1887
Volume 29, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

Determining both short‐ and long‐term sedimentation rates is becoming increasingly important in geomorphic (exhumation and sediment flux), structural (subsidence/flexure) and natural resource (predictive modelling) studies. Determining sedimentation rates for ancient sedimentary sequences is often hampered by poor understanding of stratigraphic architecture, long‐term variability in large‐scale sediment dispersal patterns and inconsistent availability of absolute age data. Uranium–Lead (U‐Pb) detrital zircon (DZ) geochronology is not only a popular method to determine the provenance of siliciclastic sedimentary rocks but also helps delimit the age of sedimentary sequences, especially in basins associated with protracted volcanism. This study assesses the reliability of U‐Pb DZ ages as proxies for depositional ages of Upper Cretaceous strata in the Magallanes‐Austral retroarc foreland basin of Patagonia. Progressive younging of maximum depositional ages (MDAs) calculated from young zircon populations in the Upper Cretaceous Dorotea Formation suggests that the MDAs are potential proxies for absolute age, and constrain the age of the Dorotea Formation to be . 82–69 Ma. Even if the MDAs do not truly represent ages of contemporaneous volcanic eruptions in the arc, they may still indicate progressive‐but‐lagged delivery of increasingly younger volcanogenic zircon to the basin. In this case, MDAs may still be a means to determine long‐term (≥1–2 Myr) average sedimentation rates. Burial history models built using the MDAs reveal high aggradation rates during an initial, deep‐marine phase of the basin. As the basin shoaled to shelfal depths, aggradation rates decreased significantly and were outpaced by progradation of the deposystem. This transition is likely linked to eastward propagation of the Magallanes fold‐thrust belt during Campanian‐Maastrichtian time, and demonstrates the influence of predecessor basin history on foreland basin dynamics.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12198
2016-04-29
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/bre/29/6/bre12198.html?itemId=/content/journals/10.1111/bre.12198&mimeType=html&fmt=ahah

References

  1. Ali, R. & Fosdick, J.C. (2015) Thermal history of the Maastrichtian‐Eocene Magallanes (Austral) foreland basin, Patagonia (50.5–51.5°S): preliminary findings from vitrinite reflectance analysis and detrital zircon thermochronology. AAPG Eastern Section 44th Meeting, Indianapolis, 44, 27.
  2. Allen, R.B. (1982) Geología de la Cordillera Sarmiento, Andes Patagónicos, entre los 50 00′ y 52 15′ Lat. S, Magallanes, Chile. Servicio Nacional de Geologia y Mineria, Chile, Boletin, 38, 1–46.
  3. Armitage, D.A., Romans, B.W., Covault, J.A. & Graham, S.A. (2009) The influence of mass transport deposit surface topography on the evolution of turbidite architecture: the Sierra Contreras, Tres Pasos Formation (Cretaceous), southern Chile. J. Sed. Res., 79, 287–301.
    [Google Scholar]
  4. Bauer, D.B. (2012) Stratigraphic evolution of a high‐relief slope clinoform system, Magallanes Basin, Chilean Patagonia. MS Thesis, University of Calgary, Calgary, Alberta.
  5. Bernhardt, A., Jobe, Z.R., Grove, M. & Lowe, D.R. (2011) Palaeogeography and diachronous infill of an ancient deep‐marine foreland basin, Upper Cretaceous Cerro Toro Formation, Magallanes Basin. Basin Res., 23, 1–26.
    [Google Scholar]
  6. Betka, P., Klepeis, K. & Mosher, S. (2015) Along‐strike variation in crustal shortening and kinematic evolution of the base of a retroarc fold‐and‐thrust belt: Magallanes, Chile 53°S–54°S. Geol. Soc. Am. Bull., doi: 10.1130/B31130.1.
    [Google Scholar]
  7. Biddle, K.T., Uliana, M.A., Mitchum, R.M., Fitzgerald, M.G. & Wright, R.C. (1986) The stratigraphic and structural evolution of the central and eastern Magallanes Basin, southern South America. In: Foreland Basins (Ed. by P.A.Allen & P.Homewood ), Int. Assoc. Sedimentol. Spec. Publ., 8, 41–61.
