1887
Volume 29, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

The growth, interaction and controls on normal fault systems developed within stacked delta systems at extensional delta‐top settings have not been extensively examined. We aim to analyse the kinematic, spatial and temporal growth of a Cretaceous aged, thin‐skinned, listric fault system in order to further the understanding of how gravity‐driven fault segments and fault systems develop and interact at an extensional delta‐top setting. Furthermore, we aim to explore the influence of a pre‐existing structural framework on the development of gravity‐driven normal faults through the examination of two overlapping, spatially and temporally distinct delta systems. To do this, we use three‐dimensional (3D) seismic reflection data from the central Ceduna Sub‐basin, offshore southern Australia. The seismic reflection data images a Cenomanian‐Santonian fault system, and a post‐Santonian fault system, which are dip‐linked through an intervening Turonian‐early Campanian section. Both of these fault systems contain four hard‐linked strike assemblages oriented NW–SE (127–307), each composed of 13 major fault segments. The Cenomanian‐Santonian fault system detaches at the base of a shale interval of late Albian age, and is characterised by kilometre‐scale growth faults in the Cenomanian‐Sanontian interval. The post‐Santonian fault system nucleated in vertical isolation from the Cenomanian‐Santonian fault system. This is evident through displacement minima observed at Turonian‐early Campanian levels, which is indicative of vertical segmentation and eventual hard dip‐linkage. Our analysis constrains fault growth into four major evolutionary stages: (1) early Cenomanian nucleation and growth of fault segments, resulting from gravitational instability, and with faults detaching on the lower Albian interval; (2) Santonian cessation of growth for the majority of faults; (3) erosional truncation of fault upper tips coincident with the continental breakup of Australia and Antarctica (. 83 Ma); (4) Campanian‐Maastrichtian reactivation of the underlying Cenomanian‐Santonian fault system, inducing the nucleation, growth and consequential dip‐linkage of the post‐Santonian fault system with the underlying fault system. Our results highlight the along‐strike linkage of fault segments and the interaction through dip‐linkage and fault reactivation, between two overlapping, spatially and temporally independent delta systems of Cenomanian and late Santonian‐Maastrichtian age in the frontier Ceduna Sub‐Basin. This study has implications regarding the growth of normal fault assemblages, through vertical and lateral segment linkage, for other stacked delta systems (such as the Gulf of Mexico) where upper delta systems develop over a pre‐existing structural framework.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12191
2016-03-02
2024-04-25
Loading full text...

Full text loading...

References

  1. Allan, U.S. (1989) Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bull., 73(7), 803–811.
    [Google Scholar]
  2. Anderson, R.N., Flemings, P., Losh, S., Austin, J. & Woodhams, R. (1994) Gulf of Mexico growth fault drilled, seen as oil, gas migration pathway. Oil Gas J. (United States), 92(23), 97–104.
    [Google Scholar]
  3. Anderson, J.E., Cartwright, J., Drysdall, S.J. & Vivian, N. (2000) Controls on turbidite sand deposition during gravity‐driven extension of a passive margin: examples from Miocene sediments in Block 4, Angola. Mar. Pet. Geol., 17(10), 1165–1203.
    [Google Scholar]
  4. Baudon, C. & Cartwright, J. (2008) The kinematics of reactivation of normal faults using high resolution throw mapping. J. Struct. Geol., 30(8), 1072–1084.
    [Google Scholar]
  5. Bein, J. & Taylor, M.L. (1981) The Eyre Sub‐basin: recent exploration results. APPEA J., 21(1), 91–98.
    [Google Scholar]
  6. Bilotti, F. & Shaw, J.H. (2005) Deep‐water Niger Delta fold and thrust belt modelled as a critical taper wedge: the influence of elevated basal fluid pressure on structural styles. AAPG Bull., 89(11), 1475–1491.
