1887
Volume 29, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Deciphering the role slope topography plays in partitioning sediment on siliciclastic continental slope and base‐of‐slope systems helps our understanding of slope depositional processes in significant ways: (1) by validation of large‐scale depositional process models for continental margins, (2) by validation of numerical basin‐scale stratigraphic forward models used to test and deploy source‐to‐sink (S2S) concepts and (3) by creating models for setting reservoir presence and quality expectations in frontier areas poorly constrained by wells and seismic. A global database consisting of >700 km of drilled stratigraphy provide empirical rock data lacking from most S2S studies. Analysis of calibrated seismic stratigraphic units characterised using the contextual framework laid out in this paper show that both gross depositional environments (GDEs) and sand content occur across slope profiles in systematic ways. The challenge in using these observations to quantify reservoir risk and uncertainty lies with relating the observations to depositional processes that can be used to characterise frontier basins that lack calibration. Depositional process‐based understanding encoded in 3D stratigraphic forward models (SFM) can simulate both lithologies and GDEs providing broad predictions for exploration at the scale of an entire basin or slope system. Stratigraphic forward models allow the integration of S2S understanding and provide a framework for testing sediment‐partitioning hypotheses in frontier settings. Valid S2S models must balance sediment yield from the source catchments with sinks, and be consistent with basin specific observations. The proportions of GDEs across the slope provide additional validation criteria to ensure the models are plausible.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12190
2016-03-12
2020-07-15
Loading full text...

Full text loading...

