1887
Volume 29, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Subduction zones provide direct insight into plate boundary deformation and by studying these areas we better understand tectonic processes and variability over time. We studied the structure of the offshore subduction zone system of the Pampean flat‐slab segment (. 29–33°S) of the Chilean margin using seismic and bathymetric constraints. Here, we related and analysed the structural styles of the offshore and onshore western fore‐arc. Overlying the acoustic top of the continental basement, two syn‐extensional seismic sequences were recognised and correlated with onshore geological units and the Valparaíso Forearc Basin seismic sequences: (SII) Pliocene‐Pleistocene and (SI) Miocene‐Pliocene (Late Cretaceous (?) to Miocene‐Pliocene) syn‐extensional sequences. These sequences are separated by an unconformity (i.e. Valparaíso Unconformity). Seismic reflection data reveal that the eastward dipping extensional system (EI) recognised at the upper slope can be extended to the middle slope and controlled the accumulation of the older seismic package (SI). The westward dipping extensional system (EII) is essentially restricted to the middle slope. Here, EII cuts the eastward dipping extensional system (EI), preferentially parallel to the inclination of the older sequences (SI), and controlled a series of middle slope basins which are filled by the Pliocene‐Pleistocene seismic sequence (SII). At the upper slope and in the western Coastal Cordillera, the SII sequence is controlled by eastward dipping faults (EII) which are the local reactivation of older extensional faults (EI). The tectonic boundary between the middle (eastern outermost forearc block) and upper continental slope (western coastal block) is a prominent system of trenchward dipping normal fault scarps (. 1 km offset) that resemble a major trenchward dipping extensional fault system. This prominent structural feature can be readily detected along the Chilean erosive margin as well as the two extensional sets (EI and EII). Evidence of slumping, thrusting, reactivated faults and mass transport deposits, were recognised in the slope domain and locally restricted to some eastern dipping faults. These features could be related to gravitational effects or slope deformation due to coseismic deformation. The regional inclination of the pre‐Pliocene sequences favoured the gravitational collapse of the outermost forearc block. We propose that the structural configuration of the study area is dominantly controlled by tectonic erosion as well as the uplift of the Coastal Cordillera, which is partially controlled by pre‐Pliocene architecture.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12205
2016-06-20
2020-04-05
Loading full text...

Full text loading...

References

  1. Adam, J. & Reuther, C.‐D. (2000) Crustal dynamics and active fault mechanics during subduction erosion. Application of frictional wedge analysis on to the north chilean forearc. Tectonophysics, 321 (3), 297–325.
    [Google Scholar]
  2. Allmendinger, R.W. & González, G. (2010) Invited review paper: neogene to Quaternary tectonics of the coastal Cordillera, northern Chile. Tectonophysics, 495 (1–2), 93–110.
    [Google Scholar]
  3. Angermann, D., Klotz, J. & Reigber, C. (1999) Space‐geodetic estimation of the nazca‐south america euler vector. Earth Planet. Sci. Lett., 171(3), 329–334.
    [Google Scholar]
  4. Arancibia, G. (2004) Mid‐cretaceous crustal shortening: evidence from a regional‐scale ductile shear zone in the Coastal Range of central Chile (32°S). J. S. Am. Earth Sci., 17 (3), 209–226.
    [Google Scholar]
  5. Arriagada, C., Arancibia, G., Cembrano, J., Martínez, F., Carrizo, D., Van Sint Jan, M., Sáez, E., González, G., Rebolledo, S., Sepúlveda, S.A., Contreras‐Reyes, E., Jensen, E. & Yánez, G. (2011) Nature and tectonic significance of co‐seismic structures associated with the mw 8.8 Maule earthquake, central southern Chile forearc. J. Struct. Geol., 33 (5), 891–897.
    [Google Scholar]
  6. Arriagada, C., Ferrando, R., Córdova, L., Morata, D. & Roperch, P. (2013) The Maipo Orocline: a first scale structural feature in the Miocene to Recent geodynamic evolution in the central Chilean Andes. Andean Geol., 40, 419–437.