    [Google Scholar]
  8. Bookhagen, B. & Strecker, M.R. (2012) Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: examples from the southern Central Andes. Earth Plan. Sci. Lett., 327–328, 97–110.
    [Google Scholar]
  9. Breitsprecher, K. & Thorkelson, D.J. (2009) Neogene kinematic history of Nazca‐Antarctic‐Phoenix slab windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics, 464, 10–20.
    [Google Scholar]
  10. Calderón, M., Fildani, A., Hervé, F., Fanning, C.M., Weislogel, A. & Cordani, U. (2007) Late Jurassic bimodal magmatism in the northern sea‐floor remnant of the Rocas Verdes basin, southern Patagonian Andes. J. Geol. Soc., 164, 1011–1022.
    [Google Scholar]
  11. Calderón, M., Fosdick, J.C., Warren, C., Massonne, H.‐J., Fanning, C.M., Cury, L.F., Schwanethal, J., Fonseca, P.E., Galaz, G., Gaytán, D. & Hervé, F. (2012) The low‐grade Canal de las Montañas Shear Zone and its role in the tectonic emplacement of the Sarmiento Ophiolitic Complex and Late Cretaceous Patagonian Andes orogeny, Chile. Tectonophysics, 524–525, 165–185.
    [Google Scholar]
  12. Carvajal, C., Steel, R. & Petter, A. (2009) Sediment supply: the main driver of shelf‐margin growth. Earth Sci. Rev., 96, 221–248.
    [Google Scholar]
  13. Coney, P.J., Muñoz, J.A., McClay, K.R. & Evenchick, C.A. (1996) Syntectonic burial and post‐tectonic exhumation of the southern Pyrenees foreland fold‐thrust belt. J. Geol. Soc., 153, 9–16.
    [Google Scholar]
  14. Covault, J.A., Romans, B.W. & Graham, S.A. (2009) Outcrop expression of a continental‐margin‐scale shelf‐edge delta from the Cretaceous Magallanes Basin, Chile. J. Sed. Res., 79, 523–539.
    [Google Scholar]
  15. Crane, W.H. & Lowe, D.R. (2008) Architecture and evolution of the Paine channel complex, Cerro Toro Formation (Upper Cretaceous), Silla Syncline, Magallanes Basin, Chile. Sedimentology, 55, 979–1009.
    [Google Scholar]
  16. Dalziel, I.W.D. (1981) Back‐arc extension in the southern Andes: a review and critical reappraisal. Philos. Trans. R. Soc. Lond. B Biol. Sci., 300, 319–335.
    [Google Scholar]
  17. Dalziel, I.W.D., de Wit, M.J. & Palmer, K.F. (1974) Fossil marginal basin in the southern Andes. Nature, 250, 291–294.
    [Google Scholar]
  18. De Wit, M.J. & Stern, C.R. (1981) Variations in the degree of crustal extension during formation of a back‐arc basin. Tectonophysics, 72, 229–260.
    [Google Scholar]
  19. DeCelles, P.G. & Currie, B.S. (1996) Long‐term sediment accumulation in the Middle Jurassic‐early Eocene Cordilleran retroarc foreland basin system. Geology, 24, 591–594.
    [Google Scholar]
  20. DeCelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  21. DeCelles, P.G., Ducea, M.N., Kapp, P. & Zandt, G. (2009) Cyclicity in Cordilleran orogenic systems. Nat. Geosci., 2, 251–257.
    [Google Scholar]
  22. DeGraaff‐Surpless, K., Mahoney, J.B., Wooden, J.L. & McWilliams, M.O. (2003) Lithofacies control in detrital zircon provenance studies: Insights from the Cretaceous Methow basin, southern Canadian Cordillera. Geol. Soc. Am. Bull., 115, 899–915.
