous (Barremian‐Albian) deltaic and shallow marine sandstones in North‐East Greenland ‐ sedimentology, sequence stratigraphy and regional implications. In: Sedimentary Environments Offshore Norway – Palaeozoic to Recent (Ed. by MartinsenO.J. & DreyerT. ). NPF Special Publication, 10, 259–278.
    [Google Scholar]
  42. Larsen, M., Rasmussen, T. & Hjelm, L. (2010) Cretaceous revisited: exploring the syn‐rift play of the Faroe‐Shetland Basin. Geol. Soc. Lond. Petrol. Geol. Conf. Ser., 7, 953–962.
    [Google Scholar]
  43. Leeder, M.R. & Gawthorpe, R.L. (1987) Sedimentary models for extensional tilt‐block/half‐graben basins. Geol. Soc. Lond. Spec. Publ., 28, 139–152.
    [Google Scholar]
  44. Leeder, M.R., Mack, G.H. & Salyards, S.L. (1996) Axial—transverse fluvial interactions in half‐graben: Plio‐Pleistocene Palomas Basin, southern Rio Grande Rift, New Mexico, USA. Basin Res., 12, 225–241.
    [Google Scholar]
  45. Lien, T. (2005) From rifting to drifting: effects on the development of deep‐water hydrocarbon reservoirs in a passive margin setting, Norwegian Sea. Nor. J. Geol., 85, 319–332.
    [Google Scholar]
  46. Løseth, H. & Tveten, E. (1996) Post‐Caledonian structural evolution of the Lofoten and Vesterålen offshore and onshore areas. Norw. J. Geol., 76, 215–230.
    [Google Scholar]
  47. Lyons, R.P., Scholz, C.A., Buoniconti, M.R. & Martin, M.R. (2011) Late Quaternary stratigraphic analysis of the Lake Malawi Rift, East Africa: an integration of drill‐core and seismic‐reflection data. Palaeogeogr. Palaeoclimatol. Palaeoecol., 303, 20–37.
    [Google Scholar]
  48. Martinsen, O.J., Lien, T. & Jackson, C. (2005) Cretaceous and Palaeogene turbidite systems in the North Sea and Norwegian Sea basins: source, staging area and basin physiography controls on reservoir development. In: Petroleum Geology: North‐West Europe and Global Perspectives – Proceedings of the 6th Petroleum Geology Conference (Ed. by A.G.Dorè , B.A.Vining ), pp. 1147–1164. Geological Society, London.
    [Google Scholar]
  49. McLeod, A., Dawers, N.H. & Underhill, J.R. (2000) The propagation and linkage of normal faults: insights from the Strathspey–Brent–Statfjord fault array, northern North Sea. Basin Res., 12, 263–284.
    [Google Scholar]
  50. Midtkandal, I. & Nystuen, J.P. (2009) Depositional architecture of a low‐gradient ramp shelf in an epicontinental sea: the lower Cretaceous of Svalbard. Basin Res., 21, 655–675.
    [Google Scholar]
  51. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E. & Pekar, S.F. (2005) The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  52. Morley, C.K. (1999) Patterns of displacement along large normal faults: implications for basin evolution and fault propagation, based on examples from East Africa. AAPG Bull., 83, 613–634.
    [Google Scholar]
  53. Morley, C.K. (2002) Evolution of large normal faults: evidence from seismic reflection data. AAPG Bull., 86, 961–978.
    [Google Scholar]
  54. Mosar, J., Eide, E.A., Osmundsen, P.T., Sommaruga, A. & Torsvik, T.H. (2002) Greenland – Norway separation: a geodynamic model for the North Atlantic. Norw. J. Geol., 82, 281–298.
    [Google Scholar]
  55. Norwegian Petroleum Directorate
    Norwegian Petroleum Directorate (2010) Geofaglig vurdering av petroleumsressursene i havområdene utenfor Lofoten. Vesterålen og Senja, Report. 93 pp.
  56. Nøttvedt, A., Johannessen, E.P. & Surlyk, F. (2008) The Mesozoic of western Scandinavia and East Greenland. Episodes, 31, 59–65.
    [Google Scholar]
  57. Prosser, S. (1993) Rift‐related linked depositional systems and their seismic expression. In: Tectonics and Seismic Sequence Stratigraphy (Ed. by G.D.Williams , A.Dobb ), pp. 35–66. The Geological Society of London, London.
    [Google Scholar]
  58. Ravnås, R. & Steel, R.J. (1998) Architecture of marine rift‐basin successions. AAPG Bull., 82, 110–146.
    [Google Scholar]
  59. Ravnås, R., Nøttvedt, A., Steel, R.J. & Windelstad, J. (2000) Syn‐rift sedimentary architectures in the Northern North Sea. In: Dynamics of the Norwegian Margin (Ed. by NøttvedtA. ). Geological Society, London, Special Publications, 167, 133–177.
    [Google Scholar]
  60. Ravnås, R., Berge, K., Campbell, H., Harvey, C. & Norton, M.J. (2014) Halten Terrace Lower and Middle Jurassic inter‐rift megasequence analysis. From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. Int. Assoc. Sedimentol. Spec. Publ., 46, 215–251.
    [Google Scholar]
  61. Rawson, P.F. & Riley, L.A. (1982) Latest Jurassic‐Early Cretaceous events and the ‘Late Cimmerian’ Unconformity in the North Sea area. AAPG Bull., 66, 2628–2648.
    [Google Scholar]
  62. Roberts, A.M., Corfield, R.I., Kusznir, N.J., Matthews, S.J., Hansen, E.‐K. & Hooper, R.J. (2009) Mapping palaeostructure and palaeobathymetry along the Norwegian Atlantic continental margin: Møre and Vøring basins. Petrol. Geosci., 15, 27–43.
