1887
Volume 29, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Quaternary sea‐level cycles have caused dramatic depocentre shifts near the mouths of major rivers. The effects of these shifts on fault activity in passive margin settings is poorly known, as no studies have constrained passive margin fault throw‐rate variability over 103 to 105 year time scales. Here we present 11 mean throw rates for the Tepetate–Baton Rouge fault zone along the northern Gulf of Mexico coast in southern Louisiana. These data were obtained by optically stimulated luminescence dating over time scales spanning the last interglacial to the late Holocene. The mean throw rate is . 0.22 mm year−1 during the late Holocene, . 0.03 mm year−1 during the last glacial and at least 0.07 mm year−1 during the last interglacial. Throw rates averaged over the late Pleistocene to present are spatially uniform within our study area. The temporal variability in throw rates suggests that shifts of the Mississippi River depocentre relative to this fault zone, driven by Quaternary sea‐level cycles, may have imposed a significant control on fault activity. The late Holocene throw rate is at least in the order of magnitude smaller than the rates of land‐surface subsidence in the Mississippi Delta, indicating that this fault zone is not a dominant contributor to subsidence in this region.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12184
2016-02-23
2020-03-29
Loading full text...

Full text loading...

References

  1. Adamiec, G. & Aitken, M.J. (1998) Dose‐rate conversion factors: update. Ancient TL, 16, 37–50.
    [Google Scholar]
  2. Anderson, J.E., Cartwright, J., Drysdall, S.J. & Vivian, N. (2000) Controls on turbidite sand deposition during gravity‐driven extension of a passive margin: examples from miocene sediments in block 4, Angola. Mar. Pet. Geol., 17, 1165–1203.
    [Google Scholar]
  3. Armstrong, C., Mohrig, D., Hess, T., George, T. & Straub, K.M. (2014) Influence of growth faults on coastal fluvial systems: examples from the late miocene to recent Mississippi River delta. Sed. Geol., 301, 120–132.
    [Google Scholar]
  4. Aslan, A., Autin, W.J. & Blum, M.D. (2005) Causes of river avulsion: insights from the late holocene avulsion history of the Mississippi River, U.S.A. J. Sediment. Res., 75, 650–664.
    [Google Scholar]
  5. Back, S., Tioe, H.J., Thang, T.X. & Morley, C.K. (2005) Stratigraphic development of synkinematic deposits in a large growth‐fault system, onshore brunei darussalam. J. Geol. Soc., 162, 243–257.
    [Google Scholar]
  6. Bettis, E.A.I., Muhs, D.R., Roberts, H.M. & Wintle, A.G. (2003) Last glacial loess in the conterminous USA. Quatern. Sci. Rev., 22, 1907–1946.
    [Google Scholar]
  7. Blum, M.D. & Roberts, H.H. (2012) The Mississippi delta region: past, present, and future. Annu. Rev. Earth Planet. Sci., 40, 655–683.
    [Google Scholar]
  8. ten Brink, U.S., Lee, H.J., Geist, E.L. & Twichell, D. (2009) Assessment of Tsunami hazard to the US east coast using relationships between submarine landslides and earthquakes. Mar. Geol., 264, 65–73.
    [Google Scholar]
  9. Brothers, D.S., Luttrell, K.M. & Chaytor, J.D. (2013) Sea‐level–induced seismicity and submarine landslide occurrence. Geology, 41, 979–982.
    [Google Scholar]
  10. Buffler, R.T. & Sawyer, D.S. (1985) Distribution of crust and early history, Gulf of Mexico basin. Gulf Coast Assoc. Geol. Soc. Trans., 35, 333–344.
    [Google Scholar]
  11. Cahoon, D.R., Reed, D.J. & Day, J.W.Jr (1995) Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Mar. Geol., 128, 1–9.
    [Google Scholar]
  12. Cartwright, J., Bouroullec, R., James, D. & Johnson, H. (1998) Polycyclic motion history of some gulf coast growth faults from high‐resolution displacement analysis. Geology, 26, 819–822.
    [Google Scholar]
  13. Coastal Protection and Restoration Authority of Louisiana
    Coastal Protection and Restoration Authority of Louisiana (2012) Louisiana's Comprehensive Master Plan for a Sustainable Coast. Coastal Protection and Restoration Authority of Louisiana, Baton Rouge.