    [Google Scholar]
  7. Bouvier, J.D., Kaars‐Sijpesteijn, C.H., Kluesner, D.F., Onyejekwe, C.C. & van der Pal, R.C. (1989) Three‐dimensional seismic interpretation and fault sealing investigations, Nun River Field, Nigeria. AAPG Bull., 73(11), 1397–1414.
    [Google Scholar]
  8. Briggs, S.E., Davies, R.J., Cartwright, J.A. & Morgan, R. (2006) Multiple detachment levels and their control on fold styles in the compressional domain of the deepwater west Niger Delta. Basin Res., 18(4), 435–450.
    [Google Scholar]
  9. Buffler, R.T., Shaub, F.J., Watkins, J.S. & Worzel, J.L. (1979) Anatomy of the Mexican ridges, southwestern Gulf of Mexico. Geological and geophysical investigations of continental margins: AAPG Memoir, 29, 319–327.
    [Google Scholar]
  10. Cartwright, J.A., Trudgill, B.D. & Mansfield, C.S. (1995) Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. J. Struct. Geol., 17(9), 1319–1326.
    [Google Scholar]
  11. Chapman, T.J. & Meneilly, A.W. (1991) The displacement patterns associated with a reverse reactivated, normal growth fault. Geol. Soc. London Spec. Publ., 56(1), 183–191.
    [Google Scholar]
  12. Childs, C., Easton, S.J., Vendeville, B.C., Jackson, M.P.A., Lin, S.T., Walsh, J.J. & Watterson, J. (1993) Kinematic analysis of faults in a physical model of growth faulting above a viscous salt analogue. Tectonophysics, 228(3), 313–329.
    [Google Scholar]
  13. Childs, C., Watterson, J. & Walsh, J.J. (1995) Fault overlap zones within developing normal fault systems. J. Geol. Soc., 152(3), 535–549.
    [Google Scholar]
  14. Childs, C., Nicol, A., Walsh, J.J. & Watterson, J. (1996) Growth of vertically segmented normal faults. J. Struct. Geol., 18(12), 1389–1397.
    [Google Scholar]
  15. Childs, C., Nicol, A., Walsh, J.J. & Watterson, J. (2003) The growth and propagation of synsedimentary faults. J. Struct. Geol., 25(4), 633–648.
    [Google Scholar]
  16. Cobbold, P.R., Clarke, B.J. & Løseth, H. (2009) Structural consequences of fluid overpressure and seepage forces in the outer thrust belt of the Niger Delta. Petrol. Geosci., 15(1), 3–15.
    [Google Scholar]
  17. Cohen, H.A. & McClay, K. (1996) Sedimentation and shale tectonics of the northwestern Niger Delta front. Mar. Pet. Geol., 13(3), 313–328.
    [Google Scholar]
  18. Corredor, F., Shaw, J.H. & Bilotti, F. (2005) Structural styles in the deep‐water fold and thrust belts of the Niger Delta. AAPG Bull., 89(6), 753–780.
    [Google Scholar]
  19. Dawers, N.H. & Anders, M.H. (1995) Displacement length scaling and fault linkage. J. Struct. Geol., 17(5), 607–614.
    [Google Scholar]
  20. Doust, H. & Omatsola, E. (1989) Niger Delta. In: Divergent/Passive Margin Basins (Ed. by J.D.Edwards & P.A.Santogrossi ) Am. Assoc. Pet. Geol. Mem., 48, 201–238.
    [Google Scholar]
  21. Dutton, D.M. & Trudgill, B.D. (2009) Four dimensional analysis of the Sembo relay system, offshore Angola: implications for fault growth in salt‐detached settings. AAPG Bull., 93(6), 763–794.
    [Google Scholar]
  22. Fraser, A.R. & Tilbury, L.A. (1979) Structure and stratigraphy of the Ceduna Terrace region. Great Australian Bight Basin: APEA J., 19, 53–65.