    [Google Scholar]
  7. Atwater, B.F., Carson, B., Griggs, G.B., Johnson, H.P. & Salmi, M.S. (2014) Rethinking turbidite paleoseismology along the Cascadia subduction zone. Geology. doi: 10.1130/G35902.1.
    [Google Scholar]
  8. Aubouin, J., Bourgois, J., Azéma, J. & von Huene, R. (1985) Guatemala margin: a model of convergent extensional margin. Init. Rep. Deep Sea Drilling Proj., 84, 831–850.
    [Google Scholar]
  9. Becerra, J., Contreras‐Reyes, E. & Arriagada, C. (2013) Seismic structure and tectonics of the southern Arauco basin, south‐central Chile (~ 38°S). Tectonophysics, 592, 53–66.
    [Google Scholar]
  10. Beck, S., Barrientos, S., Kausel, E. & Reyes, M. (1998) Source characteristics of historic earthquakes along the Central Chile subduction Askew et al zone. J. S. Am. Earth Sci., 11 (2), 115–129.
    [Google Scholar]
  11. Bourgois, J. (2010) A comment on “Non‐steady long‐term uplift rates and pleistocene marine terrace development along the andean margin of chile (31°S) inferred from 10be dating” by M. Saillard, S.R. Hall, L. Audin, D.L. Farber, G. Hérail, J. Martinod, V. Regard, R.C. Finkel. and F. Bondoux [earth planet. sci. lett. 277 (2009) 50–63]. Earth Planet. Sci. Lett., 296(3–4), 502–505.
    [Google Scholar]
  12. Cembrano, J., Yánez, G., Allmendinger, R.W., González, G., Rivera, O. & Arancibia, G. (2010) Long‐term geological controls on the nature and extension of earthquake rupture zones in the Chilean Andes: lessons from the 2010, mw 8.8 Maule earthquake. Gordon Conference on Rock Deformation, Tilton, NH, USA.
  13. Charrier, R., Pinto, L. & Rodríguez, M.P. (2007) 2007. Tectono‐stratigraphic evolution of the Andean orogen in Chile. In: Geology of Chile, Special Publication (Ed. by W.Gibbons & T.Moreno ), pp. 21–116. The Geological Society, London.
    [Google Scholar]
  14. Clift, P. & Vannucchi, P. (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys., 42 (2). ISSN 1944‐9208. doi: 10.1029/2003RG000127.
    [Google Scholar]
  15. Contreras‐Reyes, E., Becerra, J., Kopp, H., Reichert, C. & Díaz‐Naveas, J. (2014) Seismic structure of the north‐central chilean convergent margin: subduction erosion of a paleomagmatic arc. Geophys. Res. Lett., 41 (5), 1523–1529.
    [Google Scholar]
  16. Contreras‐Reyes, E., Ruiz Paredes, J., Becerra, J., Kopp, H., Christian, A., Reichert, C., Maksymowicz, A. & Arriagada, C. (2015) Structure and tectonics of the central Chilean margin (31°‐33°S): implications for subduction erosion and shallow crustal seismicity. Geophys. J. Int. doi: 10.1093/gji/ggv309.
    [Google Scholar]
  17. Dahlen, F.A. (1990) Critical taper model of fold‐and‐thrust belts and accretionary wedges. Annu. Rev. Earth Planet. Sci., 18, 55). Provided by the SAO/NASA Astrophysics Data System.
    [Google Scholar]
  18. Delouis, B., Philip, H., Dorbath, L. & Cisternas, A. (1998) Recent crustal deformation in the Antofagasta region (northern chile) and the subduction process. Geophys. J. Int., 132 (2), 302–338.
    [Google Scholar]
  19. DeMets, C., Gordon, R.G., Argus, D.F. & Stein, S. (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett., 21 (20), 2191–2194.