    [Google Scholar]
  23. Dickinson, W.R. & Gehrels, G.E. (2009) Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett., 288, 115–125.
    [Google Scholar]
  24. Faúndez, V., Hervé, F. & Lacassie, J.P. (2002) Provenance and depositional setting of pre‐Late Jurassic turbidite complexes in Patagonia, Chile. N. Z. J. Geol. Geophys., 45, 411–425.
    [Google Scholar]
  25. Fedo, C.M., Sircombe, K.N. & Rainbird, R.H. (2003) Detrital zircon analysis of the sedimentary record. Rev. Mineral. Geochem., 53, 277–303.
    [Google Scholar]
  26. Fildani, A. & Hessler, A.M. (2005) Stratigraphic record across a retroarc basin inversion: Rocas Verdes‐Magallanes Basin, Patagonian Andes, Chile. Geol. Soc. Am. Bull., 117, 1596–1614.
    [Google Scholar]
  27. Fildani, A., Cope, T.D., Graham, S.A. & Wooden, J.L. (2003) Initiation of the Magallanes foreland basin: timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis. Geology, 31, 1081–1084.
    [Google Scholar]
  28. Fildani, A., Romans, B.W., Fosdick, J.C., Crane, W.H. & Hubbard, S.M. (2008) Orogenesis of the Patagonian Andes as reflected by basin evolution in southernmost South America. Ariz. Geol. Soc. Dig., 22, 259–268.
    [Google Scholar]
  29. Forsythe, R. & Allen, R.B. (1980) The basement rocks of Península Staines, Región XII, province of Última Esperanza, Chile. Rev. Geol. Chile, 10, 3–15.
    [Google Scholar]
  30. Fosdick, J.C., Romans, B.W., Fildani, A., Bernhardt, A., Calderón, M. & Graham, S.A. (2011) Kinematic evolution of the Patagonian retroarc fold‐and‐thrust belt and Magallanes foreland basin, Chile and Argentina, 51 30′S. Geol. Soc. Am. Bull., 123, 1679–1698.
    [Google Scholar]
  31. Fosdick, J.C., Grove, M., Hourigan, J.K. & Calderón, M. (2013) Retroarc deformation and exhumation near the end of the Andes, southern Patagonia. Earth Planet. Sci. Lett., 361, 504–517.
    [Google Scholar]
  32. Fosdick, J.C., Graham, S.A. & Hilley, G.E. (2014) Influence of attenuated lithosphere and sediment loading on flexure of the deep‐water Magallanes retroarc foreland basin, Southern Andes. Tectonics, doi: 10.1002/2014TC003684.
    [Google Scholar]
  33. Fosdick, J.C., Grove, M., Graham, S.A., Hourigan, J.K., Lovera, O. & Romans, B.W. (2015) Detrital thermochronologic record of burial heating and sediment recycling in the Magallanes foreland basin, Patagonian Andes. Basin Res., doi: 10.1111/bre.12088.
    [Google Scholar]
  34. Gehrels, G.E., Valencia, V. & Pullen, A. (2006) Detrital zircon geochronology by laser ablation‐multicollector ICPMS at the Arizona LaserChron Center. In: Geochronology: Emerging Opportunities (Ed. by T.Olszewski ): Paleontol. Soc. Pap., 12, 67–76.
    [Google Scholar]
  35. Gehrels, G.E., Valencia, V. & Ruiz, J. (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation‐multicollector‐inductively coupled plasma‐mass spectrometry. Geochem. Geophys. Geosyst., 9, Q03017.
    [Google Scholar]
  36. Gust, D.A., Biddle, K.T., Phelps, D.W. & Uliana, M.A. (1985) Associated middle to late Jurassic volcanism and extension in southern South America. Tectonophysics, 116, 223–253.
    [Google Scholar]
  37. Hamza, V.M. & Muñoz, M. (1996) Heat flow map of South America. Geothermics, 25, 599–621.
    [Google Scholar]
  38. Harris, P.T., Baker, E.K., Cole, A.R. & Short, S.A. (1993) A preliminary study of sedimentation in the tidally dominated Fly River Delta, Gulf of Papua. Cont. Shelf Res., 13, 441–472.