    [Google Scholar]
  23. Giba, M., Walsh, J.J. & Nicol, A. (2012) Segmentation and growth of an obliquely reactivated normal fault. J. Struct. Geol., 39, 253–267.
    [Google Scholar]
  24. Harding, T.P. & Tuminas, A.C. (1989) Structural interpretation of hydrocarbon traps sealed by basement normal block faults at stable flank of foredeep basins and at rift basins. AAPG Bull., 73(7), 812–840.
    [Google Scholar]
  25. Hill, A.J. (1995) Bight Basin. In: The Geology of South Australia, Vol. 2, The Phanerozoic (Ed. by J.F.Drexel & W.V.Preiss ) Geol. Surv. South Aust. Bull., 54, 133–138.
    [Google Scholar]
  26. Holford, S.P., Hillis, R.R., Duddy, I.R., Green, P.F., Stoker, M.S., Tuitt, A.G., Backé, G., Tassone, D.R. & Macdonald, J.D. (2011) Cenozoic post‐breakup compressional deformation and exhumation of the southern Australian margin. APPEA J., 51(1), 613–638.
    [Google Scholar]
  27. Huggins, P., Watterson, J., Walsh, J.J. & Childs, C. (1995) Relay zone geometry and displacement transfer between normal faults recorded in coal‐mine plans. J. Struct. Geol., 17(12), 1741–1755.
    [Google Scholar]
  28. Jackson, C.L. & Larsen, E. (2009) Temporal and spatial development of a gravity‐driven normal fault array: middle‐Upper Jurassic, South Viking Graben, northern North Sea. J. Struct. Geol., 31(4), 388–402.
    [Google Scholar]
  29. Jackson, C.A.L. & Rotevatn, A. (2013) 3D seismic analysis of the structure and evolution of a salt‐influenced normal fault zone: a test of competing fault growth models. J. Struct. Geol., 54, 215–234.
    [Google Scholar]
  30. James, D.M.D. (Ed.) (1984) The geology and hydrocarbon resources of Negara Brueni Dalussalam. Muzium Brunei Brunei Shell Petrol. Company Berhad Spec. Publ., 8, 2–21.
    [Google Scholar]
  31. Jev, B.I., Kaars‐Sijpesteijn, C.H., Peters, M.P.A.M., Watts, N.L. & Wilkie, J.T. (1993) Akaso field, Nigeria: use of integrated 3‐D seismic, fault slicing, clay smearing, and RFT pressure data on fault trapping and dynamic leakage. AAPG Bull., 77(8), 1389–1404.
    [Google Scholar]
  32. Kane, K.E., Jackson, C.A.L. & Larsen, E. (2010) Normal fault growth and fault‐related folding in a salt influenced rift basin: south Viking Graben, offshore Norway. J. Struct. Geol., 32(4), 490–506.
    [Google Scholar]
  33. King, R.C. & Backé, G. (2010) A balanced 2D structural model of the Hammerhead Delta Deepwater Fold‐Thrust Belt, Bight Basin, Australia. Aust. J. Earth Sci., 57(7), 1005–1012.
    [Google Scholar]
  34. King, R.C., Hillis, R.R., Tingay, M.R.P. & Morley, C.K. (2009) Present‐day stress and neotectonic provinces of the Baram Delta and deep‐water fold thrust belt. J. Geol. Soc., 166, 197–200.
    [Google Scholar]
  35. King, R.C., Backé, G., Morley, C.K., Hillis, R.R. & Tingay, M.R. (2010) Balancing deformation in NW Borneo: quantifying plate‐scale vs. gravitational tectonics in a Delta and Deepwater Fold‐Thrust Belt System. Mar. Pet. Geol., 27(1), 238–246.
