1887
Volume 29, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Multichannel high‐resolution seismic data along the northwestern margin of the Great Bahama Bank (GBB), Bahamas, detail the internal geometry and depositional history of a Neogene‐Quaternary carbonate slope‐to‐basin area. The stratigraphic architecture through this period evolves from (i) a mud‐dominated slope apron during the Miocene, (ii) a debris‐dominated base‐of‐slope apron during the Late Pliocene and then (iii) return to a slope apron with very short prograding clinoformal aprons during the Pleistocene. This geometric evolution was broadly constrained by the development of the Santaren Drift by bottom current since the Langhian. The drift expands along the northwestern GBB slope, forming a continuous correlative massive feature that shows successive phases of growth and retreat and influenced the downslope sediments distribution. Indeed, Late Pliocene deposits are confined into the moat, forming a strike‐continuous coarse debrites belt along the mid‐slope, preventing their free expansion into the basin. The occurrence of basinal drift that operated since 15 Ma showed a significant upslope growth around 3.6 Ma and is interpreted as resulting from the closure of the Central American Seaway which also coincides with a global oceanographic re‐organization and climate changes in the Northern Hemisphere.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12195
2016-07-05
2020-07-04
Loading full text...

Full text loading...

References

  1. Anselmetti, F.S., Eberli, G.P. & Ding, Z.‐D. (2000) From the Great Bahama Bank into the Straits of Florida: a margin architecture controlled by sea‐level fluctuations and ocean currents. Geol. Soc. Am. Bull., 112, 829–844.
    [Google Scholar]
  2. Atkinson, L.P., Berger, T., Hamilton, P., Waddell, E., Leaman, K. & Lee, T.N. (1995) Current meter observations in the Old Bahama Channel. J. Geophys. Res. Oceans, 100, 8555–8560.
    [Google Scholar]
  3. Austin, J.A., Schlager, W., Comet, P.A., Droxler, A., Eberli, G., Fourcade, E., Freeman‐Lynde, R., Fulthorpe, C.S., Harwood, G., Kuhn, G., Lavoie, D., Leckie, M., Melillo, A.J., Moore, A., Mullins, H.T., Ravenne, C., Sager, W.W., Swart, P., Verbeek, J.W., Watkins, D.K. & Williams, C. (1986) Proceedings of the Ocean Drilling Program, initial reports, Leg 101. Ocean Drilling Program, College Station, Texas, 101, 569.
  4. Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe‐Schönberg, D. & Lea, D.W. (2005) Final closure of Panama and the onset of northern hemisphere glaciation. Earth Planet. Sci. Lett., 237, 33–44.
    [Google Scholar]
  5. Berggren, W.‐A., Hilgen, F., Langereis, C., Kent, D.V., Obradovich, J., Raffi, I., Raymo, M.E. & Shackleton, N. (1995) Late Neogene chronology: new perspectives in high‐resolution stratigraphy. Geol. Soc. Am. Bull., 107, 1272–1287.
    [Google Scholar]
  6. Berggren, W.A. & Miller, K.G. (1988) Paleogene tropical planktonic foraminiferal biostratigraphy and magnetobiochronology. Micropaleontology, 34, 362–380.
    [Google Scholar]
  7. Bergman, K.L. (2005) Seismic analysis of paleocurrent features in the Florida Straits; insights into the paleo‐Florida current, Upstream tectonics, and the Atlantic‐Caribbean connection. PhD thesis, University of Miami, Miami, 189pp.
  8. Bernet, K.H., Eberli, G.P. & Gilli, A. (2000) Turbidite frequency and composition in the distal part of the Bahamas transect. In: Proceedings of the Ocean Drilling Program, Scientific Results Vol. 166 (Ed. by P.K.Swart , G.P.Eberli , M.J.Malone & F.J.Sarg ) College Station, Texas, Ocean Drilling Program, 166, 45–60.
