1887
Volume 29, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

Injectites sourced from base‐of‐slope and basin‐floor parent sandbodies are rarely reported in comparison to submarine slope channel systems. This study utilizes the well‐constrained palaeogeographic and stratigraphic context of three outcrop examples exposed in the Karoo Basin, South Africa, to examine the relationship between abrupt stratigraphic pinchouts in basin‐floor lobe complexes, and the presence, controls, and character of injectite architecture. Injectites in this palaeogeographic setting occur where there is: (i) sealing mudstone both above and below the parent sand to create initial overpressure; (ii) an abrupt pinchout of a basin‐floor lobe complex through steep confinement to promote compaction drive; (iii) clean, proximal sand beds aiding fluidization; and (iv) a sharp contact between parent sand and host lithology generating a source point for hydraulic fracture and resultant injection of sand. In all outcrop cases, dykes are orientated perpendicular to palaeoslope, and the injected sand propagated laterally beneath the parent sand, paralleling the base to extend beyond its pinchout. Understanding the mechanisms that determine and drive injection is important in improving the prediction of the location and character of clastic injectites in the subsurface. Here, we highlight the close association of basin‐floor stratigraphic traps and sub‐seismic clastic injectites, and present a model to explain the presence and morphology of injectites in these locations.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12229
2017-01-20
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/29/6/bre12229.html?itemId=/content/journals/10.1111/bre.12229&mimeType=html&fmt=ahah

References

  1. Allen, J.R.L. (2001) Principles of Physical Sedimentology: Reprint of First Edition (1985), With Corrections, 272 pp. Blackburn Press, Caldwell.
    [Google Scholar]
  2. Aydin, A. (2000) Fractures, faults, and hydrocarbon entrapment, migration and flow. Mar. Petrol. Geol., 17, 797–814.
    [Google Scholar]
  3. Bain, H.A. & Hubbard, S.M. (2016) Stratigraphic evolution of a long‐lived submarine channel system in the Late Cretaceous Nanaimo Group, British Columbia, Canada. Sed. Geol., 337, 113–132.
    [Google Scholar]
  4. Beard, D.C. & Weyl, P.K. (1973) Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bull., 57, 349–369.
    [Google Scholar]
  5. Bjørlykke, K. (1993) Fluid flow in sedimentary basins. Sed. Geol., 86, 137–158.
    [Google Scholar]
  6. Boehm, A. & Moore, J.C. (2002) Fluidized sandstone intrusions as an indicator of paleostress orientation, Santa Cruz, California. Geofluids, 2, 147–161.
    [Google Scholar]
  7. Bonham, L.C. (1980) Migration of hydrocarbons in compacting basins. AAPG Bull., 64, 549–567.
    [Google Scholar]
  8. Brown, L.F., Benson, J.M., Brink, G.J., Doherty, S., Jollands, A., Jungslager, E.H.A., Keenan, J.H.G., Muntingh, A. & vanWyk, N.J.S. (1995) Sequence Stratigraphy in Offshore South African Divergent Basins: An Atlas on Exploration for Cretaceous Lowstand Traps by Soekor (Pty) Ltd, AAPG Studies in Geology, 41. AAPG, Tulsa, Oklahoma.
    [Google Scholar]
  9. Brunt, R.L., Hodgson, D.M., Flint, S.S., Pringle, J.K., Di Celma, C., Prélat, A. & Grecula, M. (2013) Confined to unconfined: anatomy of a base of slope succession, Karoo Basin, South Africa. Mar. Pet. Geol., 41, 206–221.
    [Google Scholar]
  10. Bureau, D., Mourges, R. & Cartwright, J. (2014) Use of a new artificial cohesive material for physical modelling: application to sandstone intrusions and associated fracture networks. J. Struc. Geol., 66, 223–236.
    [Google Scholar]
  11. Cartwright, J. (2010) Regionally extensive emplacement of sandstone intrusions: a brief review. Bas. Res., 22, 502–516.
    [Google Scholar]
  12. Catuneanu, O., Hancox, P.J. & Rubidge, B.S. (1998) Reciprocal flexural behaviour and contrasting stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa. Bas. Res., 10, 417–439.
    [Google Scholar]
  13. Chapman, R.E. (1987) Fluid flow in sedimentary basins: a geologist's perspective. In: Fluid Flow in Sedimentary Basins and Aquifers (Ed. by GoffJ.C. & WilliamsB.P.J. ) Geol. Soc. Spec Publ., 34, 3–18.
