1887
image of Application of multi‐kinetic apatite fission track and (U‐Th)/He thermochronology to source rock thermal history: a case study from the Mackenzie Plain, NWT, Canada

Abstract

Abstract

Shale of the Upper Cretaceous Slater River Formation extends across the Mackenzie Plain of the Canadian Northwest Territories and has potential as a regional source rock because of the high organic content and presence of both oil‐ and gas‐prone kerogen. An understanding of the thermal history experienced by the shale is required to predict any potential petroleum systems. Our study integrates multi‐kinetic apatite fission track (AFT) and apatite (U‐Th)/He (AHe) thermochronometers from a basal bentonite unit to understand the timing and magnitude of Late Cretaceous burial experienced by the Slater River Formation along the Imperial River. We use LA‐ICP‐MS and EPMA methods to assess the chemistry of apatite, and use these values to derive the AFT kinetic parameter . Our AFT dates and track lengths, respectively, range from 201.5 ± 36.9 Ma to 47.1 ± 12.3 Ma, and 16.8 to 10.2 μm, and single crystal AHe dates are between 57.9 ± 3.5 and 42.0 ± 2.5 Ma with effective uranium concentrations from 17 ppm to 36 ppm. The fission track data show no relationship with the kinetic parameter and fail the χ2‐test indicating that the data do not comprise a single statistically significant population. However, when plotted against their value, the data are separated into two statistically significant kinetic populations with distinct track length distributions. Inverse thermal history modelling of both the multi‐kinetic AFT and AHe datasets, reveal that the Slater River Formation reached maximum burial temperatures of ~65–90 °C between the Turonian and Paleocene, indicating that the source rock matured to the early stages of hydrocarbon generation, at best. Ultimately, our data highlight the importance of kinetic parameter choice for AFT and AHe thermochronology, as slight variations in apatite chemistry may have significant implications on fission track and radiation damage annealing in apatite with protracted thermal histories through the uppermost crust.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12233
2017-04-19
2025-05-19
Loading full text...

Full text loading...

