1887
image of New insights in the development of syn‐depositional fractures in rimmed flat‐topped carbonate platforms, Neogene carbonate complexes, Sorbas Basin, SE Spain

Abstract

Abstract

The formation of syn‐depositional fractures in carbonate platforms is considered an important feature in the understanding of platform evolution. This study investigates the mechanisms of fracture formation in rimmed flat‐topped carbonate platforms in the very well‐exposed Cariatiz Miocene Fringing Reef Unit, SE Spain. Fracture data were obtained using a combination of LIDAR and field mapping techniques, which proved useful in understanding general fracture trends. The morphological expression of fracture sets, preferred fracture localization, crosscutting relationships and fracture fill are characteristics that provide constraints on the timing of fracture formation and opening. Three dominant fracture populations were identified, amongst which a margin parallel and a margin perpendicular fracture set. Margin parallel fractures localize around the platform margin and form vertically extensive dikes that crosscut facies boundaries. The sedimentary fill of such fractures suggests syn‐depositional fracture formation under marine conditions. Together, fracture characteristics suggest a gravitational driver for the formation of tensile stress and the development of margin parallel fractures along the platform edge. Margin perpendicular structures form sub‐vertical dikes and fracture corridors. Margin perpendicular fractures localize on the platform slope and show two types of fracture fill, indicating marine and continental origins. Based on variations of fracture morphology along the carbonate platform, fracture localization, petrographic analysis of sedimentary fill and stable isotope analysis on sparite cements, we suggest a gravitational control on the formation of these fractures. Two mechanisms for the formation of subvertical margin perpendicular fractures are proposed: (1) principal stress rotation as a result of downslope loading. (2) Differential compaction over buried gulley systems on antecedent clinoform slopes. We suggest that the formation of sub‐vertical margin perpendicular fractures might be a systematic feature in slopes of flat‐topped carbonate platforms.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12239
2017-05-03
2025-05-19
Loading full text...

Full text loading...

References

  1. Anselmetti, F.S., Eberli, G.P. & Zan‐Dong, D. (2000) From the Great Bahama Bank into the Straits of Florida: a margin architecture controlled by sea‐level fluctuations and ocean currents. Geol. Soc. Am. Bull., 112, 829–844.
    [Google Scholar]
  2. Baceta, J.I., Wright, V.P., Beavington‐Penney, S.J. & Pujalte, V. (2007) Palaeohydrogeological control of palaeokarst macro‐porosity genesis during a major sea‐level lowstand: Danian of the Urbasa‐Andia plateau, Navarra, North Spain. Sed. Geol., 199, 141–169.
    [Google Scholar]
  3. Bakker, H.E., De Jong, K., Helmers, H. & Biermann, C. (1989) The geodynamic evolution of the Internal zone of the Betic Cordilleras (south‐east Spain): a model based on structural analysis and geothermobarometry. J. Metamorph. Geol., 7, 359–381.
    [Google Scholar]
  4. Berra, F. & Carminati, E. (2012) Differential compaction and early rock fracturing in high‐relief carbonate platforms: numerical modelling of a Triassic case study (Esino Limestone, Central Southern Alps, Italy). Basin Res., 24, 598–614.
    [Google Scholar]
  5. Betzler, C., Lindhorst, S., Eberli, G.P., Lüdmann, T., Möbius, J.r., Ludwig, J., Schutter, I., Wunsch, M., Reijmer, J.J.G. & Hübscher, C. (2014) Periplatform drift: the combined result of contour current and off‐bank transport along carbonate platforms. Geology, 42, 871–874.
    [Google Scholar]
  6. Biermann, C. (1995) The Betic Cordilleras (SE Spain). Anatomy of a dualistic collision‐type orogenic belt. Geol. Mijnbouw, 74, 167–182.
    [Google Scholar]
  7. Blomeier, D.P.G. & Reijmer, J.J.G. (1999) Drowning of a lower Jurassic Carbonate Platform: Jbel Bou Dahar, High Atlas, Morocco. Facies, 41, 81–110.
