1887
Volume 29, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Classical models of lithosphere thinning predict deep synrift basins covered by wider and thinner post‐rift deposits. However, synextensional uplift and/or erosion of the crust are widely documented in nature (e.g. the Base Cretaceous unconformity of the NE Atlantic), and generally the post‐rift deposits dominate basins fills. Accordingly, several basin models focus on this discrepancy between observations and the classical approach. These models either involve differential thinning, where the mantle thins more than the crust thereby increasing average temperature of the lithosphere, or focus on the effect of metamorphic reactions, showing that such reactions decrease the density of lithospheric rocks. Both approaches result in less synrift subsidence and increased post‐rift subsidence. The synextensional uplift in these two approaches happens only for special cases, that is for a case of initially thin crust, specific mineral assemblage of the lithospheric mantle or extensive differential thinning of the lithosphere. Here, we analyse the effects of shear heating and tectonic underpressure on the evolution of sedimentary basins. In simple 1D models, we test the implications of various mechanisms in regard to uplift, subsidence, density variations and thermal history. Our numerical experiments show that tectonic underpressure during lithospheric thinning combined with pressure‐dependent density is a widely applicable mechanism for synextensional uplift. Mineral phase transitions in the subcrustal lithosphere amplify the effect of underpressure and may result in more than 1 km of synextensional erosion. Additional heat from shear heating, especially combined with mineral phase transitions and differential thinning of the lithosphere, greatly decreases the amount of synrift deposits.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12189
2016-02-26
2020-04-05
Loading full text...

Full text loading...

References

  1. Beaumont, C., Keen, C.E. & Boutilier, R. (1982) On the evolution of rifted continental margins: comparison of models and observations for the nova scotian margin. Geophys. J. Int., 70, 667–715.
    [Google Scholar]
  2. Braun, J. & Beaumont, C. (1989) A physical explanation of the relation between flank uplifts and the breakup unconformity at rifted continental margins. Geology, 17, 760–764.
    [Google Scholar]
  3. Brekke, H., Sjulstad, H.I., Magnus, C. & Williams, R.W. (2001) Sedimentary environments offshore Norway—an overview. Norwegian Petrol. Soc. Spl. Publ., 10, 7–37.
    [Google Scholar]
  4. Burov, E. & Gerya, T. (2014) Asymmetric three‐dimensional topography over mantle plumes. Nature, 513, 85–89.
    [Google Scholar]
  5. Byerlee, J. (1978) Friction of rocks. Pure Appl. Geophys., 116, 615–626.
    [Google Scholar]
  6. Carter, N.L. & Tsenn, M.C. (1987) Flow properties of continental lithosphere. Tectonophysics, 136, 27–63.
    [Google Scholar]
  7. Chopra, P.N. & Paterson, M.S. (1981) The experimental deformation of dunite. Tectonophysics, 78, 453–473.
    [Google Scholar]
  8. Christiansson, P., Faleide, J. & Berge, A. (2000) Crustal structure in the northern North Sea: an integrated geophysical study. Spl. Publ. Geol. Soc. Lond., 167, 15–40.
    [Google Scholar]
  9. Ebinger, C.J., Karner, G.D. & Weissel, J.K. (1991) Mechanical strength of extended continental lithosphere: constraints from the western rift system, East Africa. Tectonics, 10, 1239–1256.
    [Google Scholar]
  10. Frey, F.A., Suen, C.J. & Stockman, H.W. (1985) The ronda high‐temperature peridotite – geochemistry and petrogenesis. Geochim. Cosmochim. Acta, 49, 2469–2491.
    [Google Scholar]
  11. Gabrielsen, R.H., Kyrkjebø, R., Faleide, J.I., Fjeldskaar, W. & Kjennerud, T. (2001) The cretaceous post‐rift basin configuration of the Northern North Sea. Petrol. Geosci., 7, 137–154.
    [Google Scholar]
  12. Gerya, T. (2015) Tectonic overpressure and underpressure in lithospheric tectonics and metamorphism. J. Metamorph. Geol., 33, 785–800.
    [Google Scholar]
  13. Hamdani, Y., Mareschal, J.C. & Arkani‐Hamed, J. (1994) Phase change and thermal subsidence of the williston basin. Geophys. J. Int., 116, 585–597.
    [Google Scholar]
  14. Hantschel, T. & Kauerauf, A.I. (2009) Fundamentals of Basin and Petroleum Systems Modeling. Springer‐Verlag, Berlin, Heidelberg.
