1887
Volume 30, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

This study focuses on the Cenozoic provenance and tectonic evolution of the southwestern Qaidam Basin through geochemical analysis of detrital garnet, tourmaline and rutile. The variation of detrital mineral compositions indicates that the Cenozoic evolution can be divided into three stages: (i) before the deposition of the upper Xiaganchaigou Formation (before 37.8 Ma); (ii) between the deposition of the upper Xiaganchaigou Formation and the Shangganchaigou Formation (from 37.8 to 22 Ma); (iii) since the deposition of the Xiayoushashan Formation (since 22 Ma). In the first stage, abundant garnets from high‐grade meta‐basic and ultramafic rocks in the sediments from the Ganchaigou area support a provenance from the South Altyn Tagh HP/UHP metamorphic zone. The low percentage of tourmalines from granitoid rocks in the sediments in the Kunbei‐Lücaotan area suggests a provenance from the East Kunlun fault zone, indicating that the Qimen Tagh Shan was not high enough to prevent the transport of sediments from the southern Qaidam Basin. The sediments in the Qigequan area were derived from both the Altyn Tagh fault zone and the East Kunlun fault zone. In the second stage, the tectonic activity consisted in the rapid uplift of the Altyn Shan. Changes in garnet composition indicate a lower detrital contribution from high‐grade metamorphic rocks. In the third stage, the disappearance of garnets from high‐grade metamorphic rocks and scattered temperatures of rutiles in the Ganchaigou area suggest that the source area shifted from the South Altyn Tagh HP/UHP metamorphic rocks to weakly metamorphosed Meso‐Neoproterozoic sedimentary rocks. The increase in granitoid‐derived tourmalines in the Kunbei‐Lücaotan area is indicative of the rapid uplift of the Qimen Tagh Shan. The provenance evolution in the southwestern Qaidam Basin indicates that the tectonic activity along the Altyn Tagh fault zone can be divided into an early stage of Altyn Shan uplift and a later stage of left‐lateral slip. At the same time, tectonic movement along the East Kunlun fault zone initiated.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12241
2017-05-03
2019-12-12
Loading full text...

Full text loading...

References

  1. Arribas, J., Critelli, S., le Pera, E. & Tortosa, A. (2000) Composition of modern stream sand derived from a mixture of sedimentary and metamorphic source rocks (Henares River, Central Spain). Sediment. Geol., 133, 27–48.
    [Google Scholar]
  2. Augustsson, C. & Bahlburg, H. (2008) Provenance of late Palaeozoic metasediments of the Patagonian proto‐Pacific margin (southernmost Chile and Argentina). Int. J. Earth Sci. (Geol. Rundsch.), 97, 71–88.
    [Google Scholar]
  3. Bhatia, M.R. (1983) Plate tectonics and geochemical composition of sandstones. J. Geol., 91, 611–627.
    [Google Scholar]
  4. Bhatia, M.R. & Crook, K.A.W. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral Petrol., 92, 181–193.
    [Google Scholar]
  5. Burchfiel, B.C., Deng, Q.D., Molnar, P., Royden, L., Wang, Y.P., Zhang, P.Z. & Zhang, W.Q. (1989) Intracrustal detachment within zones of continental deformation. Geology, 17, 448–452.
    [Google Scholar]
  6. Cao, Y.T., Liu, L., Wang, C., Kang, L., Yang, W.Q., Liang, S., Liao, X.Y. & Wang, Y.W. (2013) Determination and implication of the HP politic granulite from the Munabulake area in the South Altyn Tagh (In Chinese). Acta Petrol. Sin., 29, 1727–1739.
    [Google Scholar]
  7. Che, Z.C. & Sun, Y. (1996) The age of the Altun granulite facies complex and the basement of the Tarim Basin (In Chinese). Reg. Geol. China., 56, 51–57.
    [Google Scholar]
  8. Chen, Y., Gilder, S., Halim, N., Cogné, J.P. & Courtillot, V. (2002) New paleomagnetic constraints on central Asian kinematics: displacement along the Altyn Tagh fault and rotation of the Qaidam Basin. Tectonics, 21, 1042.
    [Google Scholar]
  9. Chen, Z.L., Gong, H.L., Li, L., Wang, X.F., Chen, B.L. & Chen, X.H. (2006) Cenozoic uplifting and exhumation process of The Alty Tagh mountains (In Chinese). Earth Sci. Front., 13, 90–102.