    [Google Scholar]
  9. Betzler, C., Reijmer, J.J.G., Bernet, K., Eberli, G.P. & Anselmetti, F.S. (1999) Sedimentary patterns and geometries of the Bahamian outer carbonate ramp (Miocene–Lower Pliocene, Great Bahama Bank). Sedimentology, 46, 1127–1143.
    [Google Scholar]
  10. Betzler, C., Pfeiffer, M. & Saxena, S. (2000) Carbonate shedding and sedimentary cyclicities of a distally steepened carbonate ramp (Miocene, Great Bahama Bank). Int. J. Earth Sci., 89, 140–153.
    [Google Scholar]
  11. Betzler, C., Lindhorst, S., Eberli, G.P., Lüdmann, T., Möbius, J., Ludwig, J., Schutter, I., Wunsch, M., Reijmer, J.J.G. & Hübscher, C. (2014) Periplatform drift: the combined result of contour current and offbank transport along carbonate platforms. Geology, 42, 871–874.
    [Google Scholar]
  12. Blow, W.H. (1979) The Cainozoic Globigerinida. Vol 3. E.J. Brill, Leiden, 1413pp.
    [Google Scholar]
  13. Borgomano, J.R.F. (2000) The Upper Cretaceous carbonates of the Gargano‐Murge region, southern Italy: a model of platform‐to‐basin transition. AAPG Bull., 84, 1561–1588.
    [Google Scholar]
  14. Calais, E. & De Lépinay, B. (1995) Strike‐slip tectonic processes in the Northern Caribbean between Cuba and Hispaniola (windward passage). Mar. Geophys. Res., 17, 63–95.
    [Google Scholar]
  15. Coates, A.G., Jackson, J.B.C., Collins, L.S., Cronin, T.M., Dowsett, H.J., Bybell, L.M., Jung, P. & Obando, J.A. (1992) Closure of the Isthmus of Panama: the near shore marine record of Costa Rica and western Panama. GSA Bull., 104, 814–828.
    [Google Scholar]
  16. Cohen, K.M., Finney, S.C., Gibbard, P.L. & Fan, J.‐X. (2013) The ICS International Chronostratigraphic Chart. Episodes, 36, 199–204.
    [Google Scholar]
  17. Coniglio, M. & Dix, G.R. (1992) Chapter 18. Carbonate slopes. In: Facies Models: Response to sea‐Level Change (Ed. by R.G.Walter & N.P.James ) Geol. Assoc. Canada, 349–374.
    [Google Scholar]
  18. Correa, T.B.S., Grasmueck, M., Eberli, G.P., Reed, J.K., Verwer, K. & Purkis, S.A.M. (2012) Variability of cold‐water coral mounds in a high sediment input and tidal current regime, Straits of Florida. Sedimentology, 59, 1278–1304.
    [Google Scholar]
  19. Corso, W., Schlager, W., Flügel, E. & Buffler, R.T. (1985) A reinterpretation of an Early Cretaceous carbonate platform on Abaco Knoll, Northern Bahamas. Gulf Coast Assoc. Geol. Soc. Trans., 35, 29–38.
    [Google Scholar]
  20. Cramer, B.S., Toggweiler, J.R., Wright, J.D., Katz, M.E. & Miller, K.G. (2009) Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24, PA4216.
    [Google Scholar]
  21. Crevello, P.D. & Schlager, W. (1980) Carbonate debris sheets and turbidites, Exuma Sound, Bahamas. J. Sediment. Petrol., 50, 1121–1147.
    [Google Scholar]
  22. Denny, W.M.III, Austin, J.A. & Buffler, R.T. (1994) Seismic stratigraphy and geologic history of Middle Cretaceous through Cenozoic rocks, southern Straits of Florida. Am. Assoc. Pet. Geol., 78, 461–487.
    [Google Scholar]
  23. Duque‐Caro, H. (1990) Neogene stratigraphy, paleoceanography and paleobiogeography in Northwest South America and the evolution of the Panama seaway. Palaeogeogr. Palaeoclimatol. Palaeoecol., 77, 203–234.
