1887
Volume 29, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

We present an interpolation model that describes Holocene groundwater level rise and the creation of accommodation space in 3D in the Rhine‐Meuse delta – the Netherlands. The model area (12 400 km2) covers two palaeovalleys of Late Pleistocene age (each 30 km wide) and the overlying Holocene deposits of the Rhine‐Meuse delta, the Holland coastal plain, and the Zuiderzee former lagoon. Water table rise is modelled from 10 800 to 1000 cal. BP, making use of age‐depth relations based on 384 basal peat index points, and producing output in the form of stacked palaeo groundwater surfaces, groundwater age‐depth curves, and voxel sets. These products allow to resolve (i) regional change and variations of inland water table slopes, (ii) spatial differences in the timing and pacing of transgression, and (iii) analysis of interplay of coastal, fluvial and subsidence controls on the provision of accommodation space. The interpolation model is a multi‐parameter trend function, to which a 3D‐kriging procedure of the residuals is added. This split design deploys a generic approach for modelling provision of accommodation space in deltas and coastal lowlands, aiming to work both in areas of intermediate data availability and in the most data‐rich environments. Major provision of accommodation space occurred from 8500 cal BP onwards, but a different evolution occurred in each of the two palaeovalleys. In the northern valley, creation of accommodation space began to stall at 7500 cal BP, while in the southern valley provision of new accommodation space in considerable quantities continued longer. The latter is due to the floodplain gradient that was maintained by the Rhine, which distinguishes the fluvial deltaic environment from the rest of the back‐barrier coastal plain. The interpolation results allow advanced mapping and investigation of apparent spatial differences in Holocene aggradation in larger coastal sedimentary systems. Furthermore, they provide a means to generate first‐order age information with centennial precision for 3D geological subsurface models of Holocene deltas and valley fills. As such, the interpolation is of use in studies into past and present land subsidence and into low land sedimentation.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12202
2016-05-24
2020-03-28
Loading full text...

Full text loading...