    [Google Scholar]
  10. Cheng, F., Jolivet, M., Fu, S.T., Zhang, Q.Q., Guan, S.W., Yu, X.J. & Guo, Z.J. (2014) Northward growth of the Qimen Tagh Rang: a new model accounting for the Late Neogene strike‐slip deformation of the SW Qaidam Basin. Tectonophysics, 632, 32–47.
    [Google Scholar]
  11. Cheng, F., Fu, S.T., Jolivet, M., Zhang, C.H. & Guo, Z.J. (2016) Source to sink relation between the Eastern Kunlun Range and the Qaidam Basin, northern Tibetan Plateau, during the Cenozoic. Geol. Soc. Am. Bull., 128, 258–283.
    [Google Scholar]
  12. China Geological Survey, Chengdu Institute of Geology and Mineral Resources
    China Geological Survey, Chengdu Institute of Geology and Mineral Resources (2004) Geological map of Tibetan Plateau and its Adjacent (In Chinese). Chengdu Cartographic Publishing House, Chengdu, China.
    [Google Scholar]
  13. Clark, M.K. (2007) The significance of paleotopography. Rev. Mineral. Geochem., 66, 1–21.
    [Google Scholar]
  14. Dickinson, W.R. & Suczek, C.A. (1979) Plate tectonics and sandstone compositions. AAPG Bull., 63, 2164–2182.
    [Google Scholar]
  15. Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Linderg, F.A. & Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geo. Soc. Am. Bull., 94, 222–235.
    [Google Scholar]
  16. Dupont‐Nivet, G., Butler, R.F., Yin, A. & Chen, X.H. (2002) Paleomagnetism indicates no Neogene rotation of the Qaidam Basin in northern Tibet during Indo‐Asian collision. Geology, 30, 263–266.
    [Google Scholar]
  17. Fang, X.M., Zhang, W.L., Meng, Q.Q., Gao, J.P., Wang, X.M., King, J., Song, C.H., Dai, S. & Miao, Y.F. (2007) High‐resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett., 258, 293–306.
    [Google Scholar]
  18. Feng, C.Y. (2002) Multiple orogenic processes and mineralization of orogenic gold deposits in the East Kunlun Orogen, Qinghai province (In Chinese). PHDs Thesis, Chinese Academy of Geological Sciences, Beijing, China.
  19. Ferry, J.M. & Watson, E.B. (2007) New thermodynamic models and revised calibrations for the Ti‐in‐zircon and Zr‐in‐rutile thermometers. Contrib. Mineral Petrol., 154, 429–437.
    [Google Scholar]
  20. Force, E.R. (1980) The provenance of rutile. J. Sediment. Petrol., 50, 485–488.
    [Google Scholar]
  21. Gao, Y.B. (2013) The intermediate‐acid intrusive magmatism and mineralization in Qimantag, East Kunlun Moutains (In Chinese). PHDs Thesis, Chang'an University, Xi'an, China.
  22. Garzanti, E., Doglioni, C., Vezzoli, G. & Andò, S. (2007) Orogenic belts and orogenic sediment provenance. J. Geol., 115, 315–334.
    [Google Scholar]
  23. Garzanti, E., Andò, S. & Vezzoli, G. (2008) Settling equivalence of detrital minerals and grain‐size dependence of sediment composition. Earth Planet. Sci. Lett., 273, 138–151.
    [Google Scholar]
  24. Ge, X.H., Zhang, M.S., Liu, Y.J., Ye, H.W. & Shi, C.D. (1998) Scientific problems and thought for research of the Altun fault (In Chinese). Geoscience, 12, 295–301.
    [Google Scholar]
  25. Ge, X.H., Liu, Y.J. & Ren, S.M. (2002) Uplift dynamics of the Qinghai‐Tibet Plateau and Altun fault (In Chinese). Geol. Chin., 29, 346–350.
    [Google Scholar]
  26. Gehrels, G.E., Yin, A. & Wang, X.F. (2003a) Detrital‐zircon geochronology of the northeastern Tibetan plateau. Geol. Soc. Am. Bull., 115, 881–896.
    [Google Scholar]
  27. Gehrels, G.E., Yin, A. & Wang, X.F. (2003b) Magmatic history of the northeastern Tibetan Plateau. J. Geophys. Res., 108, 2423.