    [Google Scholar]
  14. Cobain, S.L., Peakall, J. & Hodgson, D.M. (2015) Indicators of propagation direction and relative depth in clastic injectites: Implications for laminar versus turbulent flow processes. GSA Bull., 127, 1816–1830.
    [Google Scholar]
  15. Cosgrove, J.W. (2001) Hydraulic fracturing during the formation and deformation of a basin: A factor in the dewatering of low‐permeability sediments. AAPG Bull., 85, 737–748.
    [Google Scholar]
  16. Di Celma, C.N., Brunt, R.L., Hodgson, D.M., Flint, S.S. & Kavanagh, J.P. (2011) Spatial and temporal evolution of a Permian submarine slope channel–levee system, Karoo Basin, South Africa. J. Sed. Res., 81, 579–599.
    [Google Scholar]
  17. Diggs, T.N. (2007) An outcrop study of clastic injection structures in the Carboniferous Tesnus Formation, Marathon basin, Trans‐Pecos Texas. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by HurstA. & CartwrightJ. ) AAPG Mem., 87, 209–219.
    [Google Scholar]
  18. Dixon, R.J., Schofield, K., Anderton, R., Renolds, A.D., Alexander, R.W.S., Williams, M.C. & Davies, K.G. (1995) Sandstone diapirism and clastic intrusion in the Tertiary Submarine fans of the Bruce‐Beryl Embayment, Quadrant 9, UKCS. In: Characterization of Deep Marine Clastic Systems (Ed. by HartleyA.J. & ProsserD.J. ) Geol. Soc. London. Spec. Publ., 94, 77–94.
    [Google Scholar]
  19. Duranti, D. (2007) Large‐scale sand injection in the Paleogene of the North Sea: Modeling of energy and flow velocities. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by HurstA. & CartwrightJ. ) AAPG Mem., 87, 129–139.
    [Google Scholar]
  20. Duranti, D. & Hurst, A. (2004) Fluidization and injection in the deep‐water sandstones of the Eocene Alba Formation (UK North Sea). Sedimentology, 51, 503–529.
    [Google Scholar]
  21. Duranti, D., Hurst, A., Bell, C., Groves, B. & Hanson, R. (2002) Injected and remobilized Eocene sandstones from the Alba Field, UKCS: core and wireline log characteristics. Pet. Geosci., 8, 99–107.
    [Google Scholar]
  22. Fildani, A., Drinkwater, N.J., Weislogel, A., McHargue, T., Hodgson, D.M. & Flint, S.S. (2007) Age controls on the Tanqua and Laingsburg deep‐water systems: new insights on the evolution and sedimentary fill of the Karoo basin, South Africa. J. Sediment. Res., 77, 901–908.
    [Google Scholar]
  23. Flemings, P.B., Stump, B.B., Finkbeiner, T. & Zoback, M. (2002) Flow focusing in overpressured sandstones: theory, observations, and applications. American J. Sci., 302, 827–855.
    [Google Scholar]
  24. Flint, S.S., Hodgson, D.M., Sprague, A.R., Brunt, R.L., van der Merwe, W.C., Figueiredo, J., Prélat, A., Box, D., Di Celma, C. & Kavanagh, J.P. (2011) Depositional architecture and sequence stratigraphy of the Karoo basin floor to shelf edge succession, Laingsburg depocentre, South Africa. Mar. Pet. Geol., 28, 658–674.
    [Google Scholar]
  25. Frey‐Martínez, J., Cartwright, J., Hall, B. & Huuse, M. (2007) Sand Injectites: Implications for Hydrocarbon Exploration and Production. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by HurstA. & CartwrightJ. ) AAPG Mem., 87, 49–63.
    [Google Scholar]
  26. Gardiner, A.R. (2006) The variability of turbidite sandbody pinchout and its impact on hydrocarbon recovery in stratigraphically trapped fields. In: The Deliberate Search for the Stratigraphic Trap (Ed. by AllenM.R. ) Geol. Soc. London. Spec. Publ., 254, 267–287.
    [Google Scholar]
  27. Gay, A., Takano, Y., Gilhooly, W.P.III, Berndt, C., Heeschen, K., Suzuki, N., Saegusa, S., Nakagawa, F., Tsunogai, U., Jiang, S.Y. & Lopez, M. (2011) Geophysical and geochemical evidence of large scale fluid flow within shallow sediments in the eastern Gulf of Mexico, offshore Louisiana. Geofluids, 11, 34–47.