    [Google Scholar]
  14. Coleman, J.M. & Roberts, H.H. (1988) Sedimentary development of the Louisiana continental shelf related to sea level cycles: part I – sedimentary sequences. Geo‐Mar. Lett., 8, 63–108.
    [Google Scholar]
  15. Counts, R.C., Murari, M.K., Owen, L.A., Mahan, S.A. & Greenan, M. (2015) Late quaternary chronostratigraphic framework of terraces and alluvium along the lower Ohio river, Southwestern Indiana and Western Kentucky, USA. Quatern. Sci. Rev., 110, 72–91.
    [Google Scholar]
  16. Cowie, P.A. & Roberts, G.P. (2001) Constraining slip rates and spacings for active normal faults. J. Struct. Geol., 23, 1901–1915.
    [Google Scholar]
  17. Crans, W., Mandl, G. & Haremboure, J. (1980) On the theory of growth faulting: a geomechanical delta model based on gravity sliding. J. Pet. Geol, 2, 265–307.
    [Google Scholar]
  18. Cunningham, R., Gisclair, D. & Craig, J. (2004) The Louisiana Statewide Lidar Project, [Online]. Available From: Ftp://Ftp-Fc.Sc.Egov.Usda.Gov/Ncgc/Products/Elevation/La-Lidar-Project.Pdf.
  19. Dokka, R.K. (2011) The role of deep processes in late 20th century subsidence of New Orleans and coastal areas of Southern Louisiana and Mississippi. J. Geophys. Res., 116, B06403.
    [Google Scholar]
  20. Dokka, R.K., Sella, G.F. & Dixon, T.H. (2006) Tectonic control of subsidence and southward displacement of southeast Louisiana with respect to stable North America. Geophys. Res. Lett., 33, L23308.
    [Google Scholar]
  21. Dutton, A. & Lambeck, K. (2012) Ice volume and sea level during the last interglacial. Science, 337, 216–219.
    [Google Scholar]
  22. Fazli Khani, H. & Back, S. (2012) Temporal and lateral variation in the development of growth faults and growth strata in western Niger Delta, Nigeria. Am. Assoc. Pet. Geol. Bull., 96, 595–614.
    [Google Scholar]
  23. Feagin, R.A., Yeager, K.M., Brunner, C.A. & Paine, J.G. (2013) Active fault motion in a coastal wetland: Matagorda, Texas. Geomorphology, 199, 150–159.
    [Google Scholar]
  24. Fisk, H.N. (1944) Geological Investigation of the Alluvial Valley of the Lower Mississippi River. Mississippi River Commission, U.S. Army Corps of Engineers, Vicksburg, MS.
    [Google Scholar]
  25. Gagliano, S.M., Kemp, E.B., Wicker, K.M., Wiltenmuth, K. & R.W., S. (2003) Neo‐tectonic framework of southeast Louisiana and applications to coastal restoration. Gulf Coast Assoc. Geol. Soc. Trans., 53, 262–272.
    [Google Scholar]
  26. Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H. & Olley, J.M. (1999) Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: Part I. experimental design and statistical models. Archaeometry, 41, 339–364.
    [Google Scholar]
  27. Galloway, W.E., Whiteaker, T.L. & Ganey‐Curry, P. (2011) History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7, 938–973.
    [Google Scholar]
  28. Gasparini, N.M., Fischer, G.C., Adams, J.M., Dawers, N.H. & Janoff, A. (2015) Morphological signatures of normal faulting in low‐gradient alluvial rivers in Southeastern Louisiana, USA. Earth Surf. Proc. Land.. doi:10.1002/esp.3852.
    [Google Scholar]
  29. Hanor, J.S. (1982) Reactivation of fault movement, tepetate fault zone, South Central Louisiana. Gulf Coast Assoc. Geol. Soc. Trans., 32, 237–245.
    [Google Scholar]
  30. Heller, P.L., Paola, C., Hwang, I.‐G., John, B. & Steel, R. (2001) Geomorphology and sequence stratigraphy due to slow and rapid base‐level changes in an experimental subsiding basin (Xes 96‐1). Am. Assoc. Pet. Geol. Bull., 85, 817–838.
    [Google Scholar]
  31. Hetzel, R. & Hampel, A. (2005) Slip rate variations on normal faults during glacial‐interglacial changes in surface loads. Nature, 435, 81–84.