    [Google Scholar]
  28. Halim, N., Chen, Y. & Cogné, J.P. (2003) A first palaeomagnetic study of Jurassic formations from the Qaidam basin, Northeastern Tibet, China‐tectonic implications. Geophys. J. Int., 153, 20–26.
    [Google Scholar]
  29. Hao, J., Liu, X.H. & Sang, H.Q. (2003) Geochemical characteristics and 40Ar/39Ar age of the Ayak adamellite and its tectonic significance in the east Kunlun, Xinjiang (In Chinese). Acta Petrol. Sin., 19, 517–522.
    [Google Scholar]
  30. Haughton, P.D.W., Todd, S.P. & Morton, A.C. (1991) Sedimentary provenance studies. In: Developments in Sedimentary Provenance Studies (Ed. by MortonA.C. , ToddS.P. & WrightD.T. ) Geol. Soc. Lond. Geol. Soc. Spec. Publ., 57, 1–11.
    [Google Scholar]
  31. Henry, D.J. & Guidotti, C.V. (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite‐grade metapelites of NW Maine. Am. Mineral., 70, 1–15.
    [Google Scholar]
  32. Hough, B.G., Garzione, C.N., Wang, Z.C., Lease, R.O., Burbank, D.W. & Yuan, D.Y. (2011) Stable isotope evidence for topographic growth and basin segmentation: implications for the evolution of the NE Tibetan Plateau. Geol. Soc. Am. Bull., 123, 168–185.
    [Google Scholar]
  33. Hubert, J.F. (1962) A zircon‐tourmaline‐rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. J. Sediment. Petrol., 32, 440–450.
    [Google Scholar]
  34. Ingersoll, R.V. (2012) Composition of modern sand and Cretaceous sandstone derived from the Sierra Nevada, California, USA, with implications for Cenozoic and Mesozoic uplift and dissection. Sediment. Geol., 280, 195–207.
    [Google Scholar]
  35. Jian, X., Guan, P., Zhang, D.W., Zhang, W., Feng, F., Liu, R.J. & Lin, S.D. (2013) Provenance of Tertiary sandstone in the northern Qaidam basin, northeastern Tibetan Plateau: Integration of framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol., 290, 109–125.
    [Google Scholar]
  36. Jolivet, M., Brunel, M., Seward, D., Xu, Z., Yang, J., Roger, F., Tapponnier, P., Malavieille, J., Arnaud, N. & Wu, C. (2001) Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: fission‐track constraints. Tectonophysics, 343, 111–134.
    [Google Scholar]
  37. Ke, X., Ji, J.L., Zhang, K.X., Kou, X.H., Song, B.W. & Wang, C.W. (2013) Magnetostratigraphy and anisotropy of magnetic susceptibility of the Lulehe Formation in the northwestern Qaidam Basin. Acta Geol. Sin. Engl., 87, 576–587.
    [Google Scholar]
  38. Kent‐Corson, M.L., Ritts, B.D., Zhuang, G.S., Bovet, P.M., Graham, S.A. & Chamberlain, C.P. (2009) Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth Planet. Sci. Lett., 282, 158–166.
    [Google Scholar]
  39. Li, L.L. (2015b) Cenozoic provenance evolution and paleoelevation reconstruction in southwestern Qaidam Basin (In Chinese). PHDs Thesis, Peking University, Beijing, China.
  40. Li, L.L., Guo, Z.J., Guan, S.W., Zhou, S.P., Wang, M.Z., Fang, Y.N. & Zhang, C.C. (2015a) Heavy mineral assemblage characteristics and the Cenozoic paleogeographic evolution in southwestern Qaidam Basin. Sci. China Earth Sci., 58, 859–875.
    [Google Scholar]
  41. Liu, L., Sun, Y., Xiao, P.X., Che, Z.C., Luo, J.H., Chen, D.L., Wang, Y., Zhang, A.D., Chen, L. & Wang, Y.H. (2002) Discovery of ultrahigh‐pressure magnesite‐bearing garnet lherzolite (>3.8 GPa) in the Altyn Tagh, Northwest China. Chinese Sci. Bull., 47, 881–886.
    [Google Scholar]
  42. Liu, L., Chen, D.L., Zhang, A.D., Sun, Y., Wang, Y., Yang, J.X. & Luo, J.H. (2005) Ultrahigh pressure (>7 GPa) gneissic K‐feldspar (‐bearing) garnet clinopyroxenite in the Altyn Tagh, NW China: evidence from clinopyroxene exsolution in garnet. Sci. China Earth Sci., 48, 1000–1010.