    [Google Scholar]
  36. Knott, S.D. (1993) Fault seal analysis in the North Sea. AAPG Bull., 77(5), 778–792.
    [Google Scholar]
  37. Koopman, A., Schreurs, J. & Ellenor, D.W. (1996) The oil and gas resources of Brunei Darussalam—The coastal and offshore oil and gas fields. In: Geology and Hydrocarbon Resources of Negara Brunei Darussalam (1996 Revision), (Ed. by S.T.Sandal ), pp. 155–192. Brunei Shell Petroleum/Brunei Museum, Syabas Bandar Seri Begawan, Brunei Darussalam.
    [Google Scholar]
  38. Krassay, A.A. & Totterdell, J.M. (2003) Seismic stratigraphy of a large, Cretaceous shelf‐margin delta complex, offshore southern Australia. AAPG Bull., 87(6), 935–963.
    [Google Scholar]
  39. Lewis, M.M., Jackson, C.A.L. & Gawthorpe, R.L. (2013) Salt‐influenced normal fault growth and forced folding: the Stavanger Fault System, North Sea. J. Struct. Geol., 54, 156–173.
    [Google Scholar]
  40. Macdonald, J.D., King, R., Hillis, R.R. & Backé, G. (2010) Structural style of the White Pointer and Hammerhead delta—deepwater fold‐thrust belts, Bight Basin, Australia. Aust. Petrol. Prod. Explor. Assoc. J., 50, 487–510.
    [Google Scholar]
  41. MacDonald, J D., Backé, G., King, R., Holford, S. & Hillis, R.R. (2012a) Geomechanical modelling of fault reactivation in the Ceduna Sub‐Basin, Bight Basin, Australia. In: Faulting, Fracturing and Igneous Intrusions in the Earth's Crust (Ed. by D.Healy , R.W.H.Butler , Z.K.Shipton & R.H.Sibson ) Geol. Soc. London Spec. Publ., 367, 71–89.
    [Google Scholar]
  42. Macdonald, J.D., Holford, S. & King, R. (2012b) Structure and Prospectivity of the Ceduna Delta Deepwater Fold‐Thrust Belt Systems, Bight Basin, Australia. In: New Understanding of the Petroleum Systems of the Continental Margins of the World (Ed. by N.C.Rosen ) GCSSEPM Foundation Bob F. Perkins Research Conference, 32, 779–816.
    [Google Scholar]
  43. Macdonald, J.D., Holford, S.P., Green, P.F., Duddy, I.R., King, R.C. & Backé, G. (2013) Detrital zircon data reveal the origin of Australai's largest delta system. J. Geol. Soc., 170, 3–6.
    [Google Scholar]
  44. Mansfield, C.S. & Cartwright, J.A. (1996) High resolution fault displacement mapping from three‐dimensional seismic data: evidence for dip linkage during fault growth. J. Struct. Geol., 18(2), 249–263.
    [Google Scholar]
  45. Mansfield, C. & Cartwright, J. (2001) Fault growth by linkage: observations and implications from analogue models. J. Struct. Geol., 23(5), 745–763.
    [Google Scholar]
  46. Marsh, N., Imber, J., Holdsworth, R.E., Brockbank, P. & Ringrose, P. (2010) The structural evolution of the Halten Terrace, offshore Mid‐Norway: extensional fault growth and strain localisation in a multi‐layer brittle–ductile system. Basin Res., 22(2), 195–214.
    [Google Scholar]
  47. Messent, B.E.J. (1998) Great Australian Bight: well audit. Australian Geological Survey Organisation Record 1998/37.
  48. Morley, C.K. & Guerin, G. (1996) Comparison of gravity driven deformation styles and behaviour associated with mobile shales and salt. Tectonics, 15(6), 1154–1170.
    [Google Scholar]
  49. Norvick, M.S. & Smith, M.A. (2001) Southeast Australia‐Mapping the plate tectonic reconstruction of southern and southeastern Australia and implications for petroleum systems. APPEA J., 41(1), 15–36.
    [Google Scholar]
  50. Peacock, D.C.P. & Sanderson, D.J. (1991) Displacements, segment linkage and relay ramps in normal fault zones. J. Struct. Geol., 13(6), 721–733.