    [Google Scholar]
  63. Rohais, S., Eschard, R., Ford, M., Guillocheau, F. & Moretti, I. (2007) Stratigraphic architecture of the Plio‐Pleistocene infill of the Corinth Rift, implications for its structural evolution. Tectonophysics, 440, 5–28.
    [Google Scholar]
  64. Ryseth, A. (2001) Sedimentology and palaeogeography of the statfjord formation (Rhaetian‐Sinemurian), North Sea. Nor. Petrol. Soc. Spec. Publ., 10, 67–85.
    [Google Scholar]
  65. Schlische, R.W. & Olsen, P.E. (1990) Quantitative filling model for continental extensional basins with applications to early Mesozoic rifts of eastern North America. J. Geol., 98, 135–155.
    [Google Scholar]
  66. Shanmugam, G., Lehtonen, L.R., Straume, T., Syversten, S.E., Hodgkinson, R.J. & Skibeli, M. (1994) Slump and debris flow dominated upper slope facies in the Cretaceous of the Norwegian and Northern North Seas (61–67°N): implications for sand distribution. AAPG Bull., 78, 910–937.
    [Google Scholar]
  67. Skogseid, J., Planke, S., Faleide, J.I., Pedersen, T., Eldholm, O. & Neverdal, F. (2000) NE Atlantic continental rifting and volcanic margin formation. In: Dynamics of the Norwegian Margin (Ed. by NøttvedtA. ). Geological Society, London, Special Publications, 167, 295–326.
    [Google Scholar]
  68. Smelror, M., Mørk, A., Monteil, E., Rutledge, D. & Leereveld, H. (1998) The Klippfisk Formation—a new lithostratigraphic unit of Lower Cretaceous platform carbonates on the Western Barents Shelf. Polar Res., 17, 181–202.
    [Google Scholar]
  69. Smelror, M., Mørk, M.B.E., Mørk, A., Løseth, H. & Weiss, H.M. (2001) Middle Jurassic–Lower Cretaceous transgressive–regressive sequences and facies distribution off Troms, northern Norway. In: Sedimentary Environments Offshore Norway‐Palaeozoic to Recent (Ed. by MartinsenO.J. & DreyerT. ). NPF Special Publication, 10, 211–232.
    [Google Scholar]
  70. Soreghan, M.J., Scholz, C.A. & Wells, J.T. (1999) Coarse‐grained deep‐water sedimentation along a border fault margin of Lake Malawi, Africa: seismic Stratigraphic Analysis. J. Sediment. Res., 69, 832–846.
    [Google Scholar]
  71. Steel, R.J. (1993) Triassic–Jurassic megasequence stratigraphy in the Northern North Sea: rift to post‐rift evolution. In: Geological Society, London, Petroleum Geology Conference series, vol. 4, pp. 299–315. Geological Society of London, London.
  72. Strachan, L.J., Rarity, F., Gawthorpe, R.L., Wilson, P., Sharp, I. & Hodgetts, D. (2013) Submarine slope processes in rift‐margin basins, Miocene Suez Rift, Egypt. Geol. Soc. Am. Bull., 125, 109–127.
    [Google Scholar]
  73. Surlyk, F. (1978) Submarine fan sedimentation along fault scarpson tilted fault blocks (Jurassic‐Cretaceous boundary, East Greenland). Grønl. Geol. Unders. Bull., 128, 1–108.
    [Google Scholar]
  74. Tsikalas, F., Faleide, J.I. & Eldholm, O. (2001) Lateral variations in tectono‐magmatic style along the Lofoten‐Vesterålen volcanic margin off Norway. Mar. Pet. Geol., 18, 807–832.
    [Google Scholar]
  75. Vergara, L., Wreglesworth, I., Trayfoot, M. & Richardsen, G. (2001) The distribution of Cretaceous and Palaeocene deep‐water reservoirs in the Norwegian Sea Basins. Petrol. Geosci., 7, 395–408.
    [Google Scholar]
  76. Walsh, J.J., Bailey, W.R., Childs, C., Nicol, A. & Bonson, C.G. (2003) Formation of segmented normal faults: a 3‐D perspective. J. Struct. Geol., 25, 1251–1262.
    [Google Scholar]
  77. Whitham, A.G., Price, S.R., Koraini, A.M. & Kelly, S.R.A. (1999) Cretaceous (post‐Valanginian) sedimentation and rift events in NE Greenland (71–77°). In: Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference (Ed. by A.J.Fleet & S.A.R.Boldy ), pp. 325–336. Geological Society, London.
    [Google Scholar]
  78. Whipp, P.S., Jackson, C., Gawthorpe, R.L., Dreyer, T. & Quinn, D. (2014) Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Res., 26, 523–549.
    [Google Scholar]
  79. Withjack, M.O., Schlische, R.W. & Olsen, P.E. (2002) Rift‐basin structure and its influence on sedimentary systems. In: Sedimentation in Continental Rifts (Ed. by R.W.Renaut & G.M.Ashley ). Special Publications 73. Society for Sedimentary Geology.
    [Google Scholar]
  80. Zhou, Y., Ji, Y., Pigott, J.D., Meng, Q.A. & Wan, L. (2014) Tectono‐stratigraphy of Lower Cretaceous Tanan sub‐basin, Tamtsag Basin, Mongolia: sequence architecture, depositional systems and controls on sediment infill. Mar. Pet. Geol., 49, 176–202.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12183
Loading
/content/journals/10.1111/bre.12183
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error