References

  1. Armstrong, P.A. (2005) Thermochronometers in Sedimentary Basins. Rev. Mineral. Geochem., 58, 499–525.
    [Google Scholar]
  2. Ault, A.K. & Flowers, R.M. (2012) Is apatite U‐Th zonation information necessary for accurate interpretation of apatite (U‐Th)/He thermochronometry data?Geochim. Cosmochim. Acta, 79, 60–78.
    [Google Scholar]
  3. Barbarand, J., Carter, A., Wood, I. & Hurford, T. (2003a) Compositional and structural control of fission‐track annealing in apatite. Chem. Geol., 198, 107–137.
    [Google Scholar]
  4. Barbarand, J., Hurford, T. & Carter, A. (2003b) Variation in apatite fission‐track length measurement: implications for thermal history modelling. Chem. Geol., 198, 77–106.
    [Google Scholar]
  5. Belousova, E.A., Griffin, W.L., O'Reilly, S.Y. & Fisher, N.I. (2002) Apatite as an indicator mineral for mineral exploration: trace‐element compositions and their relationship to host rock type. J. Geochem. Explor., 76, 45–69.
    [Google Scholar]
  6. Beucher, R., Brown, R.W., Roper, S., Stuart, F. & Persano, C. (2013) Natural age dispersion arising from the analysis of broken crystals. Part II: practical application to apatite (U‐Th)/He thermochronometry. Geochim. Cosmochim. Acta, 120, 395–416.
    [Google Scholar]
  7. Brown, R.W., Beucher, R., Roper, S., Persano, C., Stuart, F. & Fitzgerald, P. (2013) Natural age dispersion arising from the analysis of broken crystals. Part I: theoretical basis and implications for the apatite (U‐Th)/He thermochronometer. Geochim. Cosmochim. Acta, 122, 478–497.
    [Google Scholar]
  8. Burtner, R.L., Nigrini, A. & Donelick, R.A. (1994) Thermochronology of lower cretaceous source rocks in the Idaho‐Wyoming thrust belt. AAPG Bull., 78, 1613–1636.
    [Google Scholar]
  9. Carlson, W.D., Donelick, R.A. & Ketcham, R.A. (1999) Variability of apatite fission‐track annealing kinetics: I. Experimental results. Am. Mineral., 84, 1213–1223.
    [Google Scholar]
  10. Chew, D.M. & Donelick, R.A. (2012) Combined apatite fission track and U‐Pb dating by LA–ICP–MS and its application in apatite provenance analysis. Mineral. Assoc. Canada Short Course, 42, 219–247.
    [Google Scholar]
  11. Chew, D.M., Donelick, R.A., Donelick, M.B., Kamber, B.S. & Stock, M.J. (2014) Apatite chlorine concentration measurements by LA‐ICP‐MS. Geostand. Geoanal. Res., 38, 23–35.
    [Google Scholar]
  12. Chew, D.M., Babechuk, M.G., Cogné, N., Mark, C., O'Sullivan, G.J., Henrichs, I.A., Doepke, D. & McKenna, C.A. (2016) (LA, Q)‐ICPMS trace‐element analyses of Durango and McClure Mountain apatite and implications for making natural LA‐ICPMS mineral standards. Chem. Geol., 435, 35–48.
    [Google Scholar]
  13. Djimbi, M.D., Gautheron, C., Roques, J., Tassan‐Got, L., Gerin, C. & Simoni, E. (2015) Impact of apatite chemical composition on (U‐Th)/He thermochronometry: an atomistic point of view. Geochim. Cosmochim. Acta, 167, 162–176.
    [Google Scholar]
  14. Donelick, R.A., Ketcham, R.A. & Carlson, W.D. (1999) Variability of apatite fission‐track annealing kinetics: II. Crystallographic orientation effects. Am. Mineral., 84, 1224–1234.
    [Google Scholar]
  15. Donelick, R.A., O'Sullivan, P.B. & Ketcham, R.A. (2005) Apatite fission‐track analysis. Rev. Mineral. Geochem., 58, 49–94.
    [Google Scholar]
  16. Earnshaw, H.C. & Grant, B.D. (1992) The porphyrin maturity parameter as an indicator of oil maturity and the onset of oil generation in the cretaceous slater river formation, Fort Norman Area, Northwest Territories. Geol. Surv. Canada Open File, 2542, 20.
    [Google Scholar]
  17. Ehlers, T.A. & Farley, K.A. (2003) Apatite (U‐Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet. Sci. Lett., 206, 1–14.
    [Google Scholar]
  18. Fallas, K.M., MacNaughton, R.B., MacLean, B.C. & Hadlari, T. (2013) Geology, Norman Wells (southwest), Northwest Territories. Geological Survey of Canada, Canadian Geoscience Map, 101.
  19. Farley, K.A., Wolf, R.A. & Silver, L.T. (1996) The effects of long alpha‐stopping distances on (U‐Th)/He ages. Geochim. Cosmochim. Acta, 60, 4223–4229.
    [Google Scholar]
  20. Feinstein, S., Brooks, P., Fowler, M., Snowdon, L.R. & Williams, G.K. (1988) Families of oils and source rocks in the central Mackenzie corridor: a geochemical oil‐oil and oil‐source rock correlation. Can. Soc. Pet. Geol. Memoir, 15, 543–552.