    [Google Scholar]
  28. Halbouty, M.T. (1966) Stratigraphic‐trap possibilities in Upper Jurassic rocks, San Marcos Arch, Texas. AAPG Bull., 50, 3–24.
    [Google Scholar]
  29. Hamberg, L., Jepsen, A.M., Borch, N.T., Dam, G., Engkilde, M.K. & Svendsen, J.B. (2007) Mounded structures of injected sandstones in deep‐marine Paleocene reservoirs, Cecile Field, Denmark. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by HurstA. & CartwrightJ. ) AAPG Mem., 87, 69–79.
    [Google Scholar]
  30. Hiscott, R.N. (1979) Clastic sills and dikes associated with deep‐water sandstones, Tourelle Formation, Ordovician, Quebec. J. Sediment. Res., 49, 1–9.
    [Google Scholar]
  31. Hodgetts, D., Drinkwater, N.J., Hodgson, D.M., Kavanagh, J., Flint, S.S., Keogh, K.J. & Howell, J.A. (2004) Three‐dimensional geological models from outcrop data using digital data collection techniques: an example from the Tanqua Karoo depocentre, South Africa. In: Geological Prior Information Science and Engineering (Ed. by CurtisA. & WoodR. ) Geol. Soc. London. Spec. Publ., 239, 57–75.
    [Google Scholar]
  32. Hodgson, D.M. (2009) Distribution and origin of hybrid beds in sand‐rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa. Mar. Pet. Geol., 26, 1940–1956.
    [Google Scholar]
  33. Hodgson, D.M., Flint, S.S., Hodgetts, D., Drinkwater, N.J., Johannessen, E.P. & Luthi, S.M. (2006) Stratigraphic evolution of fine‐grained submarine fan systems, Tanqua Depocenter, Karoo Basin, South Africa. J. Sediment. Res., 76, 20–40.
    [Google Scholar]
  34. Hodgson, D.M., Di Celma, C.N., Brunt, R.L. & Flint, S.S. (2011a) Submarine slope degradation and aggradation and the stratigraphic evolution of channel–levee systems. J. Geol. Soc., 168, 625–628.
    [Google Scholar]
  35. Hodgson, D.M., van der Merwe, W.C. & Flint, S.S. (2011b) Distribution of submarine mass movement deposits: an exhumed basin perspective. In: Advances in Natural and Technological Hazards Research ‐ Submarine Mass Movements and Their Consequences, 4th edn (Ed. by Y.Yamada , K.Kawamura , K.Ikehara , Y.Ogawa , R.Ureles , D.Mosher , J.Chaytor & M.Strasser ), pp. 619–628. Springer, Netherlands.
    [Google Scholar]
  36. Hodgson, D.M., Kane, I.A., Flint, S.S., Brunt, R.L. & Ortiz‐Karpf, A. (2016) Time‐transgressive confinement on the slope and the progradation of basin‐floor fans: implications for the sequence stratigraphy of deep‐water deposits. J. Sediment. Res., 86, 73–86.
    [Google Scholar]
  37. Hofstra, M., Hodgson, D.M., Peakall, J. & Flint, S.S. (2015) Giant scour‐fills in ancient channel‐lobe transition zones: formative processes and depositional architecture. Sed. Geol., 329, 98–114.
    [Google Scholar]
  38. Hofstra, M., Pontén, A.S.M., Peakall, J., Flint, S.S., Nair, K.N. & Hodgson, D.M. (2017) The impact of fine‐scale reservoir geometries on streamline flow patterns in submarine lobe deposits using outcrop analogues from the Karoo Basin. Petrol. Geosci. doi:10.1144/petgeo2016‐087
    [Google Scholar]
  39. Hubbard, S.M., Romans, B.W. & Graham, S.A. (2007) An outcrop example of large‐scale conglomeratic intrusions sourced from deep‐water channel deposits, Cerro Toro Formation, Magallanes basin, southern Chile. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by HurstA. & CartwrightJ. ) AAPG Mem., 87, 199–207.
    [Google Scholar]
  40. Hurst, A. & Cartwright, J.A. (2007) Relevance of sand injectites to hydrocarbon exploration and production. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by HurstA. & CartwrightJ. ) AAPG Mem., 87, 1–20.
    [Google Scholar]
  41. Hurst, A., Cartwright, J., Huuse, M., Jonk, R., Schwab, A., Duranti, D. & Cronin, B. (2003) Significance of large‐scale sand injectites as long‐term fluid conduits: evidence from seismic data. Geofluids, 3, 263–274.