    [Google Scholar]
  15. Hartz, E.H. & Podladchikov, Y.Y. (2008) Toasting the jelly sandwich: the effect of shear heating on lithospheric geotherms and strength. Geology, 36, 331–334.
    [Google Scholar]
  16. Hartz, E.H., Andresen, A., Hodges, K.V. & Martin, M.W. (2001) Syncontractional extension and exhumation of deep crustal rocks in the east greenland caledonides. Tectonics, 20, 58–77.
    [Google Scholar]
  17. Herzberg, C., Condie, K. & Korenaga, J. (2010) Thermal history of the earth and its petrological expression. Earth Planet. Sci. Lett., 292, 79–88.
    [Google Scholar]
  18. Huismans, R.S. & Beaumont, C. (2002) Asymmetric lithospheric extension: the role of frictional plastic strain softening inferred from numerical experiments. Geology, 30, 211–214.
    [Google Scholar]
  19. Jarvis, G.T. & McKenzie, D.P. (1980) Sedimentary basin formation with finite extension rates. Earth Planet. Sci. Lett., 48, 42–52.
    [Google Scholar]
  20. Kaus, B.J.P., Connolly, J.A.D., Podladchikov, Y.Y. & Schmalholz, S.M. (2005) Effect of mineral phase transitions on sedimentary basin subsidence and uplift. Earth Planet. Sci. Lett., 233, 213–228.
    [Google Scholar]
  21. Keir, D., Bastow, I.D., Whaler, K.A., Daly, E., Cornwell, D.G. & Hautot, S. (2009) Lower crustal earthquakes near the ethiopian rift induced by magmatic processes. Geochem. Geophys. Geosyst., 10, Q0AB02.
    [Google Scholar]
  22. Kyrkjebø, R., Gabrielsen, R. & Faleide, J. (2004) Unconformities related to the jurassic‐cretaceous synrift–post‐rift transition of the Northern North Sea. J. Geol. Soc., 161, 1–17.
    [Google Scholar]
  23. Mancktelow, N.S. (2008) Tectonic pressure: theoretical concepts and modelled examples. Lithos, 103, 149–177.
    [Google Scholar]
  24. McKenzie, D. (1978) Some remarks on development of sedimentary basins. Earth Planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  25. Middleton, M.F. (1980) A model of intracratonic basin formation, entailing deep crustal metamorphism (subsidence). Geophys. J. Roy. Astronom. Soc., 62, 1–14.
    [Google Scholar]
  26. Minakov, A.N., Podladchikov, Y.Y., Faleide, J.I. & Huismans, R.S. (2013) Rifting assisted by shear heating and formation of the lomonosov ridge. Earth Planet. Sci. Lett., 373, 31–40.
    [Google Scholar]
  27. Pérez‐Gussinyé, M., Reston, T. & Morgan, J.P. (2001) Serpentinization and magmatism during extension at non‐volcanic margins: the effect of initial lithospheric structure. Geol. Soc. Lon. Spl. Publ., 187, 551–576.
    [Google Scholar]
  28. Pérez‐Gussinyé, M., Morgan, J.P., Reston, T.J. & Ranero, C.R. (2006) The rift to drift transition at non‐volcanic margins: insights from numerical modelling. Earth Planet. Sci. Lett., 244, 458–473.
    [Google Scholar]
  29. Peron‐Pinvidic, G., Manatschal, G. & Osmundsen, P.T. (2013) Structural comparison of archetypal atlantic rifted margins: a review of observations and concepts. Mar. Pet. Geol., 43, 21–47.
    [Google Scholar]
  30. Petrini, K. & Podladchikov, Y. (2000) Lithospheric pressure‐depth relationship in compressive regions of thickened crust. J. Metamorph. Geol., 18, 67–77.
    [Google Scholar]
  31. Petrini, K., Connolly, J.A.D. & Podladchikov, Y.Y. (2001) A coupled petrological‐tectonic model for sedimentary basin evolution: the influence of metamorphic reactions on basin subsidence. Terra Nova, 13, 354–359.
    [Google Scholar]
  32. Podladchikov, Y.Y., Poliakov, A.N.B. & Yuen, D.A. (1994) The effect of lithospheric phase transitions on subsidence of extending continental lithosphere. Earth Planet. Sci. Lett., 124, 95–103.