References

  1. Adams, E.W. & Schlager, W. (2000) Basic types of submarine slope curvature. J. Sediment. Res., 70, 814–828.
    [Google Scholar]
  2. Aplin, A.C. & Macquaker, J.H.S. (2011) Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bulletin, 95, 2031–2059.
    [Google Scholar]
  3. Barton, M.D. (2012) Evolution of an intra‐slope apron, offshore niger delta slope: impact of step geometry on apron architecture. In: Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogues (Ed. by PratherB. E. , DeptuckM. E. , MohrigD. C. , B.van Hoorn & WynnR. B. ), SEPM Spec. Publ., 99, 181–197. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  4. Barton, M., O'Byrne, C.J., Pirmez, C., Prather, B.E., dervan Vlugt, F. & sylvester, Z. (2010) Turbidite channel architecture: recognizing and quantifying the distribution of channel‐base drapes using core and dipmeter dat. In: Dipmeter and Borehole Image Log Technology (Ed. by PöppelreiterM. , Garcia‐CarballioC. & KraaaijveldM. A. ), AAPG Memoir92, 195–210.
    [Google Scholar]
  5. Beaubouef, R.T. & Friedmann, S.J. (2000) High resolution seismic/sequence stratigraphic framework for the evolution of pleistocene intraslope basins, Western Gulf of Mexico. In: Deep‐Water Reservoirs of the World (Ed. by WeimerP. , SlattR. M. , ColemanJ. , RosenN. C. , NelsonH. , BoumaA. H. , StyzenM. J. & LawrenceD. T. ), 20th Annual GCS‐SEPM Foundation Bob F. Perkins Research Conference, 40‐60. Gulf Coast Section, SEPM.
    [Google Scholar]
  6. Bebout, D.G., Weise, B.R., Gregory, A.R. & Edwards, M.B. (1981) Wilcox Sandstone Reservoirs in the Deep Subsurface Along the Texas Gulf Coast. Report of Investigations No. 117, Bureau of Economic Geology, The University of Texas at Austin. Austin, 125.
  7. Bohn, C.W., Flemings, P.B. & Slingerland, R.L. (2012) Accommodation change during bypass across a late‐stage fan in the shallow auger basin. In: Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogues (Ed. by PratherB. E. , DeptuckM. E. , MohrigD. C. , van HoornB. & WynnR. B. ), SEPM Spec. Publ.,99, 225–242. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  8. Brothers, D.S., ten Brink, U.S., Andrews, B.A. & Chaytor, J.D. (2013a) Geomorphic process fingerprints in submarine canyons. Mar. Geol.337, 53–66.
    [Google Scholar]
  9. Brothers, D.S., ten Brink, U.S., Andrews, B.D. & Chaytor, J.D. (2013b) Geomorphic characterization of the U.S. Atlantic Continental Margin. Mar. Geol., 338, 46–63.
    [Google Scholar]
  10. Carvajal, C. & Steel, R.J. (2012) Source‐to‐sink sediment volumes within a tectono‐stratigraphic model for a laramide shelf‐to‐deep‐water basin: methods and results. In: Tectonics of Sedimentary Basins: Recent Advances (Ed. by C.Busby & A.Azor ), 131–151. Blackwell Publishing Ltd, New York.
    [Google Scholar]
  11. Cattaneo, A., Correggiari, A., Langone, L. & Trincardi, F. (2003) The Late‐Holocene Gargano Subaqueous Delta, Adriatic Shelf: sediment pathways and supply fluctuations. Mar. Geol., 193, 61–91.
    [Google Scholar]
  12. Chapin, M., Swinburn, P., der van Weiden, R., Kaloudm, D., Saesanya, S., Varley, C., Wilke, J., Benetjens, E. & Blaauwm, M. (2002) Integrated seismic and subsurface characterization of Bonga Field, Offshore Nigeria. Lead. Edge21, 1125–1131.
    [Google Scholar]
  13. Dailly, G.C. (1983)Slope readjustment during sedimentation on continental margins: environmental processes: model investigation of margin environmental and tectonic processes. In: Studies of Continental Margin Geology (Ed. by WatkinsJ. S. & DrakeC. L. ), AAPG Memoir34, 593–608.
    [Google Scholar]
  14. Demyttenaere, R., Tromp, J.P., Ibrahim, A., Allman‐Ward, P. & Meckel, T. (2000) Brunei deep water exploration: from sea floor images and shallow seismic analogues to depositional models in a slope turbidite setting. In: Deep‐Water Reservoirs of the World (Ed. by P.Weimer , R. M.Slatt , J. H.Coleman , N. C.Rosen , H.Nelson , A. H.Bouma , M. J.Styzen & D. T.Lawrence ), 20th Annual GCS‐SEPM Foundation Bob F. Perkins Research Conference, 304‐317. Gulf Coast Section, SEPM.
    [Google Scholar]
  15. Deptuck, M.E., Sylvester, Z., Pirmez, C. & O'Byrne, C. (2007) Migration‐Aggradation History and 3‐D Seismic Geomorphology of Submarine Channels in the Pleistocene Benin‐Major Canyon, Western Niger Delta Slope. Mar. Pet. Geol., 24, 406–433.
    [Google Scholar]
  16. Deptuck, M.E., Sylvester, Z. & O'Byrne, C.J. (2012) Pleistocene seascape evolution above a “simple” stepped slope–Western Niger Delta. In: Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogues (Ed. by PratherB. E. , DeptuckM. E. , MohrigD. C. , van HoornB. & WynnR. B. ), SEPM Spec. Publ.,99, 199–222. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  17. El‐Gawad, S.A., Cantelli, A., Pirmez, C., Minisini, D., Sylvester, Z. & Imran, J. (2012) Three‐dimensional numerical simulation of turbidity currents in a submarine channel on the seafloor of the Niger Delta Slope. J. Geophys. Res., 117, 1–16.
    [Google Scholar]
  18. Falivene, O., Frascati, A., Gesbert, S., Pickens, J., Hsu, Y. & Rovira, A. (2014) Automatic calibration of stratigraphic forward models for predicting reservoir presence in exploration. AAPG Bulletin, 98, 1811–1835.
    [Google Scholar]
  19. Flint, S.S., Hodgson, D.M., Sprague, A.R., Brunt, R.L., van der Merwe, W.C., Figueiredo, J., Prélat, A., Box, D., di Celma, C. & Kavanagh, J.P. (2011) Depositional architecture and sequence stratigraphy of the Karoo Basin floor to shelf edge succession, Laingsburg Depocentre, South Africa. Mar. Pet. Geol., 28, 658–674.