    [Google Scholar]
  24. Droxler, A.W. & Schlager, W. (1985) Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas. Geology, 13, 799–802.
    [Google Scholar]
  25. Eberli, G.P. (2000) The record of Neogene sea‐level changes in the prograding carbonates along the Bahamas Transect‐ Leg 166 Synthesis. In: Proceedings of the Ocean Drilling Program, Scientific Results (Ed. by P.K.Swart , G.P.Eberli , M.J.Malone & F.J.Sarg ) College Station, Texas, Ocean Drilling Program, 166, 164–177.
    [Google Scholar]
  26. Eberli, G.P., Anselmetti, F.S., Kroon, D., Tokiyuki, S. & Wright, J.D. (2002) The chronostratigraphic significance of seismic reflections along the Bahamas Transect. Mar. Geol., 185, 1–17.
    [Google Scholar]
  27. Eberli, G.P. & Ginsburg, R.N. (1987) Segmentation and coalescence of Cenozoic carbonate platforms, northwestern Great Bahama Bank. Geology, 15, 75–79.
    [Google Scholar]
  28. Eberli, G.P. & Ginsburg, R.N. (1988) Aggrading and prograding infill of buried Cenozoic seaways, northwestern Great Bahama Bank. In: Atlas of Seismic Stratigraphy (Ed. by A.W.Bally ) Am. Assoc. Pet. Geol. Stud. Geol., 2, 97–103.
    [Google Scholar]
  29. Eberli, G.P. & Ginsburg, R.N. (1989) Cenozoic progradation of northwestern Great Bahama Bank, a record of lateral platform growth and sea‐level fluctuations. In: Controls on Carbonate Platform and Basin Systems (Ed. by P.D.Crevello , J.A.Wilson , J.F.Read & F.J.Sarg ) Soc. Econ. Paleontol. Mineral. Spec. Publ., 44, 339–351.
    [Google Scholar]
  30. Eberli, G.P., Bernoulli, D., Sanders, D. & Vecsei, A. (1993) From aggradation to progradation: the Maiella Platform Margin (Abruzzi, Italy). In: Cretaceous Carbonate Platforms (Ed. by J.T.Simo , R.W.Scott & J.‐P.Masse ) Am. Assoc. Pet. Geol. Memoir, 56, 213–232.
    [Google Scholar]
  31. Eberli, G.P., Swart, P.K., Malone, M.J., Anselmetti, F.S., Karai, K., Bernet, K.H., Betzler, C., Christensen, B.A., De Carlo, E.H., Dejardin, P.M., Emmanuel, L., Frank, T.D., Haddad, G.A., Isern, A.R., Katz, M.E., Kenter, J.A.M., Kramer, P.A., Kroon, D., McKenzie, J.A., McNeill, D.F., Montgomery, P., Nagihara, S., Pirmez, C., Reijmer, J.J.G., Sato, T., Schovsbo, N.H., Williams, T. & Wright, J.D. (1997a) Proceedings of the Ocean Drilling Program, Initial Reports, Leg 166. College Station, Texas, Ocean Drilling Program, 166, 850.
    [Google Scholar]
  32. Eberli, G.P., Swart, P.K., McNeill, D.F., Kenter, J.A.M., Anselmetti, F.S., Melim, L.A. & Ginsburg, R.N. (1997b) A synopsis of the Bahamas Drilling Project: Results from two deep core borings drilled on the Great Bahama Bank. In: Proceedings of the Ocean Drilling Program, Initial Reports, Leg 166 (Ed. by G.P.Eberli , P.K.Swart & M.J.Malone et al.) College Station, Texas, Ocean Drilling Program, 166, 23–41.
    [Google Scholar]
  33. Faugères, J.‐C. & Mulder, T. (2011) Chapter 3: Contour currents and contourite drifts. In: Deep‐sea Sediments (Ed. by H.Huneke & T.Mulder ) Dev. Sedimentol., 63, 149–214.