    [Google Scholar]
  21. Feinstein, S., Williams, G.K., Snowdon, L.R., Goodarzi, F. & Gentzis, T. (1991) Thermal maturation of organic matter in the Middle Devonian to Tertiary section, Fort Norman area (central Mackenzie Plain). Can. J. Earth Sci., 28, 1009–1018.
    [Google Scholar]
  22. Feinstein, S., Issler, D.R., Snowdon, L.R. & Williams, G.K. (1996) Characterization of major unconformities by paleothermometric and paleobarometric methods: application to the Mackenzie Plain, Northwest Territories, Canada. Bull. Can. Pet. Geol., 44, 55–71.
    [Google Scholar]
  23. Flowers, R.M., Ketcham, R.A., Shuster, D.L. & Farley, K.A. (2009) Apatite (U‐Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta, 73, 2347–2365.
    [Google Scholar]
  24. Gautheron, C., Tassan‐Got, L., Barbarand, J. & Pagel, M. (2009) Effect of alpha‐damage annealing on apatite (U‐Th)/He thermochronology. Chem. Geol., 266, 166–179.
    [Google Scholar]
  25. Gautheron, C., Tassan‐Got, L., Ketcham, R.A. & Dobson, K.J. (2012) Accounting for long alpha‐particle stopping distances in (U‐Th‐Sm)/He geochronology: 3D modeling of diffusion, zoning, implantation, and abrasion. Geochim. Cosmochim. Acta, 96, 44–56.
    [Google Scholar]
  26. Gautheron, C., Barbarand, J., Ketcham, R.A., Tassan‐Got, L., Van Der Beek, P., Pagel, M., Pinna‐Jamme, R., Couffignal, F. & Fialin, M. (2013) Chemical influence on α‐recoil damage annealing in apatite: Implications for (U‐Th)/He dating. Chem. Geol., 351, 257–267.
    [Google Scholar]
  27. Green, P.F. (1981) A new look at statistics in fission‐track dating. Nucl. Tracks, 5, 77–86.
    [Google Scholar]
  28. Green, P.F. (1988) The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and system calibration. Earth Planet. Sci. Lett., 89, 335–352.
    [Google Scholar]
  29. Green, P.F., Duddy, I.R., Gleadow, A.J.W., Tingate, P.R. & Laslett, G.M. (1986) Thermal annealing of fission tracks in apatite 1. Variable temperature behaviour. Isot. Geosci., 59, 237–253.
    [Google Scholar]
  30. Hadlari, T., MacLean, B.C., Galloway, J.M., Sweet, A.R., White, J.M., Thomson, D., Gabites, J. & Schröder‐Adams, C.J. (2014) The flexural margin, the foredeep, and the orogenic margin of a northern Cordilleran foreland basin: Cretaceous tectonostratigraphy and detrital zircon provenance, northwestern Canada. Mar. Pet. Geol., 57, 173–186.
    [Google Scholar]
  31. Hannigan, P.K., Morrow, D.W. & MacLean, B.C. (2011) Petroleum resource potential of the northern mainland of Canada (Mackenzie Corridor). Geol. Surv. Canada Open File, 6757, 271.
    [Google Scholar]
  32. Hasebe, N., Barbarand, J., Jarvis, K., Carter, A. & Hurford, A.J. (2004) Apatite fission‐track chronometry using laser ablation ICP‐MS. Chem. Geol., 207, 135–145.
    [Google Scholar]
  33. Issler, D.R. (1996) An inverse model for extracting thermal histories from apatite fission track data: instructions and software for the Windows 95 environment. Geol. Surv. Canada Open File, 2325, 85.
    [Google Scholar]
  34. Issler, D.R., Grist, A. & Stasiuk, L. (2005) Post‐Early Devonian thermal constraints on hydrocarbon source rock maturation in the Keele Tectonic Zone, Tulita area, NWT, Canada, from multi‐kinetic apatite fission track thermochronology, vitrinite reflectance and shale compaction. Bull. Can. Pet. Geol., 53, 405–431.
    [Google Scholar]
  35. Ketcham, R.A. (2005a) The role of crystallographic angle in characterizing and modeling apatite fission‐track length data. In Radiat. Meas., 39, 595–601.
    [Google Scholar]
  36. Ketcham, R.A. (2005b) Forward and inverse modeling of low‐temperature thermochronometry data. Rev. Mineral. Geochem., 58, 275–314.
    [Google Scholar]
  37. Ketcham, R.A. (2015) Technical Note: calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. Am. Mineral., 100, 1620–1623.
    [Google Scholar]
  38. Ketcham, R.A., Donelick, R.A. & Carlson, W.D. (1999) Variability of apatite fission‐track anneling kinetics: III. Extrapolation to geological time scales. Am. Mineral., 84, 1235–1255.
    [Google Scholar]
  39. Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J. & Hurford, A.J. (2007) Improved modeling of fission‐track annealing in apatite. Am. Mineral., 92, 799–810.
    [Google Scholar]