    [Google Scholar]
  42. Hurst, A., Scott, A. & Vigorito, M. (2011) Physical characteristics of sand injectites. Earth‐Sci. Rev., 106, 215–246.
    [Google Scholar]
  43. Huuse, M. & Mickelson, M. (2004) Eocene sandstone intrusions in the Tampen Spur area (Norwegian North Sea Quad 34) imaged by 3D seismic data. Mar. Pet. Geol., 21, 141–155.
    [Google Scholar]
  44. Huuse, M., Duranti, D., Steinsland, N., Guargena, C.G., Prat, P., Holm, K., Cartwright, J.A. & Hurst, A. (2004) Seismic Characteristics of Large‐Scale Sandstone Intrusions in the Paleogene of the South Viking Graben, UK and Norwegian North Sea. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by DaviesR.J. , CartwrightJ.A. , StewartS.A. , LappinM. & UnderhillJ.R. ) Geol. Soc. London, Mem., 29, 263–278. doi: 10.1144/GSL.MEM.2004.029.01.25
    [Google Scholar]
  45. Huuse, M., Cartwright, J.A., Gras, R. & Hurst, A. (2005) Kilometre‐scale sandstone intrusions in the Eocene of the Outer Moray Firth (UK North Sea): migration paths, reservoirs and potential drilling hazards. In: Petroleum Geology: North‐West Europe and Global Perspectives—Proceedings of the 6th Petroleum Geology Conference (Ed. by A.G.Doré & B.A.Vining ), pp. 1577–1594. Petroleum Geology Conferences Ltd. Geological Society, London.
    [Google Scholar]
  46. Jackson, C.A.L. (2007) The Geometry, distribution, and development of clastic injections in slope systems: Seismic examples from the Upper Cretaceous Kyrre Formation, Mly Slope, Norwegian Margin. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by HurstA. & CartwrightJ. ) AAPG Mem., 87, 37–48.
    [Google Scholar]
  47. Jackson, C., Huuse, M. & Barber, G. (2011) Geometry of winglike clastic intrusions adjacent to a deep‐water channel complex: Implications for hydrocarbon exploration and production. AAPG Bull., 95, 559–584.
  48. Jobe, Z.R., Lowe, D.R. & Morris, W.R. (2012) Climbing‐ripple successions in turbidite systems: depositional environments, sedimentation rates and accumulation times. Sedimentology, 59, 867–898.
    [Google Scholar]
  49. Johnson, M.R. (1991) Sandstone petrography, provenance and plate tectonic setting in Gondwana context of the southeastern Cape‐Karoo Basin. South African J. Geol., 94, 137–154.
    [Google Scholar]
  50. Johnson, S.D., Flint, S.S., Hinds, D. & Wickens, H.Dev. (2001) Anatomy of basin floor to slope turbidite systems, Tanqua Karoo, South Africa: Sedimentology, sequence stratigraphy and implications for subsurface prediction. Sedimentology, 48, 987–1023.
    [Google Scholar]
  51. Johnson, M.R., Van Vuuren, C.J., Visser, J.N.J., Cole, D.I., Wickens, H.D.V., Christie, A.D.M., Roberts, D.L. & Brandl, G. (2006) Sedimentary rocks of the Karoo Supergroup. In: The Geology of South Africa (Ed. by M.R.Johnson , C.R.Anhaeusser , R.J.Thomas ), pp. 461–499. Geological Society of South Africa, Johannesburg/Council for Geoscience, Pretoria.
    [Google Scholar]
  52. Jolly, R.J.H. & Lonergan, L. (2002) Mechanisms and controls on the formation of sand intrusions. J. Geol. Soc., 159, 605–617.
    [Google Scholar]
  53. Jones, G.E., Hodgson, D.M. & Flint, S.S. (2015) Lateral variability in clinoform trajectory, process regime, and sediment dispersal patterns beyond the shelf‐edge rollover in exhumed basin margin‐scale clinothems. Basin Res., 27, 657–680.
    [Google Scholar]
  54. Jonk, R. (2010) Sand‐rich injectites in the context of short‐lived and long‐lived fluid flow. Basin Res., 22, 603–621.
    [Google Scholar]
  55. Jonk, R., Parnell, J. & Hurst, A. (2005a) Aqueous and petroleum fluid flow associated with sand injectites. Basin Res., 17, 241–257.
    [Google Scholar]
  56. Jonk, R., Hurst, A., Duranti, D., Parnell, J., Mazzini, A. & Fallick, A.E. (2005b) Origin and timing of sand injection, petroleum migration, and diagenesis in Tertiary reservoirs, south Viking Graben, North Sea. AAPG Bull., 89, 329–357.