    [Google Scholar]
  34. Faugères, J.‐C. & Mulder, T. (2014) Chapter 14. Contourite drifts: nature, evolution and controls. In: Contourites (Ed. by M.Rebesco & A.Camerlenghi ) Dev Sedimentol., 60, 257–288.
    [Google Scholar]
  35. Faugères, J.‐C., Stow, D.A.V., Imbert, P. & Viana, A.R. (1999) Seismic features diagnostic of contourite drifts. Mar. Geol., 162, 1–38.
    [Google Scholar]
  36. Flower, B.P. & Kennett, J.P. (1994) The middle miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 537–555.
    [Google Scholar]
  37. Ginsburg, R.N. (2001) The Bahamas Drilling Project: background and acquisition of cores and logs. In: Subsurface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank: Results of the Bahamas Drilling Project (Ed. by R.N.Ginsburg ) Soc. Econ. Paleontol. Mineral. Spec. Publ., 70, 3–13.
    [Google Scholar]
  38. Grammer, G.M. & Ginsburg, R.N. (1992) Highstand versus lowstand deposition on carbonate platform margins: insight from Quaternary foreslopes in the Bahamas. Mar. Geol., 103, 125–136.
    [Google Scholar]
  39. Grasmueck, M., Eberli, G.P., Viggiano, D.A., Correa, T., Rathwell, G. & Luo, J. (2006) Autonomous underwater vehicle (AUV) mapping reveals coral mound distribution, morphology, and oceanography in deep water of the Straits of Florida. Geophys. Res. Lett., 33, 1–6.
    [Google Scholar]
  40. Haq, B.U., Hardenbol, J. & Vail, P.R. (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change. In: Sea Level Changes: An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.St.C.Kendall , H.W.Posamentier , C.A.Ross & J.C.Van Wagoner ). SEPM Spec. Publ., 42, 71–108.
    [Google Scholar]
  41. Haug, G.H. & Tiedemann, R. (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393, 673–676.
    [Google Scholar]
  42. Haug, G.H., Tiedemann, R., Zahn, R. & Ravelo, A.C. (2001) Role of Panama Uplift on oceanic freshwater balance. Geology, 29, 207–210.
    [Google Scholar]
  43. Hine, A.C. & Neumann, A.C. (1977) Shallow carbonate‐bank‐margin growth and structure, Little Bahama Bank, Bahamas. Am. Assoc. Pet. Geol. Bull., 61, 376–406.
    [Google Scholar]
  44. Hine, A.C., Wilber, R.J., Bane, J.M., Neumann, A.C. & Lorenson, K.R. (1981) Offbank transport of carbonate sands along open, leeward bank margins: Northern Bahamas. Mar. Geol., 42, 327–348.
    [Google Scholar]
  45. Jo, A. (2013) Carbonate slope morphology and sedimentary processes along southwestern Great Bahama Bank. Master Thesis, University of Miami, Miami, 121 pp.
  46. Jorry, S.J., Droxler, A.W. & Francis, J.M. (2010) Deepwater carbonate deposition in response to re‐flooding of carbonate bank and atoll‐tops at glacial terminations. Quat. Sci. Rev., 29, 2010–2026.
    [Google Scholar]
  47. Keigwin, L. (1982) Isotopic paleoceanography of the Caribbean and East Pacific: role of Panama uplift in late neogene time. Science, 23, 217.
    [Google Scholar]
  48. Keller, G. & Barron, J.A. (1983) Paleoceanographic implications of miocene deep‐sea hiatuses. Geol. Soc. Am. Bull., 94, 590–613.
    [Google Scholar]
  49. Kendall, C.G.S.C. & Schlager, W. (1981) Carbonates and relative changes in sea level. Mar. Geol., 44, 181–212.
    [Google Scholar]
  50. Kenter, J.A.M., Ginsburg, R.N. & Troelstra, S.R. (2001) The Western Great Bahama Bank: sea‐level‐driven sedimentation patterns on the slope and margin. In: Subsurface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank: Results of the Bahamas Drilling Project (Ed. by R.N.Ginsburg ) Soc. Econ. Paleontol. Mineral. Spec. Publ., 70, 61–100.