    [Google Scholar]
  39. Hervé, F., Fanning, C.M. & Pankhurst, R.J. (2003) Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. J. S. Am. Earth Sci., 16, 107–123.
    [Google Scholar]
  40. Hervé, F., Godoy, E., Mpodozis, C. & Fanning, M. (2004) Monitoring magmatism of the Patagonian Batholith through the U‐Pb SHRIMP dating of detrital zircons in sedimentary units of the Magallanes basin. Boll. Geofis. Teorica Appl., 45, 113–117.
    [Google Scholar]
  41. Hervé, F., Pankhurst, R.J., Fanning, C.M., Calderón, M. & Yaxley, G.M. (2007) The South Patagonian Batholith: 150 m.y. of granite magmatism on a plate margin. Lithos, 97, 373–394.
    [Google Scholar]
  42. Hori, K., Saito, Y., Zhao, Q., Cheng, X., Wang, P., Sato, Y. & Li, C. (2001) Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China. Geomorphology, 41, 233–248.
    [Google Scholar]
  43. Horton, B.K. & DeCelles, P.G. (1997) The modern foreland basin system adjacent to the Central Andes. Geology, 25, 895–898.
    [Google Scholar]
  44. Horton, B.K., Constenius, K.N. & DeCelles, P.G. (2004) Tectonic control on coarse‐grained foreland basin sequences: an example from the Cordilleran foreland basin, Utah. Geology, 32, 637–640.
    [Google Scholar]
  45. Hubbard, S.M., Romans, B.W. & Graham, S.A. (2008) Deep‐water foreland basin deposits of the Cerro Toro Formation, Magallanes basin, Chile: architectural elements of a sinuous basin axial channel belt. Sedimentology, 55, 1333–1359.
    [Google Scholar]
  46. Hubbard, S.M., Fildani, A., Romans, B.W., Covault, J.A. & McHargue, T.R. (2010) High‐relief slope clinoform development: insights from outcrop, Magallanes Basin, Chile. J. Sed. Res., 80, 357–375.
    [Google Scholar]
  47. Hünicken, M. (1955) Depósitos Neocretácios y Terciarios del extremo SSW de Santa Cruz (Cuenca Carbonífera de Río Turbio). Rev Inst. Nacl Investig. Cienc. Nat. Bern. Riv. Cienc. Geol., 2, 1–161.
    [Google Scholar]
  48. Iglesias, A., Artabe, A.E. & Morel, E.M. (2011) The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Biol. J. Linn. Soc., 103, 409–422.
    [Google Scholar]
  49. Kamola, D.L. & Huntoon, J.E. (1995) Repetitive stratal patterns in a foreland basin sandstone and their possible tectonic significance. Geology, 23, 177–180.
    [Google Scholar]
  50. Katz, H.R. (1963) Revision of Cretaceous stratigraphy in Patagonian cordillera of Ultima Esperanza, Magallanes Province, Chile. Am. Assoc. Pet. Geol. Bull., 47, 506–524.
    [Google Scholar]
  51. Klepeis, K., Betka, P., Clarke, G., Fanning, M., Hervé, F., Rojas, L., Mpodozis, C. & Thomson, S. (2010) Continental underthrusting and obduction during the Cretaceous closure of the Rocas Verdes rift basin, Cordillera Darwin, Patagonian Andes. Tectonics, 29, 1–24.
    [Google Scholar]
  52. Lacassie, J.P., Hervé, F. & Roser, B. (2006) Sedimentary provenance study of the post‐Early Permian to pre‐Early Cretaceous metasedimentary Duque de York Complex, Chile. Rev. Geol. Chile, 33, 199–219.
    [Google Scholar]
  53. Lawrence, J.F. & Wiens, D.A. (2004) Combined receiver‐function and surface wave phase‐velocity inversion using a niching genetic algorithm: application to Patagonia. Bull. Seismo. Soc. Am., 94, 977–987.
    [Google Scholar]
  54. Ludwig, K.R. (2008) Isoplot/Ex version 3.7: a geochronological toolkit for Microsoft Excel: Berkeley Geochron . Cen. Spec. Publ., 4, 1–77.