    [Google Scholar]
  20. Flood, R.D., Manley, P.L., Kowsmann, R.O., Appi, C.J. & Pirmez, C. (1991) Seismic facies and late quaternary growth of amazon submarine fan. In: Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems (Ed. by PWeimer , MHLink ), pp. 415–433. Springer‐Verlag, New York.
    [Google Scholar]
  21. Galloway, W.E. & Andrew, D.M. (2008) Depositional evolution of the Gulf of Mexico Sedimentary Basin. In: Sedimentary Basins of the World (Ed. by A. D.Miall ), Volume 5, pp. 505–549. Elsevier, the Netherlands.
    [Google Scholar]
  22. Gardner, M.H., Borer, J.M., Melick, J.J., Mavilla, N., Deschesne, M. & Wagerle, R.N. (2003) Stratigraphic process‐response model for submarine channels and related features from studies of Permian Brushy Canyon Outcrops, West Texas. Mar. Pet. Geol., 20, 757–787.
    [Google Scholar]
  23. Gee, M.J.R. & Gawthorpe, R.L. (2006) Submarine channels controlled by salt tectonics: examples from 3d seismic data offshore Angola. Mar. Pet. Geol., 23, 445–456.
    [Google Scholar]
  24. Gee, M.J.R., Uy, H.S., Warren, J., Morley, C.K. & Lambiase, J.J. (2007) The Brunei Slide: A giant submarine landslide on the North West Borneo Margin revealed by 3d Seismic Data. Mar. Geol., 246, 9–23.
    [Google Scholar]
  25. Gorsline, D.S., Kolpack, R.L., Karl, H.A., Drake, D.E., Fleischer, P., Thornton, S.E., Schwalbach, J.R. & Savrda, C.E. (1984) Studies of fine‐grained sediment transport of processes and products in the Californian Continental Borderland. In: Fine‐Grained Sediments; Deep‐Water Processes and Facies (Ed. by StowD.A.V. , PiperD.J.W. ), pp. 375–415. Geol. Soc. London, London.
    [Google Scholar]
  26. Grecula, M., Flint, S.S., Wickens, H.D.V. & Johnson, S.D. (2003) Upward‐thickening patterns and lateral continuity of Permian Sand‐Rich Turbidite Channel Fills, Laingsburg Karoo, South Africa. Sedimentology, 50, 831–853.
    [Google Scholar]
  27. Haq, B.U. (1991) Sequence stratigraphy, sea‐level change, and significance for the deep sea. In: Sedimentation, Tectonics and Eustacy (Ed. by D. I. M.Macdonald ), pp. 3–39. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  28. Haq, B.U., Hardenbol, J. & Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic (250 Million Years Ago to Present). Science, 235, 1156–1166.
    [Google Scholar]
  29. Harris, P.T. & Whiteway, T. (2011) Global distribution of large submarine Canyons: geomorphic differences between active and passive continental margins. Mar. Geol., 285, 69–86.
    [Google Scholar]
  30. Hay, D.C. (2012) Stratigraphic evolution of a tortuous corridor from the stepped slope of Angola. In: Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogues (Ed. by PratherB. E. , DeptuckM. E. , MohrigD. C. , van HoornB. & WynnR. B. ), SEPM Spec. Publ. 99, 163–180. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  31. Hedberg, H.D. (1970) Continental margins from viewpoint of the petroleum geologist. AAPG Bulletin, 54, 3–43.
    [Google Scholar]
  32. Heiniö, P. & Davies, R.J. (2007) Knickpoint migration in submarine channels in response to Fold Growth, Western Niger Delta. Mar. Pet. Geol., 24, 434–449.
    [Google Scholar]
  33. Heller, P.L. & Dickinson, W.R. (1985) Submarine Ramp Facies Model for Delta‐Fed, Sand‐Rich Turbidite Systems. AAPG Bulletin, 69, 960–976.
    [Google Scholar]
  34. Hodgson, D.M. & Haughton, P. (2004) Impact of syn‐depositional faulting on gravity current behaviour and deep‐water stratigraphy: Tabernas‐Sorbas Basin, Se Spain. In: Confined Turbidite Systems (Ed. by LomasS. A. & JosephP. ), Geol. Soc., London, Spec. Publ., 222, 135–158.
    [Google Scholar]
  35. Hodgson, D.M., Flint, S.S., Hodgetts, D., Drinkwater, N.J., Johannessen, E.P. & Luthi, S.M. (2006) Stratigraphic evolution of fine‐grained submarine fan systems, Tanqua Depocenter, Karoo Basin, South Africa. J. Sediment. Res., 76, 20–40.
    [Google Scholar]
  36. Hodgson, D.M., di Celma, C.N., Brunt, R.L. & Flint, S.S. (2011) Submarine slope degradation and aggradation and the stratigraphic evolution of channel‐levee systems. J. Geol. Soc., 168, 625–628.
    [Google Scholar]
  37. Huang, H., Imran, J. & Pirmez, C. (2007) Numerical modeling of poorly sorted depositional turbidity currents. J. Geophys. Res., 112, C01014.
    [Google Scholar]
  38. Hubbard, S.M., Romans, B.W. & Graham, S.A. (2008) Deep‐water foreland basin deposits of the Cerro Toro Formation, Magallanes Basin, Chile: architectural elements of a sinuous basin axial channel belt. Sedimentology, 55, 1333–1359.
    [Google Scholar]
  39. Hubbard, S.M., Fildani, A., Romans, B.W., Covault, J.A. & McHargue, T.R. (2010) High‐relief slope clinoform development: insights from outcrop, Magallanes Basin, Chile. J. Sediment. Res., 80, 357–375.
    [Google Scholar]
  40. Imran, J., Parker, G. & Katopodes, N. (1998) A numerical model of channel inception on Submarine Fans. J. Geophys. Res.‐Oceans, 103, 1219–1238.
    [Google Scholar]
  41. Imran, J., Parker, G. & Harff, P. (2002) Experiments on incipient channelization of Submarine Fans. J. Hydraul. Res., 40, 21–32.
    [Google Scholar]
  42. Ingram, G.M., Chisholm, T.J., Grant, C.J., Hedlund, C.A., Stuart‐Smith, P. & Teasdale, J. (2004) Deepwater North West Borneo: hydrocarbon accumulation in an active fold and thrust belt. Mar. Pet. Geol., 21, 879–887.
    [Google Scholar]
  43. Janocko, M., Cartigny, M.B.J., Nemec, W. & Hansen, E.W.M. (2013) Turbidity current hydraulics and sediment deposition in erodible sinuous channels: laboratory experiments and numerical simulations. Mar. Pet. Geol., 41, 222–249.