  40. Ketcham, R.A., Donelick, R.A., Balestrieri, M.L. & Zattin, M. (2009) Reproducibility of apatite fission‐track length data and thermal history reconstruction. Earth Planet. Sci. Lett., 284, 504–515.
    [Google Scholar]
  41. Ketcham, R.A., Gautheron, C. & Tassan‐Got, L. (2011) Accounting for long alpha‐particle stopping distances in (U‐Th‐Sm)/He geochronology: refinement of the baseline case. Geochim. Cosmochim. Acta, 75, 7779–7791.
    [Google Scholar]
  42. Ketcham, R.A., Carter, A. & Hurford, A.J. (2015) Inter‐laboratory comparison of fission track confined length and etch figure measurements in apatite. Am. Mineral., 100, 1452–1468.
    [Google Scholar]
  43. Knight, E., Schneider, D.A. & Ryan, J. (2013) Thermochronology of the Yukon‐Tanana Terrane, West‐Central Yukon: Evidence for Jurassic Extension and Exhumation in the Northern Canadian Cordillera. J. Geol., 121, 371–400.
    [Google Scholar]
  44. Majorowicz, J.A. & Morrow, D.W. (1998) Subsurface temperature and heat flow ‐ Yukon and Northwest Territories. Geol. Surv. Canada Open File, 3626, 6.
    [Google Scholar]
  45. Morris, G.A. & Creaser, R.A. (2008) Correlation of mid‐Cretaceous granites with source terranes in the northern Canadian Cordillera. Can. J. Earth Sci., 45, 389–403.
    [Google Scholar]
  46. Morton, A. & Yaxley, G. (2007) Detrital apatite geochemistry and its application in provenance studies. In: Sedimentary Provenance and Petrogenesis: Perspectives From Petrography and Geochemistry: Geological Society of America Special Paper 420 (Ed. by J.Critelli & M.J.Johnsson ), pp. 319–344. Geological Society of America, Boulder, Colorado.
    [Google Scholar]
  47. Nielsen, S.B., Clausen, O.R. & Mcgregor, E. (2017) Basin%Ro: a vitrinite reflectance model derived from basin and laboratory data. Basin Res., 29, 515–536.
    [Google Scholar]
  48. Piccoli, P.M. & Candela, P.A. (2002) Apatite in Igneous system. Rev. Mineral. Geochem., 48, 255–292.
    [Google Scholar]
  49. Powell, J., Schneider, D., Stockli, D. & Fallas, K. (2016) Zircon (U‐Th)/He thermochronology of Neoproterozoic strata from the Mackenzie Mountains, Canada: implications for the Phanerozoic exhumation and deformation history of the northern Canadian Cordillera. Tectonics, 35, 663–689.
    [Google Scholar]
  50. Pyle, L.J. & Gal, L.P. (2014) Analytical Results from Cretaceous and Devonian Studies in Mackenzie Plain. Northwest Territories Geoscience Office, NWT Open Report 2014‐006, 1–28.
  51. Ramezani, J., Bowring, S.A., Kamo, S.L., Ferguson, K., Macaulay, C. & Kelly, A.E. (2015) An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: implications for global chronostratigraphy. Cretac. Res., 56, 316–344.
    [Google Scholar]
  52. Shuster, D.L., Flowers, R.M. & Farley, K.A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett., 249, 148–161.
    [Google Scholar]
  53. Stock, M.J., Humphreys, M.C.S., Smith, V.C., Johnson, R.D. & Pyle, D.M. (2015) New constraints on electron‐beam induced halogen migration in apatite. Am. Mineral., 100, 281–293.
    [Google Scholar]
  54. Stockli, D.F., Surpless, B.E., Dumitru, T.A. & Farley, K.A. (2002) Thermochronological constraints on the timing and magnitude of Miocene and Pliocene extension in the central Wassuk Range, western Nevada. Tectonics, 21, 10–19.
    [Google Scholar]
  55. Thomson, D., Schröder‐Adams, C.J., Hadlari, T., Dix, G. & Davis, W.J. (2011) Albian to Turonian stratigraphy and palaeoenvironmental history of the northern Western Interior Sea in the Peel Plateau Region, Northwest Territories, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol., 302, 270–300.
    [Google Scholar]
  56. Tran, M., Sun, Q., Smith, B.W. & Winefordner, J.D. (2001) Determination of F, Cl, and Br in Solid organic compounds by laser‐induced plasma spectroscopy. Appl. Spectrosc., 55, 739–744.
    [Google Scholar]
  57. Vermeesch, P. (2009) RadialPlotter: a Java application for fission track, luminescence and other radial plots. Radiat. Meas., 44, 409–410.
    [Google Scholar]
  58. Yorath, C.J. & Cook, D.G. (1981) Cretaceous and tertiary stratigraphy and paleogeography, Northern Interior Plains, District of Mackenzie. Geol. Surv. Canada Memoir, 398, 1–76.
    [Google Scholar]
/content/journals/10.1111/bre.12233
Loading
/content/journals/10.1111/bre.12233
Loading