References

  1. Bates, M.R., Bates, C.R. & Whittaker, J.E. (2007) Mixed method approach to the investigation and mapping of buried Quaternary deposits: examples from southern England. Archaeol. Prospect., 14(2), 104–129.
    [Google Scholar]
  2. Beets, D.J. & Van der Spek, A.J.F. (2000) The Holocene evolution of the barrier and back‐barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sea‐level rise and sediment supply. Neth. J. Geosci., 79, 3–16.
    [Google Scholar]
  3. Behre, K.E. (2007) A new Holocene sea‐level curve for the southern North Sea. Boreas, 36(1), 82–102.
    [Google Scholar]
  4. Bennema, J. (1954) Holocene movements of land‐ and sea‐level in the coastal area of the Netherlands. Geol. Mijnbouw, 16, 254–264.
    [Google Scholar]
  5. Berendsen, H.J.A. & Stouthamer, E. (2001) Palaeogeographic Development of the Rhine‐Meuse Delta, The Netherlands. Van Gorcum, Assen.
    [Google Scholar]
  6. Berendsen, H.J.A., Makaske, B., Van de Plassche, O., Van Ree, H.M.H., Das, S., Van Dongen, M., Ploumen, S. & Schoenmakers, W. (2007a) New groundwater‐level rise data from the Rhine‐Meuse delta – implications for the reconstruction of Holocene relative mean sea‐level rise and differential land‐level movements. Neth. J. Geosci., 86, 333–354.
    [Google Scholar]
  7. Berendsen, H.J.A., Cohen, K.M. & Stouthamer, E. (2007b) The use of GIS in reconstructing the Holocene palaeogeography of the Rhine‐Meuse delta, The Netherlands. Int. J. Geogr. Inf. Sci., 21, 589–602.
    [Google Scholar]
  8. Blum, M.D. & Törnqvist, T.E. (2000) Fluvial responses to climate and sea‐level change: a review and look forward. Sedimentology, 47, 2–48.
    [Google Scholar]
  9. Blum, M.D., Tomkin, J.H., Purcell, A. & Lancaster, R.R. (2008) Ups and downs of the Mississippi Delta. Geology, 36(9), 675–678.
    [Google Scholar]
  10. Borger, G.J. (1992) Draining‐digging‐dredging; the creation of a new landscape in the peat areas of the low countries. In: Fens and Bogs in the Netherlands: Vegetation, History, Nutrient Dynamics and Conservation (Ed. by J.T.A.Verhoeven ) Geobotany, 18, 131–172
    [Google Scholar]
  11. Bos, I.J. & Stouthamer, E. (2011) Spatial and temporal distribution of sand‐containing basin fills in the Holocene Rhine‐Meuse delta, the Netherlands. J. Geol., 119, 641–660.
    [Google Scholar]
  12. Bos, J.A.A., Van Geel, B., Van der Plicht, J. & Bohncke, S.J.P. (2007) Preboreal climate oscillations in Europe: wiggle‐match dating and synthesis of Dutch high‐resolution multi‐proxy records (Ed. by W.Z. Hoek & J.A.A. Bos). Quatern. Sci. Rev., 26(15–16), 1927–1950.
    [Google Scholar]
  13. Bos, I.J., Busschers, F.S. & Hoek, W.Z. (2012) Organic‐facies determination: a key for understanding facies distribution in the basal peat layer of the Holocene Rhine‐Meuse delta, the Netherlands. Sedimentology, 59(2), 676–703.
    [Google Scholar]
  14. Bronk Ramsey, C. (2009) Dealing with outliers and offsets in Radiocarbon dating. Radiocarbon, 51(3), 1023–1045.
    [Google Scholar]
  15. Busschers, F.S., Kasse, C., Van Balen, R.T., Vandenberghe, J., Cohen, K.M., Weerts, H.J.T., Wallinga, J., Johns, C., Cleveringa, P. & Bunnik, F.P.M. (2007) Late Pleistocene evolution of the Rhine‐Meuse system in the southern North Sea basin: imprints of climate change, sea‐level oscillation and glacio‐isostacy. Quatern. Sci. Rev., 26, 3216–3248.
    [Google Scholar]
  16. Busschers, F.S., Van Balen, R.T., Cohen, K.M., Kasse, C., Weerts, H.J.T., Wallinga, J. & Bunnik, F.P.M. (2008) Response of the Rhine‐Meuse fluvial system to Saalian ice‐sheet dynamics. Boreas, 37, 377–398.
    [Google Scholar]
  17. Carton, A., Bondesan, A., Fontana, A., Meneghel, M., Miola, A., Mozzi, P., Primon, S. & Surian, N. (2009) Geomorphological evolution and sediment transfer in the Piave River system (northeastern Italy) since the Last Glacial Maximum. Géomorphologie, 3, 155–174.
    [Google Scholar]