    [Google Scholar]
  8. Bosence, D.W.J., Braga, J.C., Martin, J.M. & Hardy, S. (1992) Computer‐Modelling Depositional Sequences in Late Miocene Platforms, Sorbas Basin, Spain. SEPM/IAS Research Conference on Carbonate Stratigraphic Sequences, Abstract.
  9. Bourillot, R., Vennin, E., Rouchy, J.‐M., Blanc‐Valleron, M.‐M., Caruso, A. & Durlet, C. (2010) The end of the Messinian Salinity Crisis in the western Mediterranean: insights from the carbonate platforms of south‐eastern Spain. Sed. Geol., 229, 224–253.
    [Google Scholar]
  10. Braga, J.C. & Martín, J.M. (1992) Messinian carbonates of the Sorbas basin: sequence stratigraphy, cyclicity and facies. In: Late Miocene Carbonate Sequences of Southern Spain: A Guidebook for the Las Negras and Sorbas Area, in Conjunction With theSEPM/IAS Research conference on Carbonate Stratigraphic Sequence Boundaries and Associated Facies, August 30‐September 3, La Seu, Spain, pp. 78–108.
    [Google Scholar]
  11. Braga, J.C. & Martín, J.M. (1996) Geometries of reef advance in response to relative sea‐level changes in a Messinian (uppermost Miocene) fringing reef (Cariatiz reef, Sorbas Basin, SE Spain). Sed. Geol., 107, 61–81.
    [Google Scholar]
  12. Braga, J.C., Martín, J.M., Betzler, C. & Aguirre, J. (2006) Models of temperate carbonate deposition in Neogene basins in SE Spain: a synthesis. In: Cool‐Water Carbonates: Depositional Systems and Palaeoenvironmental Controls (Ed. by PedleyH.M. & CarannanteG. ) Geol. Soc. London. Spec. Publ., 255, 121–135.
    [Google Scholar]
  13. Cardozo, N. & Allmendinger, R.W. (2013) Spherical projections with OSXStereonet. Comput. Geosci., 51, 193–205.
    [Google Scholar]
  14. Casini, G., Hunt, D.W., Monsen, E. & Bounaim, A. (2016) Fracture characterization and modeling from virtual outcrops. AAPG Bull., 100, 41–61.
    [Google Scholar]
  15. Cilona, A., Aydin, A., Likerman, J., Parker, B. & Cherry, J. (2016) Structural and statistical characterization of joints and multi‐scale faults in an alternating sandstone and shale turbidite sequence at the Santa Susana Field Laboratory: implications for their effects on groundwater flow and contaminant transport. J. Struct. Geol., 85, 95–114.
    [Google Scholar]
  16. Clark, M.W. (1976) Some methods for statistical analysis of multimodal distributions and their application to grain‐size data. Math. Geol., 8, 267–282.
    [Google Scholar]
  17. Clauzon, G., Suc, J.‐P., Do Couto, D., Jouannic, G., Melinte‐Dobrinescu, M.C., Jolivet, L., Quillévéré, F., Lebret, N., Mocochain, L., Popescu, S.‐M., Martinell, J., Doménech, R., Rubino, J.‐L., Gumiaux, C., Warny, S., Gorini, C., Bache, F., Rabineau, M. & Estrada, F. (2015) New insights on the Sorbas Basin (SE Spain): the onshore reference of the Messinian Salinity Crisis. Mar. Pet. Geol., 66, 71–100.
    [Google Scholar]
  18. Cozzi, A. (2000) Synsedimentary tensional features in Upper Triassic shallow‐water platform carbonates of the Carnian Prealps (northern Italy) and their importance as palaeostress indicators. Basin Res., 12, 133–146.
    [Google Scholar]
  19. Cuevas Castell, J.M., Betzler, C., Rössler, J., Hüssner, H. & Peinl, M. (2007) Integrating outcrop data and forward computer modelling to unravel the development of a Messinian carbonate platform in SE Spain (Sorbas Basin). Sedimentology, 54, 423–441.