    [Google Scholar]
  43. Liu, Y.J., Neubauer, F., Ge, X.H., Genser, J., Yuan, S.H., Li, W.M., Gong, Q.L. & Chen, Y.Z. (2007) Geochronology of the Altun Fault Zone and rising of the Altun Mountains (In Chinese). Chin. J. Geol., 42, 134–146.
    [Google Scholar]
  44. Liu, L., Wang, C., Chen, D.L., Zhang, A.D. & Liou, J.G. (2009) Petrology and geochronology of HP‐UHP rocks from the South Altyn Tagh, northwestern China. J. Asian Earth Sci., 35, 232–244.
    [Google Scholar]
  45. Liu, Y.S., Yu, H.F., Xiu, Q.Y., Yang, J.Q. & Li, Q. (2010) Characteristics and tectonic implications of eclogites in southern Altun area (In Chinese). Acta Petrol. Mineral., 29, 166–174.
    [Google Scholar]
  46. Liu, L., Wang, C., Cao, Y.T., Chen, D.L., Kang, L., Yang, W.Q. & Zhu, X.H. (2012) Geochronology of multi‐stage metamorphic events: constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW, China. Lithos, 136–139, 10–26.
    [Google Scholar]
  47. Liu, L., Cao, Y.T., Chen, D.L., Zhang, C.L., Yang, W.Q., Kang, L. & Liao, X.Y. (2013) New progresses on the HP‐UHP metamorphism in the South Altyn Tagh and the North Qinling. Chin. Sci. Bull., 58, 2113–2123.
    [Google Scholar]
  48. Lu, H.J. & Xiong, S.F. (2009) Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth Planet. Sci. Lett., 288, 539–550.
    [Google Scholar]
  49. Lu, S.N., Li, H.K., Zhang, C.L. & Niu, G.H. (2008) Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Res., 160, 94–107.
    [Google Scholar]
  50. Mange, M.A. & Morton, A.C. (2007) Geochemistry of heavy minerals. In: Heavy Minerals in Use (Ed. by MangeM.A. & WrightD.T. ) Elsevier, Dev. Sedimentol., 58, 345–391.
    [Google Scholar]
  51. Meinhold, G. (2010) Rutile and its applications in earth sciences. Earth Sci. Rev., 102, 1–28.
    [Google Scholar]
  52. Meinhold, G., Anders, B., Kostopoulos, D. & Reischmann, T. (2008) Rutile chemistry and thermometry as provenance indicator: an example from Chios Island, Greece. Sediment. Geol., 203, 98–111.
    [Google Scholar]
  53. Miao, Y.F., Fang, X.M., Wu, F.L., Cai, M.T., Song, C.H., Meng, Q.Q. & Xu, L. (2013) Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records. Clim. Past, 9, 1863–1877.
    [Google Scholar]
  54. Molnar, P. & Tapponnier, P. (1975) Cenozoic tectonics of effects of a continental collision. Science, 189, 419–426.
    [Google Scholar]
  55. Molnar, P., England, P. & Martinod, J. (1993) Mantile dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys., 31, 357–396.
    [Google Scholar]
  56. Morton, A.C. (1985) A new approach to provenance studies: electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology, 32, 553–566.
    [Google Scholar]
  57. Morton, A.C. (1987) Influences of provenance and diagenesis on detrital garnet suites in the Paleocene forties sandstone, central North Sea. J. Sed. Petrol., 57, 1027–1032.
    [Google Scholar]
  58. Morton, A. & Chenery, S. (2009) Detrital rutile geochemistry and thermometry as guides to provenance of Jurassic‐Paleocene sandstones of the Norwegian Sea. J. Sediment. Res., 79, 540–553.
    [Google Scholar]
  59. Morton, A.C. & Hallsworth, C. (1994) Identifying provenance‐specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol., 90, 241–256.
    [Google Scholar]
  60. Morton, A.C. & Hallsworth, C.R. (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol., 124, 3–29.
    [Google Scholar]
  61. Morton, A., Hallsworth, C. & Chalton, B. (2004) Garnet composition in Scottish and Norwegian basement terrains: a framework for interpretation of North Sea sandstone provenance. Mar. Petrol. Geol., 21, 393–410.