    [Google Scholar]
  51. Ladd, J.W. & Sheridan, R.E. (1987) Seismic stratigraphy of the Bahamas. Am. Assoc. Pet. Geol. Bull., 71, 719–773.
    [Google Scholar]
  52. Leaman, K.D., Vertes, P.S., Atkinson, L.P., Lee, T.N., Hamilton, P. & Waddell, E. (1995) Transport, potential vorticity, and current/temperature structure across Northwest Providence and Santaren Channels and the Florida Current off Cay Sal Bank. J. Geophys. Res., 100, 8561–8569.
    [Google Scholar]
  53. Lee, T.N., Leaman, K.D. & Williams, E. (1995) Florida current meanders and gyre formation in the Straits of Florida. J. Geophys. Res., 100, 8607–8620.
    [Google Scholar]
  54. Lourens, L.J., Hilgen, F.J., Laskar, J., Shackleton, N.J. & Wilson, D. (2004). The Neogene Period. In: A Geologic Time Scale 2004 (Ed. by F.M.Gradstein , J.G.Ogg & A.G.Smith ), pp. 409–440. Cambridge University Press, Cambridge, 32pp.
    [Google Scholar]
  55. Malone, M.J., Slowey, N.C. & Henderson, G.M. (2001) Early diagenesis of shallow‐water periplatform carbonate sediments, leeward margin, Great Bahma Bank (Ocean Drilling Program Leg 166). GSA Bull., 113, 881–894.
    [Google Scholar]
  56. Masaferro, J.L. (1997) Interplay of tectonism and carbonate sedimentation in the Bahamas Foreland Basin. Unpublished Dissertation, University of Miami, Miami, 147 pp.
  57. Masaferro, J.L. & Eberli, G.P. (1995) Tectonic destruction and segmentation of the Bahamas Carbonate Platform. Geol. Soc. Am. Bull. Abstracts Programs, 81, 228.
    [Google Scholar]
  58. Masaferro, J.L. & Eberli, G.P. (1999) Jurassic‐Cenozoic structural evolution of the southern Great Bahama Bank. In: Caribbean Basins (Ed. by P.Mann ) Sediment. Basins World, 4, 167–193.
    [Google Scholar]
  59. Masaferro, J.L., Bulnes, M., Poblet, J. & Eberli, G.P. (2002) Episodic folding inferred from syntectonic carbonate sedimentation: the Santaren Anticline, Bahamas Foreland. Sed. Geol., 146, 11–24.
    [Google Scholar]
  60. McNeill, D.F., Budd, A.F. & Borne, P.F. (1997) Earlier (late Pliocene) first appearance of the Caribbean reef‐building coral Acropora palmate: Stratigraphic and evolutionary implications. Geology, 25, 891–894.
    [Google Scholar]
  61. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Cristie‐Blick, N. & Pekar, S.F. (2005) The Pahanerozoic record of global sea‐level change. Science, 310, 1293.
    [Google Scholar]
  62. Mitchum, R.M.J., Vail, P.R. & Sangree, J.B. (1977) Seismic stratigraphy and global changes of sea level, part 6: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: Seismic Stratigraphy – Applications to Hydrocarbon Exploration (Ed. by C.E.Payton ) Am. Assoc. Petrol. Geol. Memoir, 26, 117–133.
    [Google Scholar]
  63. Mulder, T., Ducassou, E., Eberli, G.P., Hanquiez, V., Gonthier, E., Kindler, P., Principaud, M., Fournier, F., Léonide, P., Billeaud, I., Marsset, B., Reijmer, J.J.G., Bondu, C., Joussiaume, R. & Pakiades, M. (2012) New insights into the morphology and sedimentary processes along the western slope of Great Bahama Bank. Geology, 40, 603–606.