    [Google Scholar]
  20. De Larouziere, F.D., Bolze, J., Bordet, P., Hernandez, J., Montenat, C. & Ott d'Estevou, P. (1988) The Betic segment of the lithospheric Trans‐Alboran shear zone during the Late Miocene. Tectonophysics, 152, 41–52.
    [Google Scholar]
  21. Do Couto, D., Gumiaux, C., Augier, R., Lebret, N., Folcher, N., Jouannic, G., Jolivet, L., Suc, J.‐P. & Gorini, C. (2014) Tectonic inversion of an asymmetric graben: insights from a combined field and gravity survey in the Sorbas basin. Tectonics, 33, 1360–1383.
    [Google Scholar]
  22. Do Couto, D., Gumiaux, C., Jolivet, L., Augier, R., Lebret, N., Folcher, N., Jouannic, G., Suc, J.‐P. & Gorini, C. (2015) 3D modelling of the Sorbas Basin (Spain): new constraints on the Messinian Erosional Surface morphology. Mar. Pet. Geol., 66, 101–116.
    [Google Scholar]
  23. Engelder, T. (1987) Joints and shear fractures in rock. In: Fracture Mechanics of Rock (Ed. by B.K.Atkinson ), pp. 27–69. Academic Press, London.
    [Google Scholar]
  24. Esteban, M. (1979‐1980) Significance of the Upper Miocene coral reefs of the Western Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 29, 169–188.
    [Google Scholar]
  25. Frost, E.L. & Kerans, C. (2009) Platform‐margin trajectory as a control on syndepositional on syndepositional fracture patterns, Canning Basin, Western Australia. J. Sediment. Res., 79, 44–55.
    [Google Scholar]
  26. Frost, E.L. & Kerans, C. (2010) Controls on syndepositional fracture patterns, Devonian reef complexes, Canning Basin, Western Australia. J. Struct. Geol., 32, 1231–1249.
    [Google Scholar]
  27. Frost, E.L., Budd, D.A. & Kerans, C. (2012) Syndepositional deformation in a high‐relief carbonate platform and its effect on early fluid flow as revealed by dolomite patterns. J. Sediment. Res., 82, 913–932.
    [Google Scholar]
  28. Gale, J.F.W., Laubach, S.E., Marrett, R.A., Olson, J.E., Holder, J. & Reed, R.M. (2004) Predicting and characterizing fractures in dolostone reservoirs: using the link between diagenesis and fracturing. In: The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs (Ed. by BraithwaiteC.J.R. , RizzyG. & DarkeG. ) Geol. Soc. London Special Publ., 235, 177–192.
    [Google Scholar]
  29. Guerriero, V., Mazzoli, S., Iannace, A., Vitale, S., Carravetta, A. & Strauss, C. (2012) A permeability model for naturally fractured carbonate reservoirs. Mar. Pet. Geol., 40, 115–134.
    [Google Scholar]
  30. Guidry, S.A., Grasmueck, M., Carpenter, D.G., Gombos, A.M., Bachtel, S.L. & Viggiano, D.A. (2007) Karst and Early fracture networks in Carbonates, Turks and Caicos Islands, British West Indies. J. Sediment. Res., 77, 508–524.
    [Google Scholar]
  31. Haq, B.U., Hardenbol, J. & Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.
    [Google Scholar]
  32. Harris, M.T. (1993) Reef fabrics biotic crusts and syndepositional cements of the Latemar reef margin (Middle Triassic), northern Italy. Sedimentology, 40, 383–401.
    [Google Scholar]
  33. Hunt, D.W. & Fitchen, W.M. (1999) Compaction and the dynamics of carbonate platform development: Insights from the Permian Delaware and Midland basins, southeast New Mexico and West Texas, USA. In: Advances in Carbonate Sequence Stratigraphy: Application to Reservoirs, Outcrops and Models (Ed. by HarrisP.M. , SallerA.H. & SimoJ.A. ) SEPM Spec. Publ., 63, 75–106.
    [Google Scholar]
  34. Hunt, D.W., Fitchen, W.M., Swarbrick, R. & Allsop, T. (1995) Differential compaction as a primary control of sequence architecture and development in the Permian Basin: geological significance and potential as a hydrocarbon exploration model. In: Wolfcampian–Leonardian Shelf Margin Facies of the Sierra Diablo: Seismic Models for Subsurface Exploration (Ed. by GarberR. & LindsayR.F. ) West Texas Geol. Soc. Publ., 95‐97, 83–104.