    [Google Scholar]
  32. Jackson, C.A.L. (in press) Growth of a salt‐detached normal fault and controls on throw rate variability; gudrun field, south viking graben, offshore Norway. In: Brae Play (Ed. by  C.C.Turner , B.T.Cronin ). AAPG Memoir, Tulsa, Oklahoma.
    [Google Scholar]
  33. Karegar, M.A., Dixon, T.H. & Malservisi, R. (2015) A three‐dimensional surface velocity field for the Mississippi delta: implications for coastal restoration and flood potential. Geology, 46, 519–522.
    [Google Scholar]
  34. Kim, W. & Paola, C. (2007) Long‐period cyclic sedimentation with constant tectonic forcing in an experimental relay ramp. Geology, 35, 331–334.
    [Google Scholar]
  35. Kulp, M., Howell, P., Adiau, S., Penland, S., Kindinger, J. & Williams, S.J. (2002) Latest Quaternary Stratigraphic Framework of the Mississippi River Delta Region. Gulf Coast Assoc. Geol. Soc. Trans., 52, 573–582.
    [Google Scholar]
  36. Lopez, J.A., Penland, S. & Williams, J. (1997) Confirmation of active geologic faults in Lake Pontchartrain in Southeast Louisiana. Gulf Coast Assoc. Geol. Soc. Trans., 47, 299–303.
    [Google Scholar]
  37. Lowrie, A. (1986) Model for Fine‐scale movements associated with climate and sea level changes along Louisiana shelfbreak growth faults. Gulf Coast Assoc. Geol. Soc. Trans., 36, 497–509.
    [Google Scholar]
  38. Marone, C., Raleigh, C.B. & Scholz, C.H. (1990) Frictional behavior and constitutive modeling of simulated fault gouge. J. Geophys. Res., 95, 7007–7025.
    [Google Scholar]
  39. Mauz, B., Bode, T., Mainz, E., Blanchard, H., Hilger, W., Dikau, R. & Zöller, L. (2002) The luminescence dating laboratory at the University of Bonn: equipment and procedures. Ancient TL, 20, 53–61.
    [Google Scholar]
  40. Mauz, B., Packman, S. & Lang, A. (2006) The alpha effectiveness in silt‐sized quartz: new data obtained by single and multiple aliquot protocols. Ancient TL, 24, 41–52.
    [Google Scholar]
  41. McCulloh, R.P. (2001) Active Faults in East Baton Rouge Parish, Louisiana, Louisiana Geological Survey. Public information series no. 8, Baton Rouge
  42. McCulloh, R.P. & Heinrich, P.V. (2013) Surface faults of the south Louisiana growth‐fault province. Geol. Soc. Am. Spec. Pap., 493, 37–49.
    [Google Scholar]
  43. McCulloh, R.P., Heinrich, P.V. & Snead, J. (2003) Ponchatoula 30 × 60 Minute Geologic Quadrangle, Louisiana Geological Survey, Baton Rouge.
  44. Mejdahl, V. (1979) Thermoluminescence dating: beta‐dose attenuation in quartz grains. Archaeometry, 21, 61–72.
    [Google Scholar]
  45. Mouslopoulou, V., Walsh, J.J. & Nicol, A. (2009) Fault displacement rates on a range of timescales. Earth Planet. Sci. Lett., 278, 186–197.
    [Google Scholar]
  46. Murray, G.E. (1961) Geology of the Atlantic and Gulf Coastal Provinces of North America. Harper, New York.
    [Google Scholar]
  47. Murray, A.S. & Wintle, A.G. (2000) Luminescence dating of quartz using an improved single‐aliquot regenerative‐dose protocol. Radiat. Meas., 32, 57–73.
    [Google Scholar]
  48. Nicol, A., Walsh, J., Mouslopoulou, V. & Villamor, P. (2009) Earthquake histories and holocene acceleration of fault displacement rates. Geology, 37, 911–914.
    [Google Scholar]
  49. Nunn, J.A. (1985) State of stress in the Northern Gulf Coast. Geology, 13, 429–432.
    [Google Scholar]
  50. Ocamb, R.D. (1961) Growth faults of South Louisiana. Gulf Coast Assoc. Geol. Soc. Trans., 11, 139–175.
    [Google Scholar]
  51. Otvos, E.G. (2005) Numerical chronology of pleistocene coastal plain and valley development; extensive aggradation during glacial low sea‐levels. Quatern. Int., 135, 91–113.