    [Google Scholar]
  64. Mullins, H.T. (1983) Modern carbonate slope and basins of the Bahamas. In: Platform Margin and Deepwater Carbonates (Ed. by H.E.Cook , A.C.Hine & H.T.Mullins ) Soc. Econ. Paleontol. Mineral. Course, 12, 4.1–4.138.
    [Google Scholar]
  65. Mullins, H.T. & Cook, H.E. (1986) Carbonate apron models: alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration. Sed. Geol., 48, 37–79.
    [Google Scholar]
  66. Mullins, H.T. & Neumann, A.C. (1979) Geology of the Miami Terrace and its paleo‐oceanographic implications. Mar. Geol., 30, 205–236.
    [Google Scholar]
  67. Mullins, H.T., Neumann, A.C., Wilber, R.J., Hine, A.C. & Chingurg, S.J. (1980) Carbonate sediment drifts in northern straits of Florida. Am. Assoc. Pet. Geol. Bull., 64, 1701–1717.
    [Google Scholar]
  68. Mullins, H.T., Heath, K.C., Van Buren, H.M. & Newton, C.R. (1984) Anatomy of a modern open‐ocean carbonate slope: northern Little Bahama Bank. Sedimentology, 31, 141–168.
    [Google Scholar]
  69. Mullins, H.T., Gardulski, A.F. & Hine, A.C. (1986) Catastrophic collapse of the West Florida carbonate platform margin. Geology, 14, 167–170.
    [Google Scholar]
  70. Mullins, H.T., Gardulski, A.F., Wise, S.W. & Applegate, J. (1987) Middle Miocene oceanographic event in the Eastern Gulf of Mexico: implications for seismic stratigraphic succession and Loop Current/Gulf Stream circulation. Geol. Soc. Am. Bull., 98, 702–713.
    [Google Scholar]
  71. Mullins, H.T., Gardulski, A.F., Hine, A.C., Melillo, A.J., Wise, S.W. & Applegate, J. (1988) Three‐dimensional sedimentary framework of the carbonate ramp slope of central West Florida: a sequential seismic stratigraphic perspective. Geol. Soc. Am. Bull., 100, 514–533.
    [Google Scholar]
  72. Newkirk, D.R. & Martin, E.E. (2009) Circulation through the Central American seaway during the miocene carbonate crash. Geol. Soc. Am., 37, 87–90.
    [Google Scholar]
  73. Pindell, J. (1985) Alleghenian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and Proto‐Caribbean. Tectonics, 4, 1–39.
    [Google Scholar]
  74. Pindell, J. & Kennan, L. (2001) Kinematic evolution of the Gulf of Mexico and Caribbean. GCSSEPM Foundation 21st Annual Research Conference Transactions, Petroleum Systems of Deep‐Water Basins, 193–220.
  75. Playton, T., Janson, X. & Kerans, C. (2010) Chapter 18: Carbonate slopes. InFacies Models (Ed. by N.P.James & R.W.Dalrymple ) Geol. Assoc Canada, 449–476.
    [Google Scholar]
  76. Potter, P.E. & Szatmari, P. (2009) Global miocene tectonics and the modern world. Earth Sci. Rev., 96, 279–295.
    [Google Scholar]
  77. Principaud, M., Mulder, T., Gillet, H. & Borgomano, J. (2015) Large‐scale carbonate submarine mass‐wasting along the northwestern slope of the Great Bahama Bank (Bahamas): morphology, architecture, and mechanisms. Sed. Geol., 317, 27–42.
    [Google Scholar]
  78. Reijmer, J.J.C., Palmeiri, P. & Groen, R. (2012) Compositional variations in calciturbidites and calcidebrites in response to sea‐level fluctuations (Exuma Sound, Bahamas). Facies, 58, 493–507.
    [Google Scholar]
  79. Rendle, R.H. & Reijmer, J.J.G. (2002) Quaternary slope development of the western, leeward margin of the Great Bahama Bank. Mar. Geol., 185, 143–164.