    [Google Scholar]
  35. Hunt, D.W., Fitchen, W.M. & Koša, E. (2002) Syndepositional deformation of the Permian Capitan reef carbonate platform, Guadalupe Mountains, New Mexico, USA. Sed. Geol., 154, 89–126.
    [Google Scholar]
  36. Hurley, N.F. (1986) Geology of the Oscar Range Devonian Reef Complex, Canning Basin, Western Australia. PhD thesis, University of Michigan, Ann Arbor.
  37. Jonk, R. & Biermann, C. (2002) Deformation in Neogene sediments of the Sorbas and Vera Basins (SE Spain): constraints on simple‐shear deformation and rigid body rotation along major strike‐slip faults. J. Struct. Geol., 24, 963–977.
    [Google Scholar]
  38. Kleipool, L.M., Reijmer, J.J.G., Hardebol, N.J., Bertotti, G., Aurell, M. & Bádenas, B. (2016) Fracture distribution along an Upper Jurassic carbonate ramp, NE Spain. Mar. Pet. Geol., 70, 201–221.
    [Google Scholar]
  39. Kleverlaan, K. (1989) Neogene history of the Tabernas basin (SE Spain) and its Tortonian submarine fan development. Geol. Mijnbouw, 68, 421–432.
    [Google Scholar]
  40. Koša, E. & Hunt, D.W. (2006) Heterogeneity in fill and properties of karst‐modified syndepositional faults and fractures: upper Permian Capitan platform, New Mexico, U.S.A. J. Sediment. Res., 76, 131–151.
    [Google Scholar]
  41. Koša, E., Hunt, D.W., Fitchen, W.M., Bockel‐Rebelle, M. & Roberts, G. (2003) The heterogeneity of paleocavern systems developed along syndepositional fault zones: the upper Permian Capitan platform, Guadalupe Mountains, U.S.A. In: Permo‐Carboniferous Carbonate Platforms and Reefs (Ed. by AhrW.M. , HarrisP.M. , MorganW.A. & SomervilleI.D. ) SEPM Spec. Publ., 78, 291–322.
    [Google Scholar]
  42. Laubach, S.E., Marrett, R.A. & Olson, J.E. (2000) New directions in fracture characterization. Lead. Edge, 19, 704–711.
    [Google Scholar]
  43. Lehner, B.L. (1991) Neptunian dykes along a drowned carbonate platform margin: an indication for recurrent extensional tectonic activity?Terra Nova, 3, 593–602.
    [Google Scholar]
  44. Ludwig, K.R. (2000) Decay constant errors in U‐Pb concordia‐intercept ages. Chem. Geol., 166, 315–318.
    [Google Scholar]
  45. Martín, J.M. & Braga, J.C. (1994) Messinian events in the Sorbas Basin in southeastern Spain and their implications in the recent history of the Mediterranean. Sed. Geol., 90, 257–268.
    [Google Scholar]
  46. Martín, J.M. & Braga, J.C. (1996) Tectonic signals in the Messinian stratigraphy of the Sorbas basin (Almería, SE Spain). In: Tertiary Basins of Spain, the Stratigraphic Record of Crustal Kinematics (Ed. by FriendP.F. & DabrioC.J. ). Cambridge University Press, Cambridge, UK, World Regional Geol., 6, 387–391.
    [Google Scholar]
  47. Meijninger, B.M.L. & Vissers, R.L.M. (2006) Miocene extensional basin development in the Betic Cordillera, SE Spain revealed through analysis of the Alhama de Murcia and Crevillente Faults. Basin Res., 18, 547–571.
    [Google Scholar]
  48. Montenat, C., Ott d'Estevou, P. & Masse, P. (1987) Tectonic‐sedimentary characters of the Betic Neogene basins evolving in a crustal transcurrent shear zone (SE Spain). Bulletin du Centres de Recherches Exploration Production Elf‐Aquitaine, 11, 1–22.