    [Google Scholar]
  51. Peel, F.J. (2014) The engines of gravity‐driven movement on passive margins: quantifying the relative contribution of spreading vs. gravity sliding mechanisms. Tectonophysics, 633, 126–142.
    [Google Scholar]
  52. Rouby, D., Raillard, S., Guillocheau, F., Bouroullec, R. & Nalpas, T. (2002) Kinematics of a growth fault/raft system on the West African margin using 3‐D restoration. J. Struct. Geol., 24(4), 783–796.
    [Google Scholar]
  53. Rowan, M.G. (1997) Three‐dimensional geometry and evolution of a segmented detachment fold, Mississippi Fan foldbelt, Gulf of Mexico. J. Struct. Geol., 19(3), 463–480.
    [Google Scholar]
  54. Rowan, M.G., Hart, B.S., Nelson, S., Flemings, P.B. & Trudgill, B.D. (1998) Three‐dimensional geometry and evolution of a salt‐related growth‐fault array: Eugene Island 330 field, offshore Louisiana, Gulf of Mexico. Mar. Pet. Geol., 15(4), 309–328.
    [Google Scholar]
  55. Rowan, M.G., Jackson, M.P.A. & Trudgill, B.D. (1999) Salt‐related fault families and fault welds in the northern Gulf of Mexico. AAPG Bull., 83, 1454–1484.
    [Google Scholar]
  56. Rykkelid, E. & Fossen, H. (2002) Layer rotation around vertical fault overlap zones: observations from seismic data, field examples, and physical experiments. Mar. Pet. Geol., 19(2), 181–192.
    [Google Scholar]
  57. Sayers, J., Symonds, P.A., Direen, N.G. & Bernardel, G. (2001) Nature of the continent‐ocean transition on the non‐volcanic rifted margin of the central Great Australian Bight. Geol. Soc. London Spec. Publ., 187(1), 51–76.
    [Google Scholar]
  58. Schreurs, G. (1997) The petroleum geology of Negara Brunei Darussalem; an update. In: Proceedings of the IPA Petroleum Systems of SE Asia and Australasia Conference, Jakarta, Indonesia, May 1997 (Ed. by J.V.C.Howes , R.A.Noble ), pp. 751–766. Indonesian Petroleum Association, Jakarta.
    [Google Scholar]
  59. Schultz‐Ela, D.D. (2001) Excursus on gravity gliding and gravity spreading. J. Struct. Geol., 23(5), 725–731.
    [Google Scholar]
  60. Smith, D.A. (1980) Sealing and nonsealing faults in Louisiana Gulf Coast salt basin. AAPG Bull., 64(2), 145–172.
    [Google Scholar]
  61. Stagg, H.M.J., Cockshell, C.D., Willcox, J.B., Hill, A.J., Needham, D.V.C., Thomas, B., O'Brien, G.W. & Hough, L.P. (1990) Basins of the Great Australian Bight region—Geology and petroleum potential, Folio 5, Continental Margins Program, Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia.
  62. Tapley, D., Mee, B.C., King, S.J., Davis, R.C. & Leischner, K.R. (2005) Petroleum potential of the Ceduna Sub‐basin: impact of Gnarlyknots‐1A. APPEA J., 45(1), 365–380.
    [Google Scholar]
  63. Taylor, S.K., Nicol, A. & Walsh, J.J. (2008) Displacement loss on growth faults due to sediment compaction. J. Struct. Geol., 30(3), 394–405.
    [Google Scholar]
  64. Thorsen, C.E. (1963) Age of growth faulting in southeast Louisiana. Gulf Coast Assoc. Geol. Soc. Trans., 13, 103–110.
    [Google Scholar]
  65. Totterdell, J.M. & Bradshaw, B.E. (2004) The structural framework and tectonic evolution of the Bight Basin. In: Eastern Australasian Basins Symposium II, pp. 41–61. Petroleum Exploration Society of Australia, Special Publication.