    [Google Scholar]
  62. Morton, A.C., Meinhold, G., Howard, J.P., Phillips, R.J., Strogen, D., Abutarruma, Y., Elgadry, M., Thusu, B. & Whitham, A.G. (2011) A heavy mineral study of sandstones from the eastern Murzuq Basin, Libya: constraints on provenance and stratigraphic correlation. J. Afr. Earth Sci., 61, 308–330.
    [Google Scholar]
  63. Pei, J.L., Sun, Z.M., Wang, X.S., Zhao, Y., Ge, X.H., Guo, X.Z., li, H.B. & Si, J.L. (2009) Evidence for Tibetan plateau uplift in Qaidam Basin before Eocene‐Oligocene boundary and its climatic implications. J. Earth Sci. China, 20, 430–437.
    [Google Scholar]
  64. Pettijohn, F.J., Potter, P.E. & Siever, R. (1987) Sand and Sandstone, 2nd edn, pp. 1–553. Springer Science+Business Media, New York, NY.
    [Google Scholar]
  65. Ritts, B.D. & Biffi, U. (2000) Magnitude of post‐Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China. Geol. Soc. Am. Bull., 112, 61–74.
    [Google Scholar]
  66. Ritts, B.D., Yue, Y.J., Graham, S.A., Sobel, E.R., Abbink, O.A. & Stockli, D. (2008) From sea level to high elevation in 15 million years: uplift history of the northern Tibetan Plateau margin in the Altun Shan. Am. J. Sci., 308, 657–678.
    [Google Scholar]
  67. Roser, B.P. & Korsch, R.J. (1986) Determination of tectonic setting of sandstone‐mudstone suites using SiO2 content and K2O/Na2O ratio. J. Geol., 94, 635–650.
    [Google Scholar]
  68. Roser, B.P. & Korsch, R.J. (1988) Provenance signatures of sandstone‐mudstone suites determined using discriminant function analysis of major‐element data. Chem. Geol., 67, 119–139.
    [Google Scholar]
  69. Rowley, D.B. & Garzione, C.N. (2007) Stable isotope‐based paleoaltimetry. Annu. Rev. Earth Planet. Sci., 35, 463–508.
    [Google Scholar]
  70. Royden, L.H., Burchfiel, B.C., King, R.W., Wang, E., Chen, Z.L., Shen, F. & Liu, Y.P. (1997) Surface deformation and lower crustal flow in eastern Tibet. Science, 276, 788–789.
    [Google Scholar]
  71. Royden, L.H., Burchfiel, B.C. & van der Hilst, R.D. (2008) The geological evolution of the Tibetan Plateau. Science, 321, 1054–1058.
    [Google Scholar]
  72. Sobel, E.R. & Arnaud, N. (1999) A possible middle Paleozoic suture in the Altyn Tagh, NW China. Tectonics, 18, 64–74.
    [Google Scholar]
  73. Song, C.H. (2006) Tectonic uplift and Cenozoic sedimentary evolution in the northern margin of the Tibetan Plateau (In Chinese). PHDs Thesis, Lanzhou University, Lanzhou, China.
  74. Song, T.G. & Wang, X.P. (1993) Structural styles and stratigraphic patterns of syndepositional faults in a contractional setting: examples from Quaidam Basin, Northwestern China. AAPG Bull., 77, 102–117.
    [Google Scholar]
  75. Song, B.W., Zhang, K.X., Lu, J.F., Wang, C.W. & Xu, Y.D. (2013) The middle Eocene to early Miocene integrated sedimentary record in the Qaidam Basin and its implications for paleoclimate and early Tibetan Plateau uplift. Can. J. Earth Sci., 50, 183–196.
    [Google Scholar]
  76. Sun, Z.M., Yang, Z.Y., Pei, J.L., Ge, X.H., Wang, X.S., Yang, T.S., Li, W.M. & Yuan, S.H. (2005) Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth Planet. Sci. Lett., 237, 635–646.
    [Google Scholar]
  77. Takeuchi, M., Kawai, M. & Matsuzawa, N. (2008) Detrital garnet and chromian spinel chemistry of Permian clastics in the Renge area, central Japan: implications for the paleogeography of the East Asian continental margin. Sediment. Geol., 212, 25–39.
    [Google Scholar]
  78. Tapponnier, P., Xu, Z.Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G. & Yang, J.S. (2001) Oblique stepwise rise and growth of the Tibet plateau. Science, 294, 1671–1677.