    [Google Scholar]
  44. Jennette, D.C., Wawrzyniec, T.F., Fouad, K., Meneses‐Rocha, J.J., Holtz, M.H., Sakurai, S., Talukdar, S.C., Graimaldo, F., Munoz, R., Lugo, J.E., Barrera, D., Williams, C., Escamilla, A., Dutton, S.P., Ambrose, W.A., Dunlap, D.B., Bellian, J.A. & Guevara, E.H. (2002) Play‐element characterization of the miocene and pliocene veracruz basin, Southeastern Mexico. In: Transactions – Gulf Coast Association of Geological Societies, vol. 52 (Ed. by SPDutton , SCRuppel , TFHentz ), pp. 441–453. Gulf Coast Association of Geological Societies, New Orleans.
    [Google Scholar]
  45. Jennette, D.C., Fouad, K., Wawrzyniec, T., Dunlap, D., Munoz, R. & Meneses‐Rocha, J. (2003) Slope and basin‐floor reservoirs from the Miocene and Pliocene of the Veracruz Basin, Southeastern Mexico. Mar. Pet. Geol., 20, 587–600.
    [Google Scholar]
  46. Kane, I.A., Catterall, V., McCaffrey, W.D. & Martinsen, O.J. (2010) Submarine channel response to intrabasinal tectonics: the influence of lateral tilt. AAPG Bulletin, 94, 189–219.
    [Google Scholar]
  47. Kassem, A. & Imran, J. (2001) Simulation of turbid underflows generated by the plunging of a river. Geology, 29, 655–658.
    [Google Scholar]
  48. Kertznus, V. & Kneller, B. (2009) Clinoform quantification for assessing the effects of external forcing on continental margin development. Basin Res., 21, 738–758.
    [Google Scholar]
  49. Kneller, B.C., Bennett, S.J. & McCaffrey, W.D. (1999) Velocity structure, turbulence and fluid stresses in experimental gravity currents. J. Geophys. Res.‐Oceans, 104, 5381–5391.
    [Google Scholar]
  50. Kuehl, S.A., Levy, B.M., Moore, W.S. & Allison, M.A. (1997) Subaqueous delta of the Ganges‐Brahmaputra River System. Mar. Geol., 144, 81–96.
    [Google Scholar]
  51. Lamb, M.P., Hickson, J.G., Marr, B., Sheets, B., Paola, C. & Parker, G. (2004) Surging and continuous turbidity currents: flow dynamics and deposits in an experimental intraslope minibasin. J. Sediment. Res., 74, 148–155.
    [Google Scholar]
  52. Lee, H.J. & Chu, Y.S. (2001) Origin of inner‐shelf mud deposit in the Southeastern Yellow Sea: Huksan Mud Belt. J. Sediment. Res., 71, 144–154.
    [Google Scholar]
  53. Liu, X. & Galloway, W.E. (1997) Quantitative determination of tertiary sediment supply to the North Sea Basin. AAPG Bulletin, 81, 1482–1509.
    [Google Scholar]
  54. Liu, J.Y. & Watkins, J.S. (1992) Seismic facies and depositional processes on the lower continental slope, in the Mississippi Canyon Area, Gulf of Mexico (Abs.). AAPG Bulletin, 76, 1462.
    [Google Scholar]
  55. Luheshi, M., Roberts, D.G. & Wilson, H.A.M. (2010) Gross depositional environment offshore Nova Scotia: methodologies and preliminary results. II Central & North Atlantic Conjugate Margins Conference. Lisbon. IV, 152–156.
    [Google Scholar]
  56. Macquaker, J.H.S., Bentley, S.J. & Bohacs, K.M. (2010) Wave‐enhanced sediment‐gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in Ancient Mudstone Successions. Geology, 38, 947–950.
    [Google Scholar]
  57. Martin, J., Paola, C., Abreu, V., Neal, J. & Sheets, B. (2009) Sequence stratigraphy of experimental strata under known conditions of differential subsidence and variable base level. AAPG Bulletin, 93, 503–533.
    [Google Scholar]
  58. Martinsen, O.J. (1989) Styles of soft‐sediment deformation on the Namurian Delta Slope, Western Irish Namurian Basin, Ireland. In: Deltas; Sites and Traps for Fossil Fuels (Ed. by WhateleyM. K. G. & PickeringK. T. ), Spec. Publ., 41, 167–177. Geological Society of London.
    [Google Scholar]
  59. Martinsen, O.J., Lien, T. & Walker, R.G. (2000) Upper carboniferous deep water sediments, Western Ireland: analogues for passive margin turbidite plays. In: Deep‐Water Reservoirs of the World (Ed. by P.Weimer , R. M.Slatt , J. H.Coleman , N. C.Rosen , H.Nelson , A. H.Bouma , M. J.Styzen & D. T.Lawrence ), GCS‐SEPM Foundation 20th Annual Research Conference, 533–555.
    [Google Scholar]
  60. Martinsen, O.J., Lien, T., Walker, R.G. & Collinson, J.D. (2003) Facies and sequential organisation of a mudstone‐dominated slope and basin floor succession: The Gull Island Formation, Shannon Basin, Western Ireland. Mar. Pet. Geol., 20, 789–807.
    [Google Scholar]
  61. Martinsen, O.J., Sømme, T.O., Thurmond, J.B., Helland‐Hansen, W. & Lunt, I. (2010) Source‐to‐sink systems on passive margins: theory and practice with an example from the Norwegian Continental Margin. In: Petroleum Geology: From Mature Basins to New Frontiers (Ed. by B. A.Vining & S. C.Pickering ), Proceedings of the 7th Petroleum Geology Conference, 7, 913–920. Geological Society, London, London.
    [Google Scholar]
  62. Maslin, M. & Mikkelsen, N. (1998) Timing of the Late Quaternary Amazon Fan Complex Mass‐Transport Deposits. Geol. Evolut. Ocean Basins; Results from the Ocean Drilling Program, 131, 129–150.
    [Google Scholar]
  63. Mayall, M. & O'Byrne, C.J. (2002) Reservoir prediction and development challenges in Turbidite slope channels. Proceed. Offshore Technol. Conf. OTC, 14029, 11.
    [Google Scholar]
  64. Mayall, M. & Stewart, I. (2000) The architecture of turbidite slope channels. In: Deep‐Water Reservoirs of the World (Ed. by P.Weimer , R. M.Slatt , J. H.Coleman , N. C.Rosen , H.Nelson , A. H.Bouma , M. J.Styzen & D. T.Lawrence ), 20th Annual GCS‐SEPM Foundation Bob F. Perkins Research Conference, 578–586. Gulf Coast Section, SEPM.
    [Google Scholar]