    [Google Scholar]
  66. Totterdell, J.M. & Krassay, A.A. (2003) The role of shale deformation and growth faulting in the Late Cretaceous evolution of the Bight Basin, offshore southern Australia. Geol. Soc. London Spec. Publ., 216(1), 429–442.
    [Google Scholar]
  67. Totterdell, J.M., Blevin, J.E., Struckmeyer, H.I.M., Bradshaw, B.E., Colwell, J.B. & Kennard, J.M. (2000) Petroleum frontiers, systems and plays‐A new sequence framework for the Great Australian Bight: starting with a clean slate. APPEA J., 40(1), 95–120.
    [Google Scholar]
  68. Trudgill, B. & Cartwright, J. (1994) Relay‐ramp forms and normal‐fault linkages, Canyonlands National Park, Utah. Geol. Soc. Am. Bull., 106(9), 1143–1157.
    [Google Scholar]
  69. Tvedt, A., Rotevatn, A., Jackson, C.A.L., Fossen, H. & Gawthorpe, R.L. (2013) Growth of normal faults in multilayer sequences: a 3D seismic case study from the Egersund Basin, Norwegian North Sea. J. Struct. Geol., 55, 1–20.
    [Google Scholar]
  70. Veevers, J.J. (1986) Breakup of Australia and Antarctica estimated as mid‐Cretaceous (95 ± 5 Ma) from magnetic and seismic data at the continental margin. Earth Planet. Sci. Lett., 77(1), 91–99.
    [Google Scholar]
  71. de Vera, J., Granado, P. & McClay, K. (2010) Structural evolution of the Orange Basin gravity‐driven system, offshore Namibia. Mar. Pet. Geol., 27(1), 223–237.
    [Google Scholar]
  72. Walsh, J.J. & Watterson, J. (1988) Analysis of the relationship between displacements and dimensions of faults. J. Struct. Geol., 10(3), 239–247.
    [Google Scholar]
  73. Walsh, J.J., Watterson, J., Bailey, W.R. & Childs, C. (1999) Fault relays, bends and branch lines. J. Struct. Geol., 21(8), 1019–1026.
    [Google Scholar]
  74. Walsh, J.J., Nicol, A. & Childs, C. (2002) An alternative model for the growth of faults. J. Struct. Geol., 24(11), 1669–1675.
    [Google Scholar]
  75. Walsh, J.J., Bailey, W.R., Childs, C., Nicol, A. & Bonson, C.G. (2003) Formation of segmented normal faults: a 3‐D perspective. J. Struct. Geol., 25(8), 1251–1262.
    [Google Scholar]
  76. Willcox, J.B. & Stagg, H.M.J. (1990) Australia's southern margin: a product of oblique extension. Tectonophysics, 173(1), 269–281.
    [Google Scholar]
  77. Winker, C.D. & Edwards, M.B. (1983) Unstable progradational clastic shelf margins. In: The Shelfbreak: critical Interface on Continental Margins (Ed. by D.J.Stanley & G.T.Moore ) SEPM Spec. Publ. 33, 139–157.
    [Google Scholar]
  78. Withjack, M.O. & Callaway, S. (2000) Active normal faulting beneath a salt layer: an experimental study of deformation patterns in the cover sequence. AAPG Bull., 84(5), 627–651.
    [Google Scholar]
  79. Withjack, M.O., Olson, J. & Peterson, E. (1990) Experimental models of extensional forced folds (1). AAPG Bull., 74(7), 1038–1054.
    [Google Scholar]
  80. Wu, S., Bally, A.W. & Cramez, C. (1990) Allochthonous salt, structure and stratigraphy of the north‐Eastern Gulf of Mexico. Part II: structure. Mar. Pet. Geol., 7(4), 334–370.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12191
Loading
/content/journals/10.1111/bre.12191
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error