    [Google Scholar]
  57. Jonk, R., Parnell, J. & Whitham, A. (2005c) Fluid inclusion evidence for a Cretaceous‐Palaeogene petroleum system, Kangerlussuaq Basin, East Greenland. Mar. Pet. Geol., 22, 319–330.
    [Google Scholar]
  58. Jonk, R., Duranti, D., Hurst, A., Parnell, J. & Fallick, A.E. (2007) Aqueous and petroleum fluids associated with sand injectites hosted by lacustrine shales from the oil‐shale group (Dinantian), Midland Valley, Scotland. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by HurstA. & CartwrightJ. ) AAPG Mem., 87, 265–274.
    [Google Scholar]
  59. Kane, I.A. (2010) Development and flow structures of sand injectites: the Hind Sandstone Member injectite complex, Carboniferous, UK. Mar. Pet. Geol., 27, 1200–1215.
    [Google Scholar]
  60. Kane, I.A. & Hodgson, D.M. (2011) Sedimentological criteria to differentiate submarine channel levee subenvironments: exhumed examples from the Rosario Fm. (Upper Cretaceous) of Baja California, Mexico, and the Fort Brown Fm. (Permian), Karoo Basin, S. Africa. Mar. Pet. Geol., 28, 807–823.
    [Google Scholar]
  61. Kelly, R.B., Houlsby, G.T. & Byrne, B.W. (2006) Transient vertical loading of model suction caissons in a pressure chamber. Géotechnique, 56, 665–675.
    [Google Scholar]
  62. King, R.C., Hodgson, D.M., Flint, S.S., Potts, G.J. & van Lente, B. (2009) Development of subaqueous fold belts as a control on the timing and distribution of deepwater sedimentation: an example from the southwest Karoo Basin, South Africa. In: External Controls on Deep‐Water Depositional Systems (Ed. by KnellerB.C. , MartinsenO.J. & McCaffreyW. ) SEPM Spec. Pub., 92, 261–278.
    [Google Scholar]
  63. Knipe, R.J., Jones, G. & Fisher, Q.J. (1998) Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs: an introduction. In: Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs (Ed. by JonesG. , FisherQ.J. & KnipeR.J. ) Geol. Soc. London. Spec. Publ., 147, vii–xxi.
    [Google Scholar]
  64. Krumbein, W.C. & Monk, G.D. (1942) Permeability as a function of the size parameters of unconsolidated sand. Am. Inst. Min. Metall. Petrol. Eng. Tech. Publ., 1492, 1–11.
    [Google Scholar]
  65. Le Heron, D.P. & Etienne, J.L. (2005) A complex subglacial clastic dyke swarm, Sólheimajökull, southern Iceland. Sed. Geol., 181, 25–37.
    [Google Scholar]
  66. Lonergan, L., Lee, N., Johnson, H.D., Cartwright, J.A. & Jolly, R.J. (2000) Remobilization and injection in deepwater depositional systems: Implications for reservoir architecture and prediction. In: Deep‐Water Reservoirs of the World (Ed. by P.Weimer , R.M.Slatt , J.Coleman , N.C.Rosen , H.Nelson , A.H.Bouma , M.J.Styzen & D.T.Lawrence ), pp. 515–532. GCSSEPM Foundation, 20th Annual Conference, Houston.
    [Google Scholar]
  67. Lorenz, J.C., Teufel, L.W. & Warpinski, N.R. (1991) Regional fractures I: a mechanism for the formation of regional fractures at depth in flat‐lying reservoirs. AAPG Bull., 75, 1714–1737.
    [Google Scholar]
  68. Løseth, H., Raulline, B. & Nygård, A. (2013) Late Cenozoic geological evolution of the northern North Sea: development of a Miocene unconformity reshaped by large‐scale Pleistocene sand intrusion. J. Geol. Soc., 170, 133–145.
    [Google Scholar]
  69. Lunina, O.V. & Gladkov, A.S. (2015) Seismically induced clastic dikes as a potential approach for the estimation of the lower‐bound magnitude/intensity of paleoearthquakes. Eng. Geol., 195, 206–213.
    [Google Scholar]
  70. Luthi, S.M., Hodgson, D.M., Gell, C.R., Flint, S.S., Goedbloed, J.W., Drinkwater, N.J. & Johannessen, E.P. (2006) Con‐tribution of research borehole data to modelling fine‐grained turbidite reservoir analogues, Permian Tanqua‐Karoo basin‐floor fans (South Africa). Pet. Geosci., 12, 175–190.