  65. Mayall, M., Lonergan, L., Bowman, A., James, S., Mills, K., Primmer, T., Pope, D., Rogers, L. & Skeene, R. (2010) The response of turbidite slope channels to growth‐induced seabed topography. AAPG Bulletin, 94, 1011–1030.
    [Google Scholar]
  66. McHargue, T., Pyrcz, M.J., Sullivan, M.D., Clark, J.D., Fildani, A., Romans, B.W., Covault, J.A., Levy, M., Posamentier, H.W. & Drinkwater, N.J. (2011) Architecture of turbidite channel systems on the continental slope: patterns and predictions. Mar. Pet. Geol., 28, 728–743.
    [Google Scholar]
  67. Meckel, L.D., Ibrahim, A.B. & Pelechaty, S.M. (2000). Turbidite Deposition in a Muddy Bypass System on the Upper Slope, Offshore Brunei. AAPG International Conference and Exhibition, Bali, American Association of Petroleum Geologists.
    [Google Scholar]
  68. van der Merwe, W.C., Hodgson, D.M., Brunt, R.L. & Flint, S.S. (2014) Depositional architecture of sand‐attached and sand‐detached channel‐lobe transition zones on an exhumed stepped slope mapped over a 2500 Km2 Area. Geosphere, 10, 1076–1093.
    [Google Scholar]
  69. Mitchener, B.C., Lawrence, D.A., Partington, M.A., Bowman, M.B.J. & Gluyas, J. (1992) Brent group: sequence stratigraphy and regional implications. In: Geology of the Brent Group (Ed. by MortonA. C. , HaszeldineR. S. , GilesM. R. & BrownS. ), Geol. Soc. Spec. Publ. No. 61, 45–80, London.
    [Google Scholar]
  70. Moody, J.D., Pyles, D.R., Clark, J. & Bouroullec, R. (2012) Quantitative outcrop characterization of an analog to weakly confined submarine channel systems: Morillo 1 Member, Ainsa Basin, Spain. AAPG Bulletin, 96, 1813–1841.
    [Google Scholar]
  71. Moore, D.G. (1969) Reflection profiling studies of the California Continental Borderland; structure and quaternary turbidite basins. Special Paper – Geol. Soc. Am., 107, 142.
    [Google Scholar]
  72. Moscardelli, L. & Wood, L. (2015) Morphometry of mass‐transport deposits as a predictive tool. Geol. Soc. Am. Bull., 128, 47–80.
    [Google Scholar]
  73. Mutti, E. & Normark, W.R. (1987) Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Marine Clastic Sedimentology (Ed. by J. K.Leggett & G. G.Zuffa ), 1–38.
    [Google Scholar]
  74. Natland, M.L. (1963) Paleoecology and turbidites (Presidential Address, Sepm). J. Paleontol., 37, 946–951.
    [Google Scholar]
  75. Natland, M.L. & Kuenen, P.H. (1951) Sedimentary history of the Ventura Basin, California, and the action of turbidity currents. In: Turbidity Currents and the Transportation of Coarse Sediments to Deep Water‐a Symposium (Ed. by), Sepm Special Publication No. 2, 76–107.
    [Google Scholar]
  76. Neal, J. & Abreu, V. (2009) Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37, 779–782.
    [Google Scholar]
  77. Newton, C.G., Wach, G., Dalhousie, U., Shipp, C. & Mosher, D.C. (2004) Importance of mass transport complexes in the quaternary development of the Nile Fan, EgyptIn: Annual Offshore Technology Conference (Ed. by, Otc Paper 16742, 10), Houston, TX.
    [Google Scholar]
  78. O'Byrne, C.J., Barton, M., Steffens, G.S., Pirmez, C. & Buergisser, H. (2007) Architecture of a laterally migrating channel complex, isaac formation, Windermere Supergroup, British Columbia, Canada. In: Atlas of Deep‐Water Outcrops (Ed. by NilsenT. , SteffensG. S. , StudlickJ. & ShewR. ), AAPG Stud. Geol.56, 115–118. AAPG.
    [Google Scholar]
  79. Ochoa, J., Wolak, J. & Gardner, M.H. (2013) Recognition criteria for distinguishing between hemipelagic and pelagic mudrocks in the characterization of deep‐water reservoir heterogeneity. AAPG Bulletin, 97, 1785–1803.
    [Google Scholar]
  80. OTER
    OTER (2011) Chapter 6 – Tectono‐Stratigraphic Evolution Petroleum Systems. Play Fairway Analysis Atlas, Nova Scotia – Department of Energy Halifax, 109.
  81. Pacht, J.A., Brown, B.E., Shaffer, B.L. & Pottorf, B.R. (1991) Sequence stratigraphy of Plio–Pleistocene Basin, High Island Area, Offshore Texas. In: Sequence Stratigraphy as an Exploration Tool, Concepts and Practices in the Gulf Coast (Ed. by J. M.Armentrout & B. F.Perkins ), GCS‐SEPM Foundation 11th Annual Research Conference, 269–285.
    [Google Scholar]
  82. Piper, D.J.W., Deptuck, M.E., Mosher, D.C., Hughes Clarke, J.E. & Migeon, S. (2012) Erosional and depositional features of glacial meltwater discharges on the Eastern Canadian Continental Margin. In: Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogues (Ed. by PratherB. E. , DeptuckM. E. , MohrigD. C. , van HoornB. & WynnR. B. ), SEPM Spec. Publ.,99, 61–80. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  83. Pirmez, C. & Flood, R.D. (1995) Morphology and structure of Amazon Channel. In: Proceedings of the Ocean Drilling Program, Initial Reports (Ed. by R. D.Flood , D. J. W.Piper & A.Klaus ), 155, 23–45.
    [Google Scholar]
  84. Pirmez, C. & Imran, J. (2003) Reconstruction of turbidity currents in the Amazon Channel. Mar. Pet. Geol., 20, 823–849.
    [Google Scholar]
  85. Pirmez, C., Beaubouef, R.T., Friedmann, S.J. & Mohrig, D.C. (2000) Equilibrium profile and baselevel in submarine channels: examples from late pleistocene systems and implications for architecture in deepwater reservoirs. In: Deep‐Water Reservoirs of the World (Ed. by WeimerP. , SlattR. M. , ColemanJ. H. , RosenN. C. , NelsonH. , BoumaA. H. , StyzenM. J. & LawrenceD. T. ), 20th Annual GCS‐SEPM Foundation Bob F. Perkins Research Conference, 782–805. Gulf Coast Section, SEPM.
    [Google Scholar]