  18. Cohen, K.M. (2003) Differential subsidence within a coastal prism. Late‐Glacial – Holocene tectonics in the Rhine‐Meuse delta, the Netherlands. PhD dissertation, Utrecht University, Netherlands Geographical Studies 316.
  19. Cohen, K.M. (2005) 3D geostatistical interpolation and geological interpretation of paleo‐groundwater rise in the Holocene coastal prism in the Netherlands. In: River Deltas – Concepts, Models, and Examples (Ed. by L.Giosan & J.P.Bhattacharya ), SEPM Special Publication, 83, 341–364
    [Google Scholar]
  20. Cohen, K.M., Stouthamer, E. & Berendsen, H.J.A. (2002) Fluvial deposits as a record for neotectonic activity in the Rhine‐Meuse delta, the Netherlands. Neth. J. Geosci., 81, 389–405.
    [Google Scholar]
  21. Cohen, K.M., Gouw, M.J.P. & Holten, J.P. (2005) Fluvio‐deltaic floodbasin deposits recording differential subsidence within a coastal prism (central Rhine‐Meuse delta, the Netherlands). Fuvial Sedimentology VII, 7th International Conference on Fluvial Sedimentology Lincoln Nebraska USA, Blackwell, 295–320.
  22. Cohen, K.M., Stouthamer, E., Pierik, H.J. & Geurts, A.H. (2012) Digitaal Basisbestand Paleogeografie van de Rijn‐Maas Delta/Rhine‐Meuse Delta Studies’ Digital Basemap for Delta Evolution and Palaeogeography. Dept. Physical Geography. Utrecht University. Digital Dataset. DANS. http://dx.doi.org/10.17026/dans-x7g-sjtw.
  23. Cohen, K.M., Gibbard, P.L. & Weerts, H.J.T. (2014) North Sea palaeogeographical reconstructions for the last 1 Ma. Neth. J. Geosci., 93, 7–29.
    [Google Scholar]
  24. Crombé, P., Verhegge, J., Deforce, K., Meylemans, E. & Robinson, E. (2015) Wetland landscape dynamics, Swifterbant land use systems, and the Mesolithic‐Neolithic transition in the southern North Sea basin. Quatern. Int., 378, 119–133.
    [Google Scholar]
  25. Dalrymple, R.W., Zaitlin, B.A. & Boyd, R. (1992) Estuarine facies models: conceptual basis and stratigraphic implications: perspective. J. Sediment. Petrol., 62, 1130–1146.
    [Google Scholar]
  26. De Bont, C. (2015) Digging the river: the historical geography of the Amstel area (800–1275). Neth. J. Geosci., 94, 333–352.
    [Google Scholar]
  27. De Mulder, E.F.J. & Bosch, J.H.A. (1982) Holocene stratigraphy, radiocarbon datings and paleogeography of Central and Northern North‐Holland (The Netherlands), Med. van de Rijks Geol. Dienst, 36‐3, 111 – 160de milder.
  28. Denys, L. & Baeteman, C. (1995) Holocene evolution of relative sea level and local mean high water spring tides in Belgium – a first assessment. Mar. Geol., 124, 1–19.
    [Google Scholar]
  29. Fontana, A., Mozzi, P. & Bondesan, A. (2008) Alluvial megafans in the Venetian‐Friulian Plain (north‐eastern Italy): evidence of sedimentary and erosive phases during Late Pleistocene and Holocene. Quatern. Int., 189(1), 71–90.
    [Google Scholar]
  30. Gehrels, W.R., Szkornik, K., Bartholdy, J., Kriby, J.R., Bradley, S.L., Marshall, W.A., Heinemeier, J. & Pedersen, J.B.T. (2006) Late Holocene sea‐level changes and isostasy in western Denmark. Quatern. Res., 66(2), 288–302.
    [Google Scholar]
  31. Gotjé, W. (1993) De Holocene laagveenontwikkeling in de randzone van de Nederlandse kustvlakte (Noordoostpolder) (in Dutch). Unpublished PhD dissertation, VU University Amsterdam.
  32. Gouw, M.J.P. & Erkens, G. (2007) Architecture of the Holocene Rhine‐Meuse delta (the Netherlands): a result of changing external controls. Neth. J. Geosci., 86, 23–54.
    [Google Scholar]
  33. Hanebuth, T.J.J., Proske, U., Saito, Y., Nguyen, V.L. & Oanh Ta, T.K. (2012) Early growth stage of a large delta – transformation from estuarine‐platform to deltaic‐progradational conditions (the northeastern Mekong River Delta, Vietnam). Sed. Geol., 261–262, 108–119.
    [Google Scholar]
  34. Hijma, M.P. & Cohen, K.M. (2010) Timing of and magnitude of the sea‐level jump preluding the 8200 yr event. Geology, 38, 275–278.
    [Google Scholar]