Data & Media loading...

Supplements

Summary of AFT age data for Slater River Formation bentonite, Imperial River Section, NWT, Canada.

Summary of AFT length data for Slater River Formation bentonite, Imperial River Section, NWT, Canada.

Apatite chemistry for all AFT age and length grains, Slater River Formation bentonite, Imperial River section, NWT, Canada.

Single grain (U‐Th)/He analyses of apatite from the Slater River Formation bentonite, Imperial River Section, NWT, Canada.

Assessing the magnitude of [U] zonation required to yield the old AFT dates in kinetic population #1 from apatite in kinetic population #2.

Comparison of r values calculated from duplicate D measurements on the same grain, and their corresponding closure temperature.

Apatite fission track date and individual track length data plotted as a function of the kinetic parameter Cl content. Horizontal dashed lines indicate the pooled age (top) and mean track length (bottom) of a population.

Diagram assessing the sensitivity of AFT kinetic populations to the r value selected as the kinetic boundary. For each value of r, A) pooled dates, and B) mean track length is calculated from the data with r values less than the boundary (kin pop #1) and greater than the boundary (kin pop #2). Populations that pass the chi‐squared test (χ2 > 5%) are shown in colour, whereas those that fail are shown in gray. Valid kinetic boundaries require both AFT populations to pass the chi‐square test. Dates from AFT population #3 () were excluded from this test.

A) plot of the cation ratio (238U/43Ca) used in AFT age determination against apatite‐specific uranium concentration. B) diagram showing the effects of uranium zonation on AFT date for 3 grains with varying track densities and uranium content (A_1_POS_11; A_1_POS_35;A_1_POS_29; ). For each apatite, the darker shaded data point outlined in black represents the original AFT date and composition, and lighter shaded data points represent the change in expected AFT date for changing uranium concentrations. Each simulation shows the magnitude of uranium zonation required to change the AFT date of an apatite belonging to kinetic population #2 (89.0 3.7 Ma) to kinetic population #1 (154.3 10.2 Ma) or kinetic population #3 (53.5 6.5 Ma).

Images of the grains corresponding to the youngest and oldest AFT dates in this study. Sample numbers correspond with the A2Z sample numbers in.

 

WORD
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error