    [Google Scholar]
  80. Ross, M.I. & Scotese, C.R. (1988) A hierarchical tectonic model of the Gulf of Mexico and Caribbean Region. Tectonophysics, 155, 139–168.
    [Google Scholar]
  81. Sarg, J.F. (1988) Carbonate sequence stratigraphy. In: Sea‐Level Changes: An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.S.C.Kendall , H.W.Posamentier , C.A.Ross & J.C.Van Wagoner ) Soc. Econ. Paleontol. Mineral. Spec. Publ., 42, 155–188.
    [Google Scholar]
  82. Schlager, W. (1981) The paradox of drowned reefs and carbonate platforms. Geol. Soc. Am. Bull., 92, 197–211.
    [Google Scholar]
  83. Schlager, W. & Chermak, A. (1979) Sediment facies of platform basin‐transition, Tongue of the Ocean, Bahamas. In: Geology of Continental Slopes (Ed. by L.J.Doyle & O.H.Pilkey ) Soc. Econ. Paleontol. Mineral. Spec. Publ., 27, 193–207.
    [Google Scholar]
  84. Schlager, W., Bourgeois, F., Mackenzie, G. & Smit, J. (1988) Boreholes at Great Isaac and Site 626 and the history of the Florida Straits. In: Proceeding of the Ocean Drilling Program, Scientific Results (Ed. by J.A.Austin & W.Schlager et al.) College Station, Texas, Ocean Drilling Program, 101, 425–437.
    [Google Scholar]
  85. Schlager, W., Reijmer, J.J.G. & Droxler, A. (1994) Highstand shedding of carbonate platforms. J. Sediment. Res., 64, 270–281.
    [Google Scholar]
  86. Sheridan, R.E., Crosby, J.T., Bryan, G.M. & Stoffa, P.L. (1981) Stratigraphy and structure of southern Blake Plateau, Northern Florida Straits, and Northern Bahama Paltform from multichannel seismic reflection data. Am. Assoc. Pet. Geol. Bull., 65, 2571–2593.
    [Google Scholar]
  87. Spence, G.H. & Tucker, M.E. (1997) Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sed. Geol., 112, 163–193.
    [Google Scholar]
  88. Steph, S., Tiedemann, R., Prange, M., Groeneveld, J., Nürnberg, D., Reuning, L., Schulz, M. & Haug, G.H. (2006) Changes in Caribbean surface hydrography during the Pliocene shoaling of the Central American Seaway. Paleoceanography, 21, 1–25.
    [Google Scholar]
  89. Vail, P.R., Mitchum, R.M.J., Todd, R.G., Widmier, J.M., Thompson, S.I., Sangree, J.B., Budd, J.N. & Hatlelid, W.G. (1977) Seismic stratigraphy and global changes of sea level. In: Seismic Stratigraphy – Applications to Hydrocarbon Exploration (Ed. by C.E.Payton ) Am. Assoc. Petrol. Geol. Memoir.,26, 49–212.
    [Google Scholar]
  90. Wang, J. & Mooers, C.N.K. (1997) Three‐dimensional perspectives of the Florida Current: transport, potential vorticity, and related dynamical properties. Dyn. Atmos. Oceans, 27, 135–149.
    [Google Scholar]
  91. Wilber, R.J., Milliman, J.D. & Halley, R.B. (1990) Accumulation of bank‐top sediment on the western slope of Great Bahama Bank: rapid progradation of a carbonate megabank. Geology, 18, 970–974.
    [Google Scholar]
  92. Wilson, P.A. & Roberts, H.H. (1992) Carbonate‐periplatform sedimentation by density flows: a mechanism for rapid off‐bank and vertical transport of shallow‐water fines. Geology, 20, 713–716.
    [Google Scholar]
  93. Wilson, P.A. & Roberts, H.H. (1995) Density cascading; off‐shelf sediment transport, evidence and implications, Bahama Banks. J. Sediment. Res., 65, 45–56.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12195
Loading
/content/journals/10.1111/bre.12195
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error