    [Google Scholar]
  20. Emparan, C. & Pineda, G. (2000) Área la serena‐la higuera, región de Coquimbo. Servicio Nacional de Geología y Minería, Mapas Geológicos. N° 18, escala 1:100.000. Santiago.
  21. Emparan, C. & Pineda, G. (2006) Geología del área Andacollo‐Puerto Aldea, región de Coquimbo. Servicio Nacional de Geología y Minería. Carta Geológica de Chile, Serie Geología Básica, N° 96, 85 p., 1 mapa escala 1:100.000. Santiago.
  22. Farías, M., Comte, D., Roecker, S., Carrizo, D. & Pardo, M. (2011) Crustal extensional faulting triggered by the 2010 chilean earthquake: the pichilemu seismic sequence. Tectonics, 30 (6). ISSN 1944‐9194. doi: 10.1029/2011TC002888.
    [Google Scholar]
  23. Ferrando, R., Roperch, P., Morata, D., Arriagada, C., Ruffet, G. & Córdova, M.L.A. (2014) Paleomagnetic and magnetic fabric study of the Illapel plutonic complex, coastal range, central Chile: implications for emplacement mechanism and regional tectonic evolution during the mid‐cretaceous. J. S. Am. Earth Sci., 50, 12–26.
    [Google Scholar]
  24. Flueh, E.R. & Kopp, H. (2002) Spoc (SONNE cruise so‐161 leg 1 and 4), subduction processes of chile. Geomar Rep. 102, Geomar, Kiel, Germany.
    [Google Scholar]
  25. Gana, P. (1991) Mapa geológico de la Cordillera de la Costa entre la Serena y Quebrada El Teniente, región de Coquimbo. Servicio Nacional de Geología y Minería, Documento de Trabajo No. 3, escala 1:100.000. Santiago.
    [Google Scholar]
  26. Goldfinger, C., Nelson, C.H., Morey, A.E., Johnson, J.E., Patton, J.R., Karabanov, E., Gutiérrez‐Pastor, J., Eriksson, A.T., Grácia, E., Dunhill, G., Enkin, R.J., Dallimore, A. & Vallier, T. (2012) Turbidite event history‐methods and implications for holocene paleoseismicity of the Cascadia subduction zone. U.S. Geological Survey Professional Paper 1661‐F, 170 p.
  27. González, E. (1989) Hydrocarbon resources in the coastal zone of chile. In: Geology of the Andes and Its Relation to Hydrocarbon and Mineral Resources (Ed. by G.Ericksen , et al.), pp. 383–404. Circum‐Pac. Counc. for Energy and Miner. Resour, Houston, TX.
    [Google Scholar]
  28. González, G., Cembrano, J., Carrizo, D., Macci, A. & Schneider, H. (2003) The link between forearc tectonics and Pliocene‐Quaternary deformation of the Coastal Cordillera, northern Chile. J. S. Am. Earth Sci., 16 (5), 321–342.
    [Google Scholar]
  29. Hartley, A.J., May, G., Chong, G., Turner, P., Kape, S.J. & Jolley, E.J. (2000) Development of a continental forearc: a cenozoic example from the Central Andes, northern Chile. Geology, 28 (4), 331–334.
    [Google Scholar]
  30. Heinze, B. (2003) Active intraplate faulting in the forearc of North Central Chile (30°–31°S): implications from neotectonic field studies, GPS data, and elastic dislocation modelling. Scientific technical report, Geoforschungszentrum Potsdam.
  31. von Huene, R. & Ranero, C.R. (2003) Subduction erosion and basal friction along the sediment‐starved convergent margin off Antofagasta, Chile. J. Geophys. Res. Solid Earth, 108 (B2). ISSN 2156‐2202. doi: 10.1029/2001JB001569.
    [Google Scholar]
  32. von Huene, R., Corvalán, J., Flueh, E.R., Hinz, K., Korstgard, J., Ranero, C.R. & Weinrebe, W. (1997) Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaíso, Chile. Tectonics, 16 (3), 474–488.