    [Google Scholar]
  33. Ren, S., Faleide, J.I., Eldholm, O., Skogseid, J. & Gradstein, F. (2003) Late cretaceous‐paleocene tectonic development of the Nw Vøring basin. Mar. Pet. Geol., 20, 177–206.
    [Google Scholar]
  34. Rowley, D.B. & Sahagian, D. (1986) Depth‐dependent stretching – a different approach. Geology, 14, 32–35.
    [Google Scholar]
  35. Royden, L. & Keen, C.E. (1980) Rifting process and thermal evolution of the continental margin of eastern canada determined from subsidence curves. Earth Planet. Sci. Lett., 51, 343–361.
    [Google Scholar]
  36. Schmalholz, S.M., Medvedev, S., Lechmann, S.M. & Podladchikov, Y.Y. (2014) Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy. Geophys. J. Int., 197, 680–696.
    [Google Scholar]
  37. Sclater, J.G. & Christie, P.A.F. (1980) Continental stretching – an explanation of the post‐mid‐cretaceous subsidence of the central north‐sea basin. J. Geophys. Res., 85, 3711–3739.
    [Google Scholar]
  38. Sclater, J.G., Royden, L., Horvath, F., Burchfiel, B.C., Semken, S. & Stegena, L. (1980) The formation of the intra‐carpathian basins as determined from subsidence data. Earth Planet. Sci. Lett., 51, 139–162.
    [Google Scholar]
  39. Simon, N.S.C. & Podladchikov, Y.Y. (2008) The effect of mantle composition on density in the extending lithosphere. Earth Planet. Sci. Lett., 272, 148–157.
    [Google Scholar]
  40. Spadini, G., Robinson, A.G. & Cloetingh, S.A.P.L. (1997) Thermomechanical modeling of black sea basin formation, subsidence, and sedimentation. AAPG Memoir, 68, 19–38.
    [Google Scholar]
  41. Surlyk, F. (1991) Sequence stratigraphy of the jurassic‐lowermost cretaceous of east greenland (1). Am. Assoc. Pet. Geol. Bull., 75, 1468–1488.
    [Google Scholar]
  42. Sweeney, J.J. & Burnham, A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics (1). Am. Assoc. Pet. Geol. Bull., 74, 1559–1570.
    [Google Scholar]
  43. Ulmer, P. & Trommsdorff, V. (1995) Serpentine stability to mantle depths and subduction‐related magmatism. Science, 268, 858–861.
    [Google Scholar]
  44. Walker, I.M., Berry, K.A., Bruce, J.R., Bystøl, L. & Snow, J.H. (1997) Structural modelling of regional depth profiles in the vøring basin: implications for the structural and stratigraphic development of the norwegian passive margin. J. Geol. Soc., 154, 537–544.
    [Google Scholar]
  45. Wangen, M. (1995) The blanketing effect in sedimentary basins. Basin Res., 7, 283–298.
    [Google Scholar]
  46. Weissel, J.K. & Karner, G.D. (1989) Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension. J. Geophys. Res., 94, 13919–13950.
    [Google Scholar]
  47. Wernicke, B. (1985) Uniform‐sense normal simple shear of the continental lithosphere. Can. J. Earth Sci., 22, 108–125.
    [Google Scholar]
  48. White, N. & McKenzie, D. (1988) Formation of the” Steer's Head” geometry of sedimentary basins by differential stretching of the crust and mantle. Geology, 16, 250–253.
    [Google Scholar]
  49. Wilks, K.R. & Carter, N.L. (1990) Rheology of some continental lower crustal rocks. Tectonophysics, 182, 57–77.
    [Google Scholar]
  50. Wolfenden, E., Ebinger, C., Yirgu, G., Renne, P.R. & Kelley, S.P. (2005) Evolution of a volcanic rifted margin: southern red sea, Ethiopia. Geol. Soc. Am. Bull., 117, 846–864.
    [Google Scholar]
  51. Yamasaki, T. & Nakada, M. (1997) The effects of the spinel‐garnet phase transition on the formation of rifted sedimentary basins. Geophys. J. Int., 130, 681–692.
    [Google Scholar]
  52. Ziegler, P.A. & Cloetingh, S. (2004) Dynamic processes controlling evolution of rifted basins. Earth Sci. Rev., 64, 1–50.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12189
Loading
/content/journals/10.1111/bre.12189
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error