    [Google Scholar]
  79. Tomkins, H.S., Powell, R. & Ellis, D.J. (2007) The pressure dependence of the zirconium‐in‐rutile thermometer. J. Metamorphic Geol., 25, 703–713.
    [Google Scholar]
  80. Triebold, S., von Eynatten, H., Luvizotto, G.L. & Zack, T. (2007) Deducing source rock lithology from detrital rutile geochemistry: an example from the Erzgebirge, Germany. Chem. Geol., 244, 421–436.
    [Google Scholar]
  81. Triebold, S., von Eynatten, H. & Zack, T. (2012) A recipe for the use of rutile in sedimentary provenance analysis. Sediment. Geol., 282, 268–275.
    [Google Scholar]
  82. Tsikouras, B., Pe‐Piper, G., Piper, D.J.W. & Schaffer, M. (2011) Varietal heavy mineral analysis of sediment provenance, Lower Cretaceous Scotian Basin, eastern Canada. Sediment. Geol., 237, 150–165.
    [Google Scholar]
  83. Wang, E. (1997) Displacement and timing along the northern strand of the Altyn Tagh fault zone, Northern Tibet. Earth Planet. Sci. Lett., 150, 55–64.
    [Google Scholar]
  84. Wang, G. (2014) Metallogenesis of Nickel deposits in Eastern Kunlun Orogenic Belt, Qinghai Province (In Chinese). PHDs Thesis, Jilin University, Jilin, China.
  85. Wang, Q.M. & Coward, M.P. (1990) The Chaidam basin (NW China): formation and hydrocarbon potential. J. Petrol. Geol., 13, 93–112.
    [Google Scholar]
  86. Wang, J., Wang, Y.J., Liu, Z.C., Li, J.Q. & Xi, P. (1999) Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 152, 37–47.
    [Google Scholar]
  87. Wang, E., Xu, F.Y., Zhou, J.X., Wan, J.L. & Burchfiel, B.C. (2006) Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems. Geol. Soc. Am. Bull., 118, 349–365.
    [Google Scholar]
  88. Wang, Y.D., Nie, J.S., Zhang, T., Sun, G.Q., Yang, X., Liu, Y.H. & Liu, X.W. (2010) Cenozoic tectonic evolution in the western Qaidam Basin inferred from subsurface data. Geosci. J., 14, 335–344.
    [Google Scholar]
  89. Wang, C., Liu, L., Yang, W.Q., Zhu, X.H., Cao, Y.T., Kang, L., Chen, S.F., Li, R.S. & He, S.P. (2013) Provenance and ages of the Altyn Complex in Atlyn Tagh: implications for the early Neoproterozoic evolution of northwestern China. Precambrian Res., 230, 193–208.
    [Google Scholar]
  90. Watson, E.B., Wark, D.A. & Thomas, J.B. (2006) Crystallization thermometers for zircon and rutile. Contrib. Mineral Petrol., 151, 413–433.
    [Google Scholar]
  91. Weltje, G.J. & von Eynatten, H. (2004) Quantitative provenance analysis of sediments: review and outlook. Sediment. Geol., 171, 1–11.
    [Google Scholar]
  92. Win, K.S., Takeuchi, M. & Tokiwa, T. (2007) Changes in detrital garnet assemblages related to transpressive uplifting associated with strike‐slip faulting: an example from the Cretaceous system in Kii Peninsula, Southwest Japan. Sediment. Geol., 201, 412–431.
    [Google Scholar]
  93. Wu, L., Xiao, A.C., Yang, S.F., Wang, L.Q., Mao, L.G., Dong, Y.P. & Xu, B. (2012a) Two‐stage evolution of the Altyn Tagh Fault during the Cenozoic: new insight from provenance analysis of a geological section in NW Qaidam Basin, NW China. Terra Nova, 24, 387–395.
    [Google Scholar]
  94. Wu, L., Xiao, A.C., Wang, L.Q., Mao, L.G., Wang, L., Dong, Y.P. & Xu, B. (2012b) EW‐trending uplifts along the southern side of the central segment of the Altyn Tagh Fault, NW China: insight into the rising mechanism of the Altyn Mountain during the Cenozoic. Sci. China Earth Sci., 55, 926–939.
    [Google Scholar]
  95. Wu, L., Xiao, A.C., Ma, D.D., Li, H.G., Xu, B., Shen, Y. & Mao, L.G. (2014) Cenozoic fault systems in southwest Qaidam Basin, northeastern Tibetan Plateau: geometry, temporal development, and significance for hydrocarbon accumulation. AAPG Bull., 98, 1213–1234.