    [Google Scholar]
  33. von Huene, R., Weinrebe, W. & Heeren, F. (1999) Subduction erosion along the north Chile margin. J. Geodyn., 27 (3), 345–358.
    [Google Scholar]
  34. Hyndman, R.D. & Wang, K. (1993) Thermal constraints on the zone of major thrust earthquake failure: the Cascadia subduction zone. J. Geophys. Res. Solid Earth, 98 (B2), 2039–2060.
    [Google Scholar]
  35. Imber, J., Childs, C., Nell, P.A.R., Walsh, J.J., Hodgetts, D. & Flint, S. (2003) Hanging wall fault kinematics and footwall collapse in listric growth fault systems. J. Struct. Geol., 25 (2), 197–208.
    [Google Scholar]
  36. Kopp, H. (2013) Invited review paper: 2013. The control of subduction zone structural complexity and geometry on margin segmentation and seismicity. Tectonophysics, 589, 1–16.
    [Google Scholar]
  37. Kukowski, N. & Oncken, O. (2006) Subduction Erosion the “Normal” mode of Fore‐arc Material Transfer along the Chilean Margin? In: The Andes, Frontiers in Earth Sciences (Ed. by O.Oncken , G.Chong , G.Franz , P.Giese , H.‐J.Götze , V.A.Ramos , M.R.Strecker & P.Wigger ), pp. 217–236. Springer, Berlin, Heidelberg.
    [Google Scholar]
  38. Laursen, J., Scholl, D.W. & von Huene, R. (2002) Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction. Tectonics, 21 (5), 2‐1–2‐27.
    [Google Scholar]
  39. Le Roux, J.P., Olivares, D.M., Nielsen, S.N., Smith, N.D., Middleton, H., Fenner, J. & Ishman, S.E. (2006) Bay sedimentation as controlled by regional crustal behaviour, local tectonics and eustatic sea‐level changes: coquimbo formation (Miocene‐Pliocene), Bay of Tongoy, central Chile. Sed. Geol., 184 (12), 133–153.
    [Google Scholar]
  40. Maksymowicz, A., Tréhu, A.M., Contreras‐Reyes, E. & Ruiz, S. (2015) Density‐depth model of the continental wedge at the maximum slip segment of the Maule mw8.8 megathrust earthquake. Earth Planet. Sci. Lett., 409, 265–277.
    [Google Scholar]
  41. Martínez, R. (1979) Hallazgo de foraminíferos miocénicos cerca de Puerto Aldea, Bahía de Tongoy, provincia de Coquimbo, Chile. Revista Geológica de Chile, 8, 65–78.
    [Google Scholar]
  42. Melnick, D. & Echtler, H.P. (2006) Inversion of forearc basins in south‐central Chile caused by rapid glacial age trench fill. Geology, 34 (9), 709–712.
    [Google Scholar]
  43. Metcalf, K. & Kapp, P. (2014) Along‐strike variations in crustal seismicity and modern lithospheric structure of the central Andean forearc. Geol. Soc. Am. Mem., 212. doi: 10.1130/2015.1212(04).
    [Google Scholar]
  44. Morley, C.K., King, R., Hillis, R., Tingay, M. & Backe, G. (2011) Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: a review. Earth Sci. Rev., 104 (1–3), 41–91.
    [Google Scholar]
  45. Ranero, C.R., vonHuene, R., Weinrebe, W. & Reichert, C. (2006) Tectonic processes along the Chile convergent margin. In: The Andes, Frontiers in Earth Sciences (Ed. by O.Oncken , G.Chong , G.Franz , P.Giese , H.‐J.Götze , V.A.Ramos , M.R.Strecker & P.Wigger ), pp. 91–121. Springer, Berlin, Heidelberg.
    [Google Scholar]
  46. Ranero, C.R., Grevemeyer, I., Sahling, H., Barckhausen, U., Hensen, C., Wallmann, K., Weinrebe, W., Vannucchi, P., von Huene, R. & McIntosh, K. (2008) Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem. Geophys. Geosyst., 9 (3). ISSN 1525‐2027. doi: 10.1029/2007GC001679.