    [Google Scholar]
  52. Peel, F.J., Travis, C.J. & Hossack, J.R. (1995) Genetic structural provinces and salt tectonics of the cenozoic offshore U.S. Gulf of Mexico: a preliminary analysis. In: Salt Tectonics: A Global Perspective (Ed. by M.P.A.Jackson , D.G.Roberts , S.Snelson ), 65, pp. 153–175. AAPG Memoir, Tulsa, Oklahoma.
    [Google Scholar]
  53. Porter, S.C. (1989) Some geological implications of average quaternary glacial conditions. Quatern. Res., 32, 245–261.
    [Google Scholar]
  54. Prescott, J.R. & Hutton, J.T. (1994) Cosmic‐ray contributions to dose‐rates for luminescence and ESR dating – large depths and long‐term time variations. Radiat. Meas., 23, 497–500.
    [Google Scholar]
  55. Rhodes, E.J. (2011) Optically stimulated luminescence dating of sediments over the past 200,000 years. Annu. Rev. Earth Planet. Sci., 39, 461–488.
    [Google Scholar]
  56. Rittenour, T.M., Blum, M.D. & Goble, R.J. (2007) Fluvial evolution of the lower Mississippi River Valley during the last 100 K.Y. Glacial cycle: response to glaciation and sea‐level change. Geol. Soc. Am. Bull., 119, 586–608.
    [Google Scholar]
  57. Roland, H.L., Hill, T.F., Autin, P., Durham, C.O. & Smith, C.G. (1981) The Baton Rouge and Denham Springs‐Scotlandville Faults: Mapping and Damage Assessment. Report prepared for Louisiana Department of Natural Resources by Louisiana Geological Survey and Durham Geological Associates Consultants, under contract no. 21576‐80‐01, Baton Rouge, Louisiana.
  58. Rowan, M.G., Trudgill, B.D. & Carl Fiduk, J. (2000) Deep‐water, salt‐cored foldbelts: lessons from the mississippi fan and perdido foldbelts, Northern Gulf of Mexico. In: Atlantic Rifts and Continental Margins (Ed. by W.Mohriak , M.Talwani ), American Geophysical Union Geophysical Monograph 115, 173–191.
    [Google Scholar]
  59. Rowland, J.C., Lepper, K., Dietrich, W.E., Wilson, C.J. & Sheldon, R. (2005) Tie channel sedimentation rates, oxbow formation age and channel migration rate from optically stimulated luminescence (OSL) analysis of floodplain deposits. Earth Surf. Proc. Land., 30, 1161–1179.
    [Google Scholar]
  60. Schuster, D.C. (1995) Deformation of allochthonous salt and evolution of related salt‐structural systems, Eastern Louisiana gulf coast. In: Salt Tectonics: A Global Perspective (Ed. by M.P.A.Jackson , D.G.Roberts , S.Snelson ), 65, pp. 177–198. AAPG Memoir, Tulsa, Oklahoma.
    [Google Scholar]
  61. Shen, Z. & Mauz, B. (2012) Optical dating of young deltaic deposits on a decadal time scale. Quat. Geochronol., 10, 110–116.
    [Google Scholar]
  62. Shen, Z., Törnqvist, T.E., Autin, W.J., Mateo, Z.R.P., Straub, K.M. & Mauz, B. (2012) Rapid and widespread response of the lower Mississippi river to eustatic forcing during the last glacial‐interglacial cycle. Geol. Soc. Am. Bull., 124, 690–704.
    [Google Scholar]
  63. Shen, Z., Törnqvist, T.E., Mauz, B., Chamberlain, E.L., Nijhuis, A.G. & Sandoval, L. (2015) Episodic overbank deposition as a dominant mechanism of floodplain and delta‐plain aggradation. Geology, 43, 875–878.
    [Google Scholar]
  64. Smith, D.E., Harrison, S. & Jordan, J.T. (2013) Sea level rise and submarine mass failures on open continental margins. Quatern. Sci. Rev., 82, 93–103.
    [Google Scholar]
  65. Steffen, R., Wu, P., Steffen, H. & Eaton, D.W. (2014) The effect of earth rheology and ice‐sheet size on fault slip and magnitude of postglacial earthquakes. Earth Planet. Sci. Lett., 388, 71–80.