    [Google Scholar]
  71. Magara, K. (1981) Mechanisms of natural fracturing in a sedimentary basin. AAPG Bull., 65, 123–132.
    [Google Scholar]
  72. Marchand, A.M.E., Apps, G., Li, W. & Rotzien, J.R. (2015) Depositional processes and impact on reservoir quality in deepwater Palaeogene reservoirs, US Gulf of Mexico. AAPG Bull., 99, 1635–1648.
    [Google Scholar]
  73. McKay, M.P., Weislogel, A.L., Fildani, A., Brunt, R.L., Hodgson, D.M. & Flint, S.S. (2015) U‐PB zircon tuff geochronology from the Karoo Basin, South Africa: implications of zircon recycling on stratigraphic age controls. Int. Geol. Rev., 57, 393–410.
    [Google Scholar]
  74. van der Merwe, W.C., Flint, S.S. & Hodgson, D.M. (2010) Sequence stratigraphy of an argillaceous, deepwater basin‐plain succession: vischkuil Formation (Permian), Karoo Basin, South Africa. Mar. Pet. Geol., 27, 321–333.
    [Google Scholar]
  75. van der Merwe, W.C., Hodgson, D.M., Brunt, R.L. & Flint, S.S. (2014) Depositional architecture of sand‐attached and sand‐detached channel‐lobe transition zones on an exhumed stepped slope mapped over a 2500 km2 area. Geosphere, 10, 1076–1093.
    [Google Scholar]
  76. Minisini, D. & Schwartz, H. (2007) An early Paleocene cold seep system in the Panoche and Tumey Hills, central California (United States). In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by HurstA. & CartwrightJ. ) AAPG Mem., 87, 185–197.
    [Google Scholar]
  77. Monnier, D., Imbert, P., Gay, A., Mourgues, R. & Lopez, M. (2014) Pliocene sand injectites from a submarine lobe fringe during hydrocarbon migration and salt diapirism: a seismic example from the Lower Congo Basin. Geofluids, 14, 1–19.
    [Google Scholar]
  78. Morris, E.A., Hodgson, D.M., Brunt, R.L. & Flint, S.S. (2014) Origin, evolution and anatomy of silt‐prone submarine external levées. Sedimentology, 61, 1734–1763.
    [Google Scholar]
  79. Morton, A., McFadyen, S., Hurst, A., Pyle, J. & Rose, P. (2014) Constraining the origin of reservoirs formed by sandstone intrusions: insights from heavy mineral studies of the Eocene in the Forties area, United Kingdom central North Sea. AAPG Bull., 98, 545–561.
    [Google Scholar]
  80. Nagatomo, A. & Archer, S. (2015) Termination geometries and reservoir properties of the Forties Sandstone pinch‐out, East Central Graben, UK North Sea. In: Tertiary Deep‐Marine Reservoirs of the North Sea (Ed. by McKieT. , RoseP.T.S. , HartleyA.J. , JonesD.W. & ArmstrongT.L. ) Geol. Soc. London. Spec. Publ., 403, 133–155.
    [Google Scholar]
  81. Obermeier, S.F. (1996) Use of liquefaction‐induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo‐earthquakes. Eng. Geol., 44, 1–76.
    [Google Scholar]
  82. Obermeier, S.F., Oslon, S.M. & Green, R.A. (2005) Field occurrences of liquefaction‐induced features: a primer for engineering geologic analysis of paleoseismic shaking. Eng. Geol., 76, 209–234.
    [Google Scholar]
  83. Oliveira, C.M., Hodgson, D.M. & Flint, S.S. (2009) Aseismic controls on in situ soft‐sediment deformation processes and products in submarine slope deposits of the Karoo Basin, South Africa. Sedimentology, 56, 1201–1225.
    [Google Scholar]
  84. Osborne, M.J. & Swarbrick, R.E. (1997) Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG Bull., 81, 1023–1041.
    [Google Scholar]
  85. Palladino, G., Grippa, A., Bureau, D., Alsop, G.I. & Hurst, A. (2016) Emplacement of sandstone intrusions during contractional tectonics. J. Struct. Geol., 89, 230–249.
    [Google Scholar]
  86. Parize, O. & Friès, G. (2003) The Vocontian clastic dykes and sills: a geometric model. In: Subsurface Sediment Mobilization (Ed. by Van RensbergeP. , HillisR.R. , MaltmanA.J. & MorleyC.K. ) Geol. Soc. London. Spec. Publ., 216, 51–72.