    [Google Scholar]
  55. Macellari, C.E., Barrio, C.A. & Manassero, M.J. (1989) Upper Cretaceous to Paleocene depositional sequences and sandstone petrography of southwestern Patagonia (Argentina and Chile). J. S. Am. Earth Sci., 2, 223–239.
    [Google Scholar]
  56. Mahon, K.I. (1996) The New “York” regression: application of an improved statistical method to geochemistry. Int. Geol. Rev., 38, 293–303.
    [Google Scholar]
  57. Malkowski, M.A., Schwartz, T.M., Fosdick, J.C. & Graham, S.A. (2012) Provenance of Jurassic‐Cretaceous strata from the Argentinian sector of the Magallanes‐Austral Basin, southern Patagonia. AAPG Search & Discovery Article, #90142.
  58. Malkowski, M.A., Sharman, G.R. & Graham, S.A. (2015) Characterization and diachronous initiation of coarse clastic deposition in the Magallanes‐Austral foreland basin, Patagonian Andes. Basin Res., doi: 10.1111/bre.12150.
    [Google Scholar]
  59. Malumián, N., Panza, J.L., Parisi, C., Nañez, C., Caramés, A. & Torre, A. (2000) Hoja Geológica 5172‐III, Yacimiento Río Turbio (1:250,000). Serv. Geol. Minero Argent. Bol., 247, 1–180.
    [Google Scholar]
  60. McKay, M.P., Weislogel, A.L., Fildani, A., Brunt, R.L. & Hodgson, D.M. (2015) U‐Pb zircon tuff geochronology from the Karoo Basin, South Africa: implications of zircon recycling on stratigraphic age controls. Int. Geol. Rev., doi: 10.1080/00206814.2015.1008592.
    [Google Scholar]
  61. Mukasa, S.B. & Dalziel, I.W.D. (1996) Southernmost Andes and South Georgia Island, North Scotia Ridge: Zircon U‐Pb and muscovite 40Ar/39Ar age constraints on tectonic evolution of Southwestern Gondwanaland. J. S. Am. Earth Sci., 9, 349–365.
    [Google Scholar]
  62. Natland, M.L., Gonzalez, P.E., Canon, A. & Ernst, M. (1974) A system of stages for correlation of Magallanes basin sediments. AAPG Mem., 139, 126.
    [Google Scholar]
  63. Nelson, D.R. (2001) An assessment of the determination of depositional ages for Precambrian clastic sedimentary rocks by U‐Pb dating of detrital zircon. Sed. Geol., 141–142, 37–60.
    [Google Scholar]
  64. Painter, C.S., Carrapa, B., DeCelles, P.G., Gehrels, G.E. & Thomson, S.N. (2014) Exhumation of North American Cordillera revealed by multi‐dating of Upper Jurassic‐Upper Cretaceous foreland basin deposits. Geol. Soc. Am. Bull., doi: 10.1130/b30999.1.
    [Google Scholar]
  65. Pankhurst, R.J., Riley, T.R., Fanning, C.M. & Kelley, S.P. (2000) Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break‐up of Gondwana. J. Petrol., 41, 605–625.
    [Google Scholar]
  66. Pankhurst, R.J., Rapela, C.W., Loske, W.P., Fanning, C.M. & Márquez, M. (2003) Chronological study of the pre‐Permian basement rocks of southern Patagonia. J. S. Am. Earth Sci., 16, 27–44.
    [Google Scholar]
  67. Porebski, S.J. & Steel, R.J. (2003) Shelf‐margin deltas: their stratigraphic significance and relation to deepwater sands. Earth Sci. Rev., 62, 283–326.
    [Google Scholar]
  68. Posamentier, H.W. & Allen, G.P. (1993) Siliciclastic sequence stratigraphic patterns in foreland ramp‐type basins. Geology, 21, 455–458.
    [Google Scholar]
  69. Ramos, V.A. (1989) Andean foothills structures in northern Magallanes Basin, Argentina. Am. Assoc. Pet. Geol. Bull., 73, 887–903.