    [Google Scholar]
  49. Mulder, T., Ducassou, E., Eberli, G.P., Hanquiez, V., Gonthier, E., Kindler, P., Principaud, M., Fournier, F., Léonide, P., Billeaud, I., Marsset, B., Reijmer, J.J.G., Bondu, C., Joussiaume, R. & Pakiades, M. (2012a) New insights into the morphology and sedimentary processes along the western slope of Great Bahama Bank. Geology, 40, 603–606.
    [Google Scholar]
  50. Mulder, T., Ducassou, E., Gillet, H., Hanquiez, V., Tournadour, E., Combes, J., Eberli, G.P., Kindler, P., Gonthier, E., Conesa, G., Robin, C., Sianipar, R., Reijmer, J.J.G. & François, A. (2012b) Canyon morphology on a modern carbonate slope of the Bahamas: evidence of regional tectonic tilting. Geology, 40, 771–774.
    [Google Scholar]
  51. Narr, W. & Flodin, E. (2012) Fractures in steep‐rimmed carbonate platforms: comparison of Tengiz reservoir, Kazakhstan, and outcrops in Canning Basin, NW Australia. AAPG Search Dis. Article, 20161, 1–31.
    [Google Scholar]
  52. Newell, N.D. & Rigby, J.K. (1957) Geological studies on the Great Bahama Bank. In: Regional Aspects of Carbonate Deposition (Ed. by Le BlancR.J. & BreedingJ.G. ) SEPM Spec. Publ., 5, 15–72.
    [Google Scholar]
  53. Ott d'Estevou, P. & Montenat, C. (1990) Le Bassin de Sorbas – Tabernas. Documents et Travaux IGAL, 12–13, 101–128.
    [Google Scholar]
  54. Philip, Z.G., Jennings, J.W.Jr, Olson, J.E., Laubach, S.E. & Holder, J. (2005) Modeling coupled fracture‐matrix fluid flow in geomechanically simulated fracture networks. SPE Reservoir Eval. Eng., 8, 300–309.
    [Google Scholar]
  55. Playford, P.E. (1984) Platform‐margin and marginal‐slope relationships in Devonian reef complexes of the Canning Basin. In: P.G. Purcell, ed., The Canning Basin, W.A. Australia: Proceedings the Canning Basin Symposium (1984: Perth) (Ed. by P.G. Purcell), pp. 189–214. Geological Society of Australia Inc. and Petroleum Exploration Society of Australia Ltd, Perth, WA.
  56. Principaud, M., Mulder, T., Gillet, H. & Borgomano, J. (2014) Large‐scale carbonate submarine mass‐wasting along the northwestern slope of the Great Bahama Bank (Bahamas): morphology, architecture, and mechanisms. Sed. Geol., 317, 27–42.
    [Google Scholar]
  57. Puga‐Bernabéu, Á., Webster, J.M., Beaman, R.J. & Guilbaud, V. (2011) Morphology and controls on the evolution of a mixed carbonate–siliciclastic submarine canyon system, Great Barrier Reef margin, north‐eastern Australia. Mar. Geol., 289, 100–116.
    [Google Scholar]
  58. Reolid, J., Betzler, C., Braga, J.C., Martín, J.M., Lindhorst, S. & Reijmer, J.J.G. (2014) Reef slope geometries and facies distribution: controlling factors (Messinian, SE Spain). Facies, 60, 737–753.
    [Google Scholar]
  59. Resor, P.G. & Flodin, E.A. (2010) Forward modeling synsedimentary deformation associated with a prograding steep‐sloped carbonate margin. J. Struct. Geol., 32, 1187–1200.
    [Google Scholar]
  60. Riding, R., Martín, J.M. & Braga, J.C. (1991) Coral stromatolite reef framework, Upper Miocene, Almería, Spain. Sedimentology, 38, 799–818.