  35. Hijma, M.P. & Cohen, K.M. (2011) Holocene transgression of the Rhine river mouth area, the Netherlands/Southern North Sea: palaeogeography and sequence stratigraphy. Sedimentology, 58, 1453–1485.
    [Google Scholar]
  36. Hijma, M.P., Cohen, K.M., Hoffmann, G., Van der Spek, A.J.F. & Stouthamer, E. (2009) From river valley to estuary: the evolution of the Rhine mouth in the early to middle Holocene (western Netherlands, Rhine‐Meuse delta). Neth. J. Geosci., 88(1), 13–53.
    [Google Scholar]
  37. Hijma, M.P., Cohen, K.M., Roebroeks, W., Westerhoff, W.E. & Busschers, F.S. (2012) Pleistocene Rhine‐Thames landscapes: geological background for hominin occupation of the southern North Sea region. J. Quat. Sci., 27, 17–39.
    [Google Scholar]
  38. Hoek, W.Z. & Bohncke, S.J.P. (2002) Climatic and environmental events over the last termination, as recorded in the Netherlands: a review. Neth. J. Geosci., 81, 123–137.
    [Google Scholar]
  39. Hoffmann, T., Erkens, G., Cohen, K.M., Houben, P., Seidel, J. & Dikau, R. (2007) Holocene floodplain sediment storage and hillslope erosion within the Rhine catchment. Holocene, 17, 105–118.
    [Google Scholar]
  40. Hori, K. & Saito, Y. (2007) An early Holocene sea‐level jump and delta initiation. Geophys. Res. Lett., 34, 1–5.
    [Google Scholar]
  41. Jansma, E., Van Lanen, R.J., Brewer, P.W. & Kramer, R. (2012) The DCCD: a digital data infrastructure for tree‐ring research. Dendrochronologia, 30(4), 249–251.
    [Google Scholar]
  42. Jelgersma, S. (1961) Holocene sea level changes in the Netherlands. PhD dissertation Leiden University, Med. van de Rijks Geol. stichting, serie C.
  43. Jelgersma, S. (1979) Sea level changes in the North Sea Basin. In: The Quaternary History of the North Sea (Ed. by E.Oele ), pp. 233–248. University of Uppsala, Borgströms tryckeri, Motala, Sweden.
    [Google Scholar]
  44. Jelgersma, S., De Jong, P., Zagwijn, W.H. & Van Regteren Altena, J.F. (1970) The coastal dunes of the Western Netherlands: geology, vegetational history and archaeology. Med. van de Rijks Geol. Dienst, 21, 93–167.
    [Google Scholar]
  45. Kiden, P. (1995) Holocene relative sea‐level change and crustal movement in the southwestern Netherlands. Mar. Geol., 124, 21–41.
    [Google Scholar]
  46. Kiden, P., Denys, L. & Johnston, P. (2002) Late Quaternary sea‐level change and isostatic and tectonic land movements along the Belgian‐Dutch North Sea coast: geological data and model results. J. Quat. Sci., 17, 535–546.
    [Google Scholar]
  47. Kleinhans, M.G., Ferguson, R.I., Lane, S.N. & Hardy, R.J. (2013) Splitting rivers at their seams: bifurcations and avulsions. Earth Surf. Proc. Land., 38, 47–61.
    [Google Scholar]
  48. Kooi, H., Johnston, P., Lambeck., K., Smither, C. & Molendijk, R. (1998) Geological causes of recent (~100 yr) vertical land movement in the Netherlands. Tectonophysics, 299, 297–316.
    [Google Scholar]
  49. Lambeck, K. (1997) Sea‐level change along the French Atlantic and Channel coasts since the time of the Last Glacial Maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol., 129, 1–22.
    [Google Scholar]
  50. Lambeck, K. & Purcell, A. (2005) Sea‐level change in the Mediterranean Sea since the LGM: model predictions for tectonically stable areas. Quatern. Sci. Rev., 24, 1969–1988.
    [Google Scholar]
  51. Lambeck, K., Johnston, P. & Nakada, M. (1990) Holocene glacial rebound and sea‐level change in NW Europe. Geophys. J. Int., 103, 451–468.
    [Google Scholar]
  52. Langridge, R.M., Basili, R., Basher, L. & Wells, A.P. (2012) Late Holocene landscape change history related to the Alpine fault determined from drowned forest in Lak Poera, Westland, New Zealand. Nat. Hazard. Earth Syst. Sci., 12, 2051–2064.
    [Google Scholar]
  53. Long, A.J., Waller, M.P. & Stupples, P. (2006) Driving mechanisms of coastal change: peat compaction and the destruction of late Holocene coastal wetlands. Mar. Geol., 225, 63–84.
    [Google Scholar]