  86. Pirmez, C., Prather, B.E., Mallarino, G., O'Hayer, W.W., Droxler, A.W. & Winker, C.D. (2012) Chronostratigraphy of the Brazos–Trinity Depositional System, Western Gulf of Mexico: implications for deepwater depositional models. In: Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogues (Ed. by PratherB. E. , DeptuckM. E. , MohrigD. C. , van HoornB. & WynnR. B. ), SEPM Spec. Publ.,99, 111–143. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  87. Plint, A.G. (2014) Mud dispersal across a Cretaceous Prodelta: storm‐generated, wave‐enhanced sediment gravity flows inferred from Mudstone Microtexture and Microfacies. Sedimentology, 61, 609–647.
    [Google Scholar]
  88. Posamentier, H.W. & Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. J. Sediment. Res., 73, 367–388.
    [Google Scholar]
  89. Posamentier, H.W., Jervey, M.T. & Vail, P.R. (1988) Eustatic controls on clastic deposition II — sequence and systems tract models. In: Sea‐Level Change: An Integrated Approach (Ed. by WilgusC. K. , HastingsB. S. , KendallC. G. S. C. , PosamentierH. W. , RossC. A. & van WagonerJ. C. ), SEPM Spec. Publ. 42, 109–124.
    [Google Scholar]
  90. Posamentier, H.W., Davies, R.J. & Wood, L. (2007) Seismic geomorphology – an overview. In: Seismic Geomorphology: Applications to Hydrocarbon Exploration and Production (Ed. by DaviesR. J. , PosamentierH. W. , WoodL. J. & CartwrightJ. A. ), Geol. Soc. Spec. Publ. No. 277, 1–14. The Geological Society, London.
    [Google Scholar]
  91. Prather, B.E. (1991) Petroleum geology of the upper Jurassic and lower Cretaceous, Baltimore Canyon Trough, Western North Atlantic Ocean. AAPG Bulletin, 75, 258–277.
    [Google Scholar]
  92. Prather, B.E. (2000) Calibration and visualization of depositional process models for above‐grade slopes: a case study from the Gulf of Mexico. Mar. Pet. Geol., 17, 619–638.
    [Google Scholar]
  93. Prather, B.E. (2003) Controls on reservoir distribution, architecture and stratigraphic trapping in slope settings. Mar. Pet. Geol., 20, 529–545.
    [Google Scholar]
  94. Prather, B.E., Booth, J.R., Steffens, G.S. & Craig, P.A. (1998) Classification, lithologic calibration and stratigraphic succession of seismic facies from intraslope basins, deep water Gulf of Mexico, U.S.A. AAPG Bulletin, 82, 701–728.
    [Google Scholar]
  95. Prather, B.E., O'Byrne, C.J., Braunsdorf, N.R., Jackson, A.K. & Epps, B.K. (2005). Lithology and burial dependencies on the classification of seismic facies. Rainbow in the Earth: frequency‐dependent geophysical properties and their relationships to rock properties at multiple scales, 2nd International Workshop, University of California Berkeley.
  96. Prather, B.E., Deptuck, M.E., Mohrig, D.C., van Hoorn, B. & wynn, R.B. (2012a) Application of the principles of seismic geomorphology to continental‐slope and base‐of‐Slope systems: case studies from seafloor and near‐seafloor analogues. In: Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogues (Ed. by PratherB. E. , DeptuckM. E. , MohrigD. C. , van HoornB. & WynnR. B. ), SEPM Spec. Publ., 99, 5–9. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  97. Prather, B.E., Pirmez, C., Sylvester, Z. & Prather, D.S. (2012b) Stratigraphic response to evolving geomorphology in a submarine apron perched on the Upper Niger Delta Slope. In: Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogues (Ed. by B. E.Prather , M. E.Deptuck , D. C.Mohrig , vanHoornB. & R. B.Wynn ), Sepm Special Publication 99, 145–161. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  98. Prather, B.E., Pirmez, C. & Winker, C.D. (2012c) Stratigraphy of linked intraslope basins: Brazos–Trinity System Western Gulf of Mexico. In: Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogues (Ed. by B. E.Prather , M. E.Deptuck , D. C.Mohrig , vanHoornB. & R. B.Wynn ), Sepm Special Publication 99, 83–109. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  99. Pratson, L.F. & Coakley, B.J. (1996) A model for the headward erosion of Submarine Canyons induced by downslope‐eroding sediment flows. GSA Bulletin, 108, 225–234.
    [Google Scholar]
  100. Pratson, L.F. & Haxby, W.F. (1996) What Is the slope of the U.S. continental slope?Geology, 24, 3–6.
    [Google Scholar]
  101. Pratson, L.F., Ryan, W.B.F., Mounain, G.S. & Twichell, D.C. (1994) Submarine Canyon initiation by downslope‐eroding sediment flows: evidence in late Cenozoic strata on the New Jersey Continental Slope. GSA Bulletin, 106, 395–412.
    [Google Scholar]
  102. Pyles, D.R. (2008) Multiscale stratigraphic analysis of a structurally confined submarine fan: carboniferous Ross Sandstone, Ireland. AAPG Bulletin, 92, 557–587.
    [Google Scholar]
  103. Radovich, B.J., Powell, T. & Mitchum, R.M., JR. (1991) Sequence stratigraphy interpretation of the Central Shelf Area, Offshore Louisiana. In: Sequence Stratigraphy as an Exploration Tool, Concepts and Practices in the Gulf Coast (Ed. by J. M.Armentrout & B. F.Perkins ), GCS‐SEPM Foundation 11th Annual Research Conference, 287–298.
    [Google Scholar]
  104. Reading, H.G. & Richards, M. (1994) Turbidite systems in deep‐water basin margins classified by grain size and feeder system. AAPG Bulletin, 78, 792–822.
    [Google Scholar]
  105. Ross, W.C., Halliwell, B.A., May, J.A., Watts, D.E. & Syvitski, J.P.M. (1994) Slope readjustment: a new model for the development of submarine fans and aprons. Geology, 22, 511–514.
    [Google Scholar]
  106. Ross, W.C., Watts, D.E. & May, J.A. (1995) Insights from stratigraphic modeling: mud‐limited versus sand‐limited depositional systems. AAPG Bulletin, 79, 231–258.
    [Google Scholar]