    [Google Scholar]
  70. Ramos, V.A. & Kay, S.M. (2002) Southern Patagonian plateau basalts and deformation: backarc testimony to ridge collisions. Tectonophysics, 205, 261–282.
    [Google Scholar]
  71. Rao, A.R. (1993) Magnetic‐polarity stratigraphy of Upper Siwalik of north‐western Himalayan foothills. Curr. Sci., 64, 863–873.
    [Google Scholar]
  72. Robertson Maurice, S.D., Wiens, D.A., Koper, K.D. & Vera, E. (2003) Crustal and upper mantle structure of southernmost South America inferred from regional waveform inversion. J. Geophys. Res., 108, 1–10.
    [Google Scholar]
  73. Romans, B.W., Hubbard, S.M. & Graham, S.A. (2009) Stratigraphic evolution of an outcropping continental slope system, Tres Pasos Formation at Cerro Divisadero, Chile. Sedimentology, 56, 737–764.
    [Google Scholar]
  74. Romans, B.W., Fildani, A., Graham, S.A., Hubbard, S.M. & Covault, J.A. (2010) Importance of predecessor basin history on the sedimentary fill of a retroarc foreland basin: provenance analysis of the Cretaceous Magallanes basin, Chile (50–52 S). Basin Res., 22, 640–658.
    [Google Scholar]
  75. Romans, B.W., Hubbard, S.M., Covault, J.A., Fosdick, J.C. & Graham, S.A. (2011) Evolution of deep‐water stratigraphic architecture, Magallanes Basin, Chile. Mar. Pet. Geol., 28, 612–628.
    [Google Scholar]
  76. Sachse, V.F., Strozyk, F., Anka, A., Rodriguez, J.F. & di Primio, R. (2015) The tectono‐stratigraphic evolution of the Austral basin and adjacent areas against the background of Andean tectonics, southern Argentina, South America. Basin Res., doi: 10.1111/bre.12118.
    [Google Scholar]
  77. Schwartz, T.M. & Graham, S.A. (2015) Stratigraphic architecture of a tide‐influenced shelf‐edge delta, Upper Cretaceous Dorotea Formation, Magallanes‐Austral basin, Patagonia. Sedimentology, doi: 10.1111/sed.12176.
    [Google Scholar]
  78. Schwartz, T.M., Malkowski, M.A. & Graham, S.A. (2012) Evaluation of the close‐out of deep‐marine deposition in the Magallanes‐Austral Basin, Patagonian Chile and Argentina. AAPG Search and Discovery Article, #90142.
  79. Scott, K.M. (1966) Sedimentology and dispersal patterns of a Cretaceous flysch sequence, Patagonian Andes, southern Chile. Am. Assoc. Pet. Geol. Bull., 50, 72–107.
    [Google Scholar]
  80. Shultz, M.R., Fildani, A., Cope, T.A. & Graham, S.A. (2005) Deposition and stratigraphic architecture of an outcropping ancient slope system: Tres Pasos Formation, Magallanes Basin, southern Chile. In: Submarine Slope Systems: Processes and Products (Ed. by D.M.Hodgson & S.S.Flint ). Geol. Soc. Lond. Spec. Publ., 244, 27–50.
    [Google Scholar]
  81. Sircombe, K.N. (1999) Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sed. Geol., 124, 47–67.
    [Google Scholar]
  82. Skarmeta, J.J. & Castelli, J.C. (1997) Syntectonic intrusion of Torres del Paine granite, Patagonian Andes. Rev. Geol. Chile, 24, 55–74.
    [Google Scholar]
  83. Stern, C.R. & De Wit, M.J. (2003) Rocas Verdes ophiolites, southernmost South America: remnants of progressive stages of development of oceanic‐type crust in a continental margin back‐arc basin. Geol. Soc. Lond. Spec. Publ., 218, 665–683.
    [Google Scholar]
  84. Stern, C.R. & Stroup, J.B. (1982) The petrochemistry of the Patagonian Batholith, Ultima Esperanza, Chile. In: Antarctic Geoscience (Ed. by C.Craddock ), pp. 135–142. University of Wisconsin Press, Madison, WI, USA.