  54. Louwe Kooijmans, L.P. (1974) The Rhine/Meuse Delta: four studies on its prehistoric occupation and Holocene geology. PhD dissertation, University of Leiden.
  55. Makaske, B. (1998) Anastomosing rivers. Forms, processes and sediments. PhD dissertation, Utrecht University, Netherlands Geographical Studies 249.
  56. Makaske, B., Van Smeerdijk, D.G., Peeters, H., Mulder, J.R. & Spek, T. (2003) Relative water‐level rise in the Flevo lagoon (the Netherlands), 5300–2300 cal. yr. BC: an evaluation of new and existing basal peat time‐depth data. Neth. J. Geosci., 82, 115–131.
    [Google Scholar]
  57. Maljers, D., Stafleu, J., Van der Meulen, M.J. & Dambrink, R.M. (2015) Advances in constructing regional geological voxel models, illustrated by their application in aggregate resource assessments. Neth. J. Geosci., 94, 257–270.
    [Google Scholar]
  58. Peeters, J., Busschers, F.S. & Stouthamer, E. (2015) Fluvial evolution of the Rhine during the last interglacial‐glacial cycle in the southern North Sea basin: a review and look forward. Quatern. Int., 357, 176–188.
    [Google Scholar]
  59. Peeters, J., Busschers, F.S., Stouthamer, E., Bosch, J.H.A., Van den Berg, M.W., Wallinga, J., Versendaal, A.J., Bunnik, F.P.M. & Middelkoop, H. (2016) Sedimentary architecture and chronostratigraphy of a late Quaternary incised‐valley fill: a case study of the late Middle and Late Pleistocene Rhine system in the Netherlands. Quatern. Sci. Rev., 131, 211–236.
    [Google Scholar]
  60. Peltier, W.R. & Fairbanks, R.G. (2006) Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quatern. Sci. Rev., 25, 3322–3337.
    [Google Scholar]
  61. Pons, L.J. (1992) Holocene peat formation in the lower parts of the Netherlands. In: Fens and Bogs in the Netherlands: Vegetation, History, Nutrient Dynamics and Conservation (Ed. by J.T.A.Verhoeven ), Geobotany, 18, 7–80.
    [Google Scholar]
  62. Pons, L.J. & Van Oosten, H.F. (1974) De bodem van Noord‐Holland. Toelichting bij blad 5 van de bodemkaart van Nederland 1:200.000 (in Dutch). Stichting voor Bodemkartering, Wageningen.
    [Google Scholar]
  63. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M. & Plicht, J.V.D. (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55, 1869–1887.
    [Google Scholar]
  64. Smith, D.E., Harrison, S., Firth, C.R. & Jordan, J.T. (2011) The early Holocene sea level rise. Quatern. Sci. Rev., 30, 1846–1860.
    [Google Scholar]
  65. Stafleu, J., Busschers, F.S., Maljers, D. & Gunnink, J.L. (2009) Three‐dimensional property modeling of a complex fluvio‐deltaic environment: Rhine‐Meuse Delta, the Netherlands. In: Workshop Extended Abstracts of the 2009 Annual Meeting, Geological Society of America, October 17 2009, Portland, Oregon, USA (Ed. by R.C.Berg , H.A.J.Russel & L.H.Thorleifson ), 47–50.
  66. Stafleu, J., Maljers, D., Gunnink, J.L., Menkovic, A. & Busschers, F.S. (2011) 3D modelling of the shallow subsurface of Zeeland, the Netherlands. Neth. J. Geosci., 90, 293–310.
    [Google Scholar]
  67. Stafleu, J., Maljers, D., Busscher, F.S., Gunnink, J.L., Schokker, J., Dambrink, R.M., Hummelman, H.J. & Schijf, M.L. (2012) GeoTOP modellering (in Dutch). TNO Report R10991, 1–216.
  68. Stanley, D.J. & Warne, A.G. (1994) Worldwide initiation of Holocene marine deltas by deceleration of sea‐level rise. Science, 265, 228–231.
    [Google Scholar]
  69. Steffen, H. & Wu, P. (2011) Glacial isostatic adjustment in Fennoscandia – a review of data and modelling. J. Geodyn., 52(3–4), 169–204.
    [Google Scholar]
  70. Stouthamer, E., Cohen, K.M. & Gouw, M.J.P. (2011) Avulsion and its implication for fluvial‐deltaic architecture: insights from the Holocene Rhine‐Meuse delta. In: From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation (Ed. by S.K.Davidson , S.Leleu & C.P.North ), Society for Sedimentary Geology Special Publication, 97, 215–231.
    [Google Scholar]
  71. Streif, H. (2004) Sedimentary record of Pleistocene and Holocene marine inundations along the North Sea coast of Lower Saxony, Germany. Quatern. Int., 112, 3–28.