    [Google Scholar]
  47. Reichert, C., Schreckenberger, B., and the SPOC Team . (2002) Fahrtbericht SONNE‐Fahrt so161 leg 2y3 spoc, subduktions prozesse vor chile‐bmbf forschungsvorhaben 03g0161a‐Valparaiso 16.10.2001‐ Valparaiso 29.11.2001. fuer Geowis. und Rohsto_e. Bundesanst, Hannover, Germany, 8.
  48. Saillard, M., Hall, S.R., Audin, L., Farber, D.L., Hérail, G., Martinod, J., Regard, V., Finkel, R.C. & Bondoux, F. (2009) Non‐steady long‐term uplift rates and Pleistocene marine terrace development along the Andean margin of Chile (31°S) inferred from 10be dating. Earth Planet. Sci. Lett., 277 (1–2), 50–63.
    [Google Scholar]
  49. Saillard, M., Hall, S.R., Audin, L., Farber, D.L., Martinod, J., Regard, V., Pedoja, K. & Hérail, G. (2010) Reply to a comment on “Non‐steady long‐term uplift rates and Pleistocene marine terrace development along the andean margin of chile (31°S) inferred from 10be dating” by m. Saillard, S. R. Hall, L. Audin, D. L. Farber, G. Hérail, J. Martinod, V. Regard, R. C. Finkel and F. Bondoux [earth planet. sci. lett. 277(2009) 50–63]. Earth Planet. Sci. Lett., 296(3–4):506–509.
    [Google Scholar]
  50. Savage, J.C. (1983) A dislocation model of strain accumulation and release at a subduction zone. J. Geophys. Res. Solid Earth, 88 (B6), 4984–4996.
    [Google Scholar]
  51. Scheuber, E., Bogdanic, T., Jensen, A. & Reutter, K.‐J. (1994) Tectonic Development of the North Chilean Andes in Relation to Plate Convergence and Magmatism Since the Jurassic. In: Tectonics of the Southern Central Andes (Ed. by K.‐J.Reutter , E.Scheuber & P.J.Wigger ), pp. 121–139. Springer, Berlin, Heidelberg.
    [Google Scholar]
  52. SERNAGEOMIN
    SERNAGEOMIN (2003) Geologic map of Chile: Digital version, scale 1:1.000.000. Servicio Nacional de Geología y Minería, Santiago, Chile.
    [Google Scholar]
  53. Taylor, G.K., Grocott, J., Pope, A. & Randall, D.E. (1998) Mesozoic fault systems, deformation and fault block rotation in the Andean forearc: a crustal scale strike‐slip duplex in the Coastal Cordillera of northern Chile. Tectonophysics, 299 (1–3), 93–109.
    [Google Scholar]
  54. Völker, D., Scholz, F. & Geersen, J. (2011) Analysis of submarine landsliding in the rupture area of the 27 February 2010 maule earthquake, Central Chile. Mar. Geol., 288 (1–4), 79–89.
    [Google Scholar]
  55. Welkner, D., Arévalo, C. & Godoy, E. (2006) Geología del área Freirina‐El Morado, región de Atacama. Servicio Nacional de Geología y Minería, pages Serie Geología Básica 100: 50 p., 1 mapa escala 1:100.000. Santiago.
  56. Woodward, N.B., Boyer, S.E. & Suppe, J. (1989) Balanced Geological Cross‐Sections, in balanced geological cross‐sections: An essential technique in geological research and exploration. American Geophysical Union, Washington, DC.
    [Google Scholar]
  57. Yáñez, G.A., Ranero, C.R., von Huene, R. & Díaz, J. (2001) Magnetic anomaly interpretation across the southern central Andes (32–34°S): the role of the Juan Fernández ridge in the Late Tertiary evolution of the margin. J. Geophys. Res. Solid Earth, 106 (B4), 6325–6345.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12205
Loading
/content/journals/10.1111/bre.12205
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error