    [Google Scholar]
  61. Rodriguez‐Tovar, F.J., Sánchez‐Almazo, I.M., Pardo‐Igúzquiza, E., Braga, J.C. & Martín, J.M. (2013) Incidence of obliquity and precession‐forced Milankovitch cycles in the western Mediterranean: early Messinian sedimentation in the Sorbas Basin (Almería, southern Spain). Int. J. Earth Sci. (Geologische Rundschau), 102, 1735–1755.
    [Google Scholar]
  62. Rouchy, J.‐M. & Saint Martin, J.‐P. (1992) Late Miocene events in the Mediterranean as recorded by carbonate–evaporite relations. Geology, 20, 629–632.
    [Google Scholar]
  63. Ruegg, G.J.H. (1964) Geologische Onderzoekingen in het Bekken van Sorbas, Z Spanje, 64 pp. Geologisch Instituut, University of Amsterdam, Amsterdam, Holland.
    [Google Scholar]
  64. Sanchez‐Almazo, I.M., Braga, J.C., Dinares‐Turell, J., Martín, J.M. & Spiro, B. (2007) Palaeoceanographic controls on reef deposition: the Messinian Cariatiz reef (Sorbas Basin, Almeria, SE Spain). Sedimentology, 54, 637–660.
    [Google Scholar]
  65. Sánchez‐Almazo, I.M., Spiro, B., Braga, J.C. & Martín, J.M. (2001) Constraints of stable isotope signatures on the depositional palaeoenvironments of upper Miocene reef and temperate carbonates in the Sorbas Basin, SE Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol., 175, 153–172.
    [Google Scholar]
  66. Stanton, R.J.Jr & Pray, L.C. (2004) Skeletal–carbonate Neptunian dikes of the Capitan Reef: Permian, Guadalupe Mountains, Texas, U.S.A. J. Sediment. Res., 74, 805–816.
    [Google Scholar]
  67. Stapel, G., Moeys, R. & Biermann, C. (1996) Neogene evolution of the Sorbas basin (SE Spain) determined by paleostress analysis. Tectonophysics, 255, 291–305.
    [Google Scholar]
  68. Torres‐Roldán, R.L. (1979) The tectonic subdivision of the Betic Zone (Betic Cordilleras, southern Spain); its significance and one possible geotectonic scenario for the westernmost Alpine Belt. Am. J. Sci., 279, 19–51.
    [Google Scholar]
  69. Tournadour, E., Mulder, T., Borgomano, J., Hanquiez, V., Ducassou, E. & Gillet, H. (2015) Origin and architecture of a Mass Transport Complex on the northwest slope of Little Bahama Bank (Bahamas): relations between off‐bank transport, bottom current sedimentation and submarine landslides. Sed. Geol., 317, 9–26.
    [Google Scholar]
  70. Underwood, C.A., Cooke, M.L., Simo, J.A. & Muldoon, M.A. (2003) Stratigraphic controls on vertical fracture patterns in Silurian dolomite, northeastern Wisconsin. AAPG Bull., 87, 121–142.
    [Google Scholar]
  71. Vermeesch, P. (2005) Statistical uncertainty associated with histograms in Earth Sciences. J. Geophys. Res., 110, 1–15.
    [Google Scholar]
  72. Warrlich, G., Bosence, D. & Waltham, D. (2005) 3D and 4D controls on carbonate depositional systems: sedimentological and sequence stratigraphic analysis of an attached carbonate platform and atoll (Miocene, Níjar Basin, SE Spain). Sedimentology, 52, 363–389.
    [Google Scholar]
  73. Weijermars, R., Roep, T.B., Van den Eeckhout, B., Postma, G. & Kleverlaan, K. (1985) Uplift history of a Betic fold nappe inferred from Neogene‐ Quaternary sedimentation and tectonics (in the Sierra Alhamilla and Almería, Sorbas and Tabernas Basins of the Betic Cordilleras, SE Spain). Geol. Mijnbouw, 64, 397–411.
    [Google Scholar]
  74. Winterer, E.L. & Sarti, M. (1994) Neptunian dykes and associated features in southern Spain: mechanics of formation and tectonic implications. Sedimentology, 41, 1109–1132.
    [Google Scholar]
/content/journals/10.1111/bre.12239
Loading
/content/journals/10.1111/bre.12239
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error