    [Google Scholar]
  72. Sturt, F., Garrow, D. & Bradley, S. (2013) New models of Nort West European Holocene palaeogeography and inundation. J. Archaeol. Sci., 40, 3963–3976.
    [Google Scholar]
  73. Tanabe, S., Nakanishi, T., Ishihara, Y. & Nakashima, R. (2015) Millennial‐scale stratigraphy of a tide‐dominated incised valley during the last 14 kyr: spatial and quantitative reconstruction in the Tokyo Lowland, central Japan. Sedimentology, 62, 1837–1872.
    [Google Scholar]
  74. Törnqvist, T.E., Van Ree, M.H.M., Van ‘t Veer, R. & Van Geel, B. (1998) Improving methodology for high‐resolution reconstruction of sea‐level rise and neotectonics by paleoecological analysis and AMS 14C dating of basal peat. Quatern. Res., 49, 72–85.
    [Google Scholar]
  75. Törnqvist, T.E., González, J.L., Newsom, L.A., Van der Borg, K., De Jong, A.F.M. & Kurnik, C.W. (2004) Deciphering Holocene sea‐level history on the U.S. Gulf Coast: a high resolution record rom the Mississippi delta. Geol. Soc. Am. Bull., 116, 1026–1039.
    [Google Scholar]
  76. Törnqvist, T.E., Wallace, D.J., Storms, J.E.A., Wallinga, J., Van Dam, R.L., Blaauw, M., Derksen, M.S., Klerks, C.J.W., Meijneken, C. & Snijders, E.M.A. (2008) Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci., 1, 173–176.
    [Google Scholar]
  77. Tosi, L., Teatini, P. & Strozzi, T. (2013) Natural versus anthropogenic subsidence of Venice. Sci. Rep., 3, 2710.
    [Google Scholar]
  78. Tropeano, M., Cilumbriello, A., Sabato, L., Gallichio, S., Grippa, A., Longhitano, S.G., Bianca, M., Gallipoli, R., Mucciarelli, M. & Spilotro, G. (2013) Surface and subsurface of the Metaponto Coastal Plain (Golf of Taranto – southern Italy): present‐day‐ vs LGM‐landscape. Geomorphology, 203, 115–131.
    [Google Scholar]
  79. Van Asselen, S. (2011) The contribution of peat compaction to total basin subsidence: implications for the provision of accommodation space in organic‐rich deltas. Basin Res., 23, 239–255.
    [Google Scholar]
  80. Van Balen, R.T., Houtgast, R.F. & Cloetingh, S.A.P.L. (2005) Neotectonics of the Netherlands: a review. Quatern. Sci. Rev., 24, 439–454.
    [Google Scholar]
  81. Van de Plassche, O. (1982) Sea‐level change and water‐level movements in the Netherlands during the Holocene. PhD dissertation, VU University Amsterdam, Med. Rijks Geol. Dienst.
  82. Van de Plassche, O. (1995) Evolution of the intra‐coastal tidal range in the Rhine‐Meuse delta and Flevo Lagoon, 5700–3000 yrs cal BC. Mar. Geol., 124, 113–128.
    [Google Scholar]
  83. Van de Plassche, O., Makaske, B., Hoek, W.Z., Konert, M. & Van der Plicht, J. (2010) Mid‐Holocene water‐level changes in the lower Rhine‐Meuse delta (western Netherlands): implications for the reconstruction of relative mean sea‐level rise, palaeoriver‐gradients and coastal evolution. Neth. J. Geosci., 89, 3–20.
    [Google Scholar]
  84. Van der Meulen, M.J., Doornebal, J.C., Gunnink, J.L., Stafleu, J., Schokker, J., Vernes, R.W., Van Geer, F.C., Van Gessel, S.F., Van Heteren, S., Van Leeuwen, R.J.W., Bakker, M.A.J., Bogaard, P.J.F., Busschers, F.S., Griffioen, J., Gruijters, S.H.L.L., Kiden, P., Schroot, B.M., Simmelink, H.J., Van Berkel, W.O., Van der Krogt, R.A.A., Westerhoff, W.E. & Van Daalen, T.M. (2013) 3D geology in a 2D country: perspectives for geological surveying in the Netherlands. Neth. J. Geosci., 92, 217–241.
    [Google Scholar]
  85. Van der Molen, J. & De Swart, H.E. (2001) Holocene tidal conditions and tide‐induced sand transport in the southern North Sea. J. Geophys. Res., 106(C5), 9339–9362.
    [Google Scholar]
  86. Van der Spek, A.J.F. (1994) Large‐scale evolution of Holocene tidal basins in the Netherlands. PhD dissertation, Utrecht University.
  87. Van der Spek, A.J.F., Stive, M. & Zitman, T. (2001) Ebb and Flood Channel Systems in the Netherlands Tidal Waters. Reprint of original Dutch text of Van Veen (1950) with English translations and annotations. Department of Hydraulic Engineering, Delft University of Technology. 61 pp.