  107. Sangree, J.B., Waylett, D.C., Amery, G.B., Fennessy, W.J. & Frazier, D.E. (1978) Recognition of continental‐slope seismic facies, Offshore Texas‐Louisiana. In: Beyond the Shelf Break (Ed. by A. H.Bouma , G. T.Moore & J. M.Coleman ), AAPG Short Course No. 2, F1–F54.
    [Google Scholar]
  108. Sikkema, W. & Wojcik, K.M. (2000) 3d Visualization of turbidite systems, Lower Congo Basin, Offshore Angola. In: Deep‐Water Reservoirs of the World (Ed. by P.Weimer , R. M.Slatt , J. H.Coleman , N. C.Rosen , H.Nelson , A. H.Bouma , M. J.Styzen & D. T.Lawrence ), 20th Annual GCS‐SEPM Foundation Bob F. Perkins Research Conference, 928–939. Gulf Coast Section, SEPM.
    [Google Scholar]
  109. Sinclair, H.D. & Tomasso, M. (2002) Depositional evolution of confined turbidite basins. J. Sediment. Res., 72, 451–456.
    [Google Scholar]
  110. Sømme, T.O. & Jackson, C.A.L. (2013) Source‐to‐sink analysis of ancient sedimentary systems using a subsurface case study from the Møre‐Trøndelag area of Southern Norway: Part 2 – Sediment dispersal and forcing mechanisms. Basin Res., 25, 512–531.
    [Google Scholar]
  111. Sømme, T.O., Helland‐Hansen, W., Martinsen, O.J. & Thurmond, J.B. (2009) Relationships between morphological and sedimentological parameters in source‐to‐sink systems: a basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Res., 21, 361–387.
    [Google Scholar]
  112. Sømme, T.O., Jackson, C.A.L. & Vaksdal, M. (2013) Source‐to‐sink analysis of ancient sedimentary systems using a subsurface case study from the Møre‐Trøndelag area of Southern Norway: Part 1 – Depositional setting and fan evolution. Basin Res., 25, 489–511.
    [Google Scholar]
  113. Spychala, Y.T., Hodgson, D.M., Flint, S.S. & Mountney, N.P. (2015) Constraining the sedimentology and stratigraphy of submarine intraslope lobe deposits using exhumed examples from the Karoo Basin, South Africa. Sed. Geol., 322, 67–81.
    [Google Scholar]
  114. Steffens, G.S., Biegert, E.K., Sumner, H.S. & Bird, D. (2003) Quantitative bathymetric analyses of selected deepwater siliciclastic margins: receiving basin configurations for deepwater fan systems. Mar. Pet. Geol., 20, 547–561.
    [Google Scholar]
  115. Stow, D., Howell, D. & Nelson, C. (1983) Sedimentary, tectonic, and sea‐level controls on submarine fan and slope‐apron turbidite systems. Geo‐Mar. Lett., 3, 57–64.
    [Google Scholar]
  116. Straccia, J. & Prather, B.E. (1999) Stratigraphic traps in deep‐water reservoir at the base of depositional slope (Spe 56894). Soc. Petrol. Eng. Offshore Eur. Conf., 14.
    [Google Scholar]
  117. Sylvester, Z., Deptuck, M.E., Prather, B.E., Pirmez, C. & O'Byrne, C.J. (2009) Seismic stratigraphy of a shelf‐edge delta and linked submarine channels in the Ne Gulf of Mexico. In: Application of Seismic Geomorphology Principles to Continental Slope and Base‐of‐Slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogues (Ed. by B. E.Prather , M. E.Deptuck , D. C.Mohrig , van HoornB. & R. B.Wynn ). Society of Sedimentary Geology. Houston.
    [Google Scholar]
  118. Sylvester, Z., Pirmez, C. & Cantelli, A. (2011) A model of submarine channel‐levee evolution based on channel trajectories: implications for stratigraphic architecture. Mar. Pet. Geol., 28, 716–727.
    [Google Scholar]
  119. Sylvester, Z., Deptuck, M.E., Prather, B.E., Pirmez, C. & O'Byrne, C.J. (2012) Seismic stratigraphy of a shelf‐edge delta and linked submarine channels in the Northeastern Gulf of Mexico. In: Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogues (Ed. by PratherB. E. , DeptuckM. E. , MohrigD. C. , van HoornB. & WynnR. B. ), Sepm Special Publication 99, 31–59. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  120. Sylvester, Z., Cantelli, A. & Pirmez, C. (2015) Stratigraphic evolution of intraslope minibasins: insights from surface‐based model. AAPG Bulletin, 99, 1099–1129.
    [Google Scholar]
  121. Syvitski, J.P.M., Peckham, S.D., Hilberman, R. & Mulder, T. (2003) Predicting the terrestrial flux of sediment to the global Ocean: a planetary perspective. Sed. Geol., 162, 5–24.
    [Google Scholar]
  122. Thornton, S.E. (1981) Suspended sediment transport in surface waters of the California: current off Southern California: 1977e1978 Floods. Geo‐Mar. Lett., 1, 23–28.
    [Google Scholar]
  123. Thornton, S.E. (1984) Hemipelagites and associated facies of slopes and Slope Basins. (Ed. by Geol. Soc. London. Spec. Publ., 15, 377–394.
    [Google Scholar]
  124. Turner, O.C. (2015) Depositional Framework and Controls on Coeval Deep‐Water Slope Channel and Slope Fan Systems in the Eocene Juncal Formation, Southern California. Department of Geology and Geological Engineering, PhD. 129.
  125. Vakarelov, B.K., Winker, C.D. & Bhattacharya, J.P. (2005) The Missing Mudbelts of the Ancient Record: Implications for Sequence Stratigraphy. AAPG Annual Meeting, Calgary.
    [Google Scholar]
  126. Violet, J., Sheets, B., Pratson, L., Paola, C. & Parker, G. (2005) Experiment on turbidity currents and their deposits in a model 3d subsiding minibasin. J. Sediment. Res., 75, 820–843.
    [Google Scholar]
  127. Walsh, J.P., Wiberg, P.L., Aalto, R., Nittrouer, C.A. & Kuehl, S.A. (2015) Source‐to‐sink research: economy of the Earth's surface and its strata (Accepted Manuscript). Earth Sci. Rev. doi: 10.1016/j.earscirev.2015.11.010
    [Google Scholar]
  128. Weight, R.W.R., Anderson, J.B. & Fernandez, R. (2011) Rapid mud accumulation on the Central Texas Shelf Linked to Climate Change and sea‐level rise. J. Sediment. Res., 81, 743–764.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12190
Loading
/content/journals/10.1111/bre.12190
Loading