    [Google Scholar]
  87. Peterson, G.L. (1966) Structural interpretation of sandstone dikes, Northwest Sacramento Valley, California. GSA Bull., 77, 833–842.
    [Google Scholar]
  88. Prélat, A., Hodgson, D.M. & Flint, S.S. (2009) Evolution, architecture and hierarchy of distributary deep‐water deposits: a high‐resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56, 2132–2154.
    [Google Scholar]
  89. Richardson, J.F. (1971) Incipient fluidization and particulate systems. In: Fluidization (Ed. by J.F.Davidson , D.Harrison ), pp. 25–64. Academic Press, London.
    [Google Scholar]
  90. Ross, J.A., Peakall, J. & Keevil, G.M. (2014) Facies and flow regimes of sandstone‐hosted columnar intrusions: insights from the pipes of Kodachrome Basin State Park. Sedimentology, 61, 1764–1792.
    [Google Scholar]
  91. Rowe, C.A., Mustard, P.S., Mahoney, J.B. & Katnick, D.C. (2002) Oriented clastic dike swarms as indicators of paleoslope? An example from the upper Cretaceous Nanaimo Group, Canada. J. Sediment. Res., 72, 192–200.
    [Google Scholar]
  92. Schwab, A.M., Jameson, E.W. & Townsley, A. (2015) Volund Field: development of an Eocene sandstone injection complex, offshore Norway. In: Tertiary Deep‐Marine Reservoirs of the North Sea Region (Ed. by McKieT. , RoseP.T.S. , HartleyA.J. , JonesD.W. & ArmstrongT.L. ) Geol. Soc. Lond. Spec. Publ., 403, 247–260. doi:10.1144/SP403.4
    [Google Scholar]
  93. Schwartz, H., Sample, J., Weberling, K.D., Minisini, D. & Moore, J.C. (2003) An ancient linked fluid migration system: cold‐seep deposits and sandstone intrusions in the Panoche Hills, California, USA. Geo‐Mar. Lett., 23, 340–350.
    [Google Scholar]
  94. Scott, A., Vigorito, M. & Hurst, A. (2009) The process of sand injection: internal structures and relationships with host strata (Yellowbank Creek Injectite Complex, California, USA). J. Sediment. Res., 79, 568–583.
    [Google Scholar]
  95. Shepherd, M., Kearney, C.J. & Milne, J.H. (1990) Magnus field. In: Structural Traps II. Traps Associated With Tectonic Faulting (Ed. by E.A.Beaumont & N.H.Foster ), pp. 95–125. AAPG, Tulsa.
    [Google Scholar]
  96. Sixsmith, P.J., Flint, S.S., Wickens, H.D. & Johnson, S.D. (2004) Anatomy and stratigraphic development of a basin floor turbidite system in the Laingsburg Formation, main Karoo Basin, South Africa. J. Sediment. Res., 74, 239–254.
    [Google Scholar]
  97. Spychala, Y.T., Hodgson, D.M., Flint, S.S. & Mountney, N.P. (2015) Constraining the sedimentology and stratigraphy of submarine intraslope lobe deposits using exhumed examples from the Karoo Basin, South Africa. Sed. Geol., 322, 67–81.
    [Google Scholar]
  98. Spychala, Y.T., Hodgson, D.M., Prélat, A., Kane, I.A., Flint, S.S. & Mountney, N.P. (2017) Frontal and lateral submarine lobe fringes: comparing sedimentary facies, architecture and flow processes. Accepted at J. Sediment. Res., 87, 1–21.
    [Google Scholar]
  99. Stoker, S.J., Gray, J.C., Haile, P., Andrews, I.J. & Cameron, T.D.J. (2006) The importance of stratigraphic plays in the undiscovered resources of the UK Continental Shelf. In: The Deliberate Search for the Stratigraphic Trap (Ed. by AllenM.R. ) Geol. Soc. London. Spec. Publ., 254, 153–167.
    [Google Scholar]
  100. Sullivan, M., Jensen, G., Goulding, F., Jennette, D., Foreman, L. & Stern, D. (2000) Architectural analysis of deep‐water outcrops: Implications for exploration and development of the Diana sub‐basin, western Gulf of Mexico. In: Deep‐Water Reservoirs of the World: Gulf Coast Section SEPM Foundation 20th Annual Research Conference (Ed. by WeimerP. , SlattR.M. , BoumaA.H. & LawrenceD.T. ), SEPM CD Spec. Publ., 28, 1010–1032.