  88. Van der Woude, J.D. (1981) Holocene paleoenvironmental evolution of a perimarine fluvialtile area. PhD dissertation, VU University Amsterdam.
  89. Van der Woude, J.D. (1984) The fluviolagoonal palaeoenvironment in the Rhine/Meuse deltaic plain. Sedimentology, 31, 395–400.
    [Google Scholar]
  90. Van Dijk, G.J., Berendsen, H.J.A. & Roeleveld, W. (1991) Holocene water level development in the Netherlands’ river area; implications for sea‐level reconstruction. Geol. Mijnbouw, 70, 311–326.
    [Google Scholar]
  91. Van Straaten, L.M.J.U. (1954) Radiocarbon datings and changes of sea level at Velsen (the Netherlands). Geol. Mijnbouw, 16, 247–253.
    [Google Scholar]
  92. Van Veen, J. (1950) Eb‐en vloedschaar systemen in de Nederlandse getijwateren (in Dutch). Geogr. Tydschr., 67, 43–65.
    [Google Scholar]
  93. Vella, C. & Provansal, M. (2000) Relative sea‐level rise and neotectonic events during the last 6500 yr on the southern eastern Rhône delta, France. Mar. Geol., 170, 27–39.
    [Google Scholar]
  94. Vink, A., Steffen, H., Reinhardt, L. & Kaufmann, G. (2007) Holocene relative sea‐level change, isostactic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea). Quatern. Sci. Rev., 26(25–28), 3249–3275.
    [Google Scholar]
  95. Vis, G.J., Westerhoff, W.E., Ten Veen, J.H., Hijma, M.P., Van der Spek, A.J., Vos, P.C. & Cohen, K.M. (2015) Chapter 33: Paleogeography. In: Handbook of Sea‐Level Research (Ed. by I.Shennan , A.J.Long & P.H.Horton ), pp. 600. Wiley‐Blackwell, American Geophysical Union, Hoboken.
    [Google Scholar]
  96. Vos, P.C. (2015) Origin of the Dutch coastal landscape. Long‐term landscape evolution of the Netherlands during the Holocene, described and visualized in national, regional and local palaeogeographical map series. PhD dissertation, Utrecht University, Barkhuis Groningen.
  97. Vos, P.C. & Knol, E. (2015) Holocene landscape reconstruction of the Wadden Sea area between Marsdiep and Weser. Neth. J. Geosci., doi:10.1017/njg.2015.4.
    [Google Scholar]
  98. Vos, P.C., Bunnik, F.P.M., Cohen, K.M. & Cremer, H. (2015a) A staged geogenetic approach to underwater archaeological prospection in the Port of Rotterdam (Yangtzehaven, Maasvlakte, The Netherlands): a geological and palaeoenvironmental case study for local mapping of Mesolithic lowlands landscapes. Quatern. Int., 367, 4–31.
    [Google Scholar]
  99. Vos, P.C., de Koning, J. & Van Eerden, R. (2015b) Landscape history of the Oer‐IJ tidal system, Noord‐Holland (the Netherlands). Neth. J. Geosci., 94, 295–332.
    [Google Scholar]
  100. Wang, Z., Zhan, Q., Long, H., Saito, Y., Gao, X., Wu, X., Li, L. & Zhao, Y. (2013) Early to mid‐Holocene rapid sea‐level rise and coastal response on the southern Yangtze delta plain, China. J. Quat. Sci., 28, 659–672.
    [Google Scholar]
  101. Zagwijn, W.H. (1989) The Netherlands during the Tertiary and Quaternary: a case history of coastal lowlands evolution. Geol. Mijnbouw, 68, 107–121.
    [Google Scholar]
  102. Zong, Y. & Tooley, M.J. (1996) Holocene sea‐level changes and crustal movements in Morecambe Bay, northwest England. J. Quat. Sci., 11, 43–58.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12202
Loading
/content/journals/10.1111/bre.12202
Loading

Data & Media loading...

Supplements

Detailed information basal peat index points, upper‐ and lower bounding surfaces.

WORD

Linear regression fitted through the plotted elevation by oxidation caused hiatuses in the Late Glacial to early Holocene organic infill of depressions (Hoek 1997b), vs. the elevation indicated by the Pleistocene substrate grid derived from GeoTOP (Fig. 1).

IMAGE

Overview the 14C dated basal peat index points used for the interpolation.

Calibrated parameter values obtained after trend fitting.

Overview the 14C dated intercalated peat used for Fig. 12.

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error