    [Google Scholar]
  85. Stern, C.R., Musaka, S.B. & Fuenzalida, R. (1992) Age and petrogenesis of the Sarmiento ophiolite complex of southern Chile. J. S. Am. Earth Sci., 6, 97–104.
    [Google Scholar]
  86. Stewart, J.H., Gehrels, G.E., Barth, A.P., Link, P.K., Christie‐Blick, N. & Wrucke, C.T. (2001) Detrital zircon provenance of Mesoproterozoic to Cambrian arenites in the western United States and northwestern Mexico. Geol. Soc. Am. Bull., 113, 1343–1356.
    [Google Scholar]
  87. Surpless, K.D., Graham, S.A., Covault, J.A. & Wooden, J.L. (2006) Does the Great Valley Group contain Jurassic strata? Reevaluation of the age and early evolution of a classic foreland basin. Geology, 34, 21–24.
    [Google Scholar]
  88. Ta, T.K.O., Nguyen, V.L., Tateishi, M., Kobayashi, I., Saito, Y. & Nakamura, T. (2002) Sediment facies and Late Holocene progradation of the Mekong River Delta in Bentre Province, southern Vietnam: an example of evolution from a tide‐dominated to a tide‐ and wave‐dominated delta. Sed. Geol., 152, 313–325.
    [Google Scholar]
  89. Thomson, S.N., Hervé, F. & Stöckhert, B. (2001) Mesozoic‐Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes. Tectonics, 20, 693–711.
    [Google Scholar]
  90. Thomson, S.N., Brandon, M.T., Tomkin, J.H., Reiners, P.W., Vásquez, C. & Wilson, N.J. (2010) Glaciation as a destructive and constructive control on mountain building. Nature, 467, 313–317.
    [Google Scholar]
  91. Torres‐Carbonell, P.J. & Dimieri, L.V. (2013) Cenozoic contractional tectonics in the Fuegian Andes, southernmost South America: a model for the transference of orogenic shortening to the foreland. Geol. Acta, 11, 331–357.
    [Google Scholar]
  92. Tucker, G.E. & Slingerland, R. (1997) Drainage basin responses to climate change. Water Resour. Res., 33, 2031–2047.
    [Google Scholar]
  93. Walker, J.D., Geissman, J.W., Bowring, S.A. & Babcock, L.E. (2012) Geologic Time Scale v. 4.0. Geol. Soc. Am., doi: 10.1130/2012.CTS004R3C.
    [Google Scholar]
  94. Williams, R.L., Cox, R., Mapes, R.W. & Coleman, D.S. (2011) Hydrodynamic fractionation of zircon age populations. Geol. Soc. Am. Bull., 123, 295–305.
    [Google Scholar]
  95. Wilson, T.J. (1991) Transition from back‐arc to foreland basin development in the southernmost Andes: stratigraphic record from the Ultima Esperanza District, Chile. Geol. Soc. Am. Bull., 103, 98–111.
    [Google Scholar]
  96. Winn, R.D.Jr & Dott, R.H.Jr (1979) Deep‐water fan‐channel conglomerates of late Cretaceous age, southern Chile. Sedimentology, 26, 203–228.
    [Google Scholar]
  97. Worm, H.U., Ahmed, A.M.M., Ahmed, N.U., Islam, H.O., Huq, M.M., Hambach, U. & Lietz, J. (1998) Large sedimentation rate in the Bengal delta: magnetostratigraphic dating of Cenozoic sediments from northeastern Bangladesh. Geology, 26, 487–490.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12198
Loading
/content/journals/10.1111/bre.12198
Loading

Data & Media loading...

Supplements

Separation, analytical and statistical techniques for detrital zircon analysis and interpretation.

WORD

U‐Pb detrital zircon geochronologic analyses by LA‐ICP‐MS.

Raw histograms and Concordia plots for U‐Pb detrital zircon analyses.

Compilation of reported aggradation and progradation rates for ancient shelf margins.

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error