    [Google Scholar]
  101. Surlyk, F., Gjelberg, J. & Noe‐Nygaard, N. (2007) The Upper Jurassic Hareelv Formation of east Greenland: a giant sedimentary injection complex. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by HurstA. & CartwrightJ. ) AAPG Mem., 87, 141–149.
    [Google Scholar]
  102. Svendsen, J.B., Hansen, H.J., Stærmose, T. & Engkilde, M.K. (2010) Sand remobilization and injection above an active salt diapir: the Tyr sand of the Nini Field, Eastern North Sea. Basin Res., 22, 548–561.
    [Google Scholar]
  103. Szarawarska, E., Huuse, M., Hurst, A., De Boer, W., Lu, L., Molyneux, S. & Rawlinson, P. (2010) Three‐dimensional seismic characterisation of large‐scale sandstone intrusions in the lower Palaeogene of the North Sea: completely injected vs. in situ remobilised sandbodies. Basin Res., 22, 517–532.
    [Google Scholar]
  104. Tankard, A., Welsink, H., Aukes, P., Newton, R. & Stettler, E. (2009) Tectonic evolution of the Cape and Karoo basins of South Africa. Mar. Pet. Geol., 26, 1379–1412.
    [Google Scholar]
  105. Truswell, J.F. (1972) Sandstone sheets and related intrusions from Coffee bay, Transkei, South Africa. J. Sed. Res., 42, 578–583.
    [Google Scholar]
  106. Vétel, W. & Cartwright, J. (2010) Emplacement mechanics of sandstone intrusions: insights from the Panoche Giant Injection Complex, California. Basin Res., 22, 783–807.
    [Google Scholar]
  107. Vigorito, M. & Hurst, A. (2010) Regional sand injectite architecture as a record of pore‐pressure evolution and sand redistribution in the shallow crust: insights from the Panoche Giant Injection Complex, California. J. Geol. Soc., 167, 889–904.
    [Google Scholar]
  108. Vigorito, M., Hurst, A., Cartwright, J. & Scott, A. (2008) Regional‐scale subsurface sand remobilization: geometry and architecture. J. Geol. Soc., 165, 609–612.
    [Google Scholar]
  109. Visser, J.N. & Praekelt, H.E. (1996) Subduction, mega‐shear systems and Late Palaeozoic basin development in the African segment of Gondwana. Geol. Rundsch., 85, 632–646.
    [Google Scholar]
  110. Von Brunn, V. & Talbot, C.J. (1986) Formation and deformation of subglacial intrusive clastic sheets in the Dwyka Formation of northern Natal, South Africa. J. Sediment. Res., 56, 35–44.
    [Google Scholar]
  111. Walker, R.G. (1978) Deep‐water sandstone facies and ancient submarine fans: models for exploration for stratigraphic traps. AAPG Bull., 62, 932–966.
    [Google Scholar]
  112. van der Werff, W. & Johnson, S. (2003) High resolution stratigraphic analysis of a turbidite system, Tanqua Karoo Basin, South Africa. Mar. Pet. Geol., 20, 45–69.
    [Google Scholar]
  113. Wickens, H.D. (1994) Basin floor fan building turbidites of the southwestern Karoo Basin, Permian Ecca Group, South Afrika. PhD thesis, University of Port Elizabeth, 233 pp.
  114. Wickens, H.D. & Bouma, A.H. (2000) The Tanqua Fan Complex, Karoo Basin, South Africa—Outcrop analog for fine‐grained, deepwater deposits. In: Fine‐Grained Turbidite Systems: American Association of Petroleum Geologists (Ed. by BoumaA.H. & StoneC.G. ) Memoir, 72 & SEPM Special Publication, 68, 153–165.
    [Google Scholar]
  115. Wild, R., Flint, S.S. & Hodgson, D.M. (2009) Stratigraphic evolution of the upper slope and shelf edge in the Karoo Basin, South Africa. Basin Res., 21, 502–527.
    [Google Scholar]
  116. Yang, S.Y. & Kim, J.W. (2014) Pliocene basin‐floor fan sedimentation in the Bay of Bengal (offshore northwest Myanmar). Mar. Pet. Geol., 49, 45–58.
    [Google Scholar]
  117. Yardley, G.S. & Swarbrick, R.E. (2000) Lateral transfer: a source of additional overpressure?Mar. Pet. Geol., 17, 523–537.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12229
Loading
/content/journals/10.1111/bre.12229
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error