    [Google Scholar]
  96. Xia, G.Q. (2012) The sedimentary records of the tectonic uplift of the East Kunlun in the Cenozoic (In Chinese). PHDs Thesis, Chengdu University of Technology, Chengdu, China.
  97. Xia, W.C., Zhang, N., Yuan, X.P., Fan, L.S. & Zhang, B.S. (2001) Cenozoic Qaidam basin, China: a stronger tectonic inversed, extensional rifted basin. AAPG Bull., 85, 715–736.
    [Google Scholar]
  98. Yang, F., Ma, Z.Q., Xu, T.C. & Ye, S.J. (1992) A Tertiary paleomagnetic stratigraphic profile in Qaidam Basin (In Chinese). Acta Petrol. Sin., 13, 97–101.
    [Google Scholar]
  99. Yang, J.Z., Shen, Y.C., Li, G.M., Liu, T.B. & Zeng, Q.D. (1999) Basic features and its tectonic significance of Yaziquan ophiolite beltin eastern Kunlun Orogenic belt, Xinjiang (In Chinese). Geoscience, 13, 309–314.
    [Google Scholar]
  100. Yavuz, F., Yavuz, V. & Sasmaz, A. (2006) WinClastour — a Visual Basic program for tourmaline formula calculation and classification. Comput. Geosci. UK, 32, 1156–1168.
    [Google Scholar]
  101. Yin, A., Rumelhart, P.E., Butler, R., Cowgil, E., Harrison, T.M., Foster, D.A., Ingersoll, R.V., Zhang, Q., Zhou, X.Q., Wang, X.F., Hanson, A. & Raza, A. (2002) Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geol. Soc. Am. Bull., 114, 1257–1295.
    [Google Scholar]
  102. Yin, A., Dang, Y.Q., Zhang, M., McRivette, M.W., Burgess, W.P. & Chen, X.H. (2007) Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 2): wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range. In: Whence the Mountains? Inquirires Into the Evolution of Orogenic Systems. A Volime in Honor of Raymond A (Ed. by SearsJ.W. , HarmsT.A. & EvenchickC.A. ) Price: Geol. Soc. Am. Spec. Pap., 433, 369–390.
    [Google Scholar]
  103. Yin, A., Dang, Y.Q., Wang, L.C., Jiang, W.M., Zhou, S.P., Chen, X.H., Gehrels, G.E. & McRivette, M.W. (2008a) Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): the southern Qilian Shan‐Nan Shan thrust belt and northern Qaidam basin. Geol. Soc. Am. Bull., 120, 816–846.
    [Google Scholar]
  104. Yin, A., Dang, Y.Q., Zhang, M., Chen, X.H. & McRivette, M.W. (2008b) Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction. Geol. Soc. Am. Bull., 120, 847–876.
    [Google Scholar]
  105. Yu, S.Y., Zhang, J.X., del Real, P.G., Zhao, X.L., Hou, K.J., Gong, J.H. & Li, Y.S. (2013) The Grenvillian orogeny in the Altun‐Qilian‐North Qaidam mountain belts of northern Tibet Plateau: constraints from geochemical and zircon U‐Pb age and Hf isotopic study of magmatic rocks. J. Asian Earth Sci., 73, 372–395.
    [Google Scholar]
  106. Yu, X.J., Huang, B.C., Guan, S.W., Fu, S.T., Cheng, F., Cheng, X., Zhang, T. & Guo, Z.J. (2014) Anisotropy of magnetic susceptibility of Eocene and Miocene sediments in the Qaidam Basin, Northwest China: implication for Cenozoic tectonic transition and depocenter migration. Geochem. Geophys. Geosyst., 15, 2095–2108.
    [Google Scholar]
  107. Yuan, D.Y., Ge, W.P., Chen, Z.W., Li, C.Y., Wang, Z.C., Zhang, H.P., Zhang, P.Z., Zheng, D.W., Zheng, W.J., Craddock, W.H., Dayem, K.E., Duvall, A.R., Hough, B.G., Lease, R.O., Champagnac, J.D., Burbank, D.W., Clark, M.K., Farley, K.A., Garzione, C.N., Kirby, E., Molnar, P. & Roe, G.H. (2013) The growth of northeastern Tibet and its relevance to large‐scale continental geodynamics: a review of recent