Data & Media loading...

Supplements

Thickness percentage distributions of environments of deposition down the slope profile.

Mudrock types from slope environments of deposition (a) apron, (b) valley, (c) MTC, (d) hemipelagic wedge and (e) drape.

Mud and sand thickness percentage distribution as a function of environments of deposition from (a) graded, (b) ponded and (c) stepped profile types.

Sand percentage distribution down each of three slope profiles a) graded, b) stepped and c) ponded.

Sand partitioning on slopes of (a) mud‐rich (b) mixed and (c) sand‐rich slope systems.

Distribution of GDE, sand and mud from (a) mud‐rich (b) mixed and (c) sand‐rich slope systems.

Producing reservoir distributions from graded, stepped and ponded profile types.

Downslope sand partitioning patterns from the Gulf of Mexico for the a) lower, b) middle and c) upper Miocene.

GDE comparison between a) modelled GDE distributions and those from b) graded/out‐of‐grade and c) stepped slopes.

Summary of seismic facies classes as used in this study.

Summary of system‐scale sand content measured used to characterize gross sediment calibre. 1Liu and Galloway (1997); 2OTER (2011); 3shelf estimates from maps by Bebout . (1981) numbers quoted as km3; 4shelf estimates based on Shell proprietary study Grant and Steele (2010); 5shelf estimates based on Mineral Management Services data (2006) but the Middle and Lower Miocene are under sampled as wells generally reached total depth too shallow for complete penetration; 6calculated from Carvajal and Steel (2012) numbers quoted in ×109 tons.

Summary of seismic facies assemblages observed form identification of gross depositional environment.

 

WORD
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error