    [Google Scholar]
  66. Stein, S., Sleep, N.H., Geller, R.J., Wang, S.‐C. & Kroeger, G.C. (1979) Earthquakes along the passive margin of eastern Canada. Geophys. Res. Lett., 6, 537–540.
    [Google Scholar]
  67. Stelting, C.E., Droz, L., Bouma, A.H., Coleman, J.M., Cremer, M., Meyer, A.W., Normark, W.R., O'Connell, S. & Stow, D.A.V. (1986) Late pleistocene seismic stratigraphy of the Mississippi fan. In: Initial Reports of the Deep Sea Drilling Project 96 (Ed. by K.L.Turner ), VCXI, pp. 437–456. U.S. Govt. Printing Office, Washington.
    [Google Scholar]
  68. Stirling, C.H., Esat, T.M., Lambeck, K. & McCulloch, M.T. (1998) Timing and duration of the last interglacial: evidence for a restricted interval of widespread coral reef growth. Earth Planet. Sci. Lett., 160, 745–762.
    [Google Scholar]
  69. Törnqvist, T.E., Bick, S.J., van der Borg, K. & de Jong, A.F.M. (2006a) how stable is the Mississippi delta?Geology, 34, 697–700.
    [Google Scholar]
  70. Törnqvist, T.E., Wortman, S.R., Mateo, Z.R.P., Milne, G.A. & Swenson, J.B. (2006b) Did the last sea level lowstand always lead to cross‐shelf valley formation and source‐to‐sink sediment flux?J. Geophys. Res., 111, F04002.
    [Google Scholar]
  71. Törnqvist, T.E., Wallace, D.J., Storms, J.E.A., Wallinga, J., Van Dam, R.L., Blaauw, M., Derksen, M.S., Klerks, C.J.W., Meijneken, C. & Snijders, E.M.A. (2008) Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci., 1, 173–176.
    [Google Scholar]
  72. Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E. & Labracherie, M. (2002) Sea‐level and deep water temperature changes derived from benthic foraminifera isotopic records. Quatern. Sci. Rev., 21, 295–305.
    [Google Scholar]
  73. Wolin, E., Stein, S., Pazzaglia, F., Meltzer, A., Kafka, A. & Berti, C. (2012) Mineral, Virginia, earthquake illustrates seismicity of a passive‐aggressive margin. Geophys. Res. Lett., 39, L02305.
    [Google Scholar]
  74. Wolstencroft, M., Shen, Z., Törnqvist, T.E., Milne, G.A. & Kulp, M. (2014) Understanding subsidence in the Mississippi delta region due to sediment, ice, and ocean loading: insights from geophysical modeling. J. Geophys. Res., 119, 3838–3856.
    [Google Scholar]
  75. Wood, J.R., Forman, S.L., Pierson, J. & Gomez, J. (2010) New Insights on Illinoian deglaciation from deposits of glacial lake Quincy, central Indiana. Quatern. Res., 73, 374–384.
    [Google Scholar]
  76. Woodbury, H.O., Murray, I.B.Jr, Pickford, P.J. & Akers, W.H. (1973) Pliocene and pleistocene depocenters, outer continental shelf, Louisiana and Texas. Am. Assoc. Pet. Geol. Bull., 57, 2428–2439.
    [Google Scholar]
  77. Worrall, D.M. & Snelson, S. (1989) Evolution of the Northern Gulf of Mexico, with emphasis on cenozoic growth faulting and the role of salt. In: The Geology of North America – An Overview (Ed. by A.W.Bally , A.R.Palmer ), A, pp. 97–137. Geological Society of America, The Geology of North America, Boulder, CO.
    [Google Scholar]
  78. Yeager, K.M., Brunner, C.A., Kulp, M.A., Fischer, D., Feagin, R.A., Schindler, K.J., Prouhet, J. & Bera, G. (2012) Significance of active growth faulting on marsh accretion processes in the Lower Pearl River, Louisiana. Geomorphology, 153–154, 127–143.
    [Google Scholar]
  79. Zechar, J.D. & Frankel, K.L. (2009) Incorporating and reporting uncertainties in fault slip rates. J. Geophys. Res., 114, B12407.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12184
Loading
/content/journals/10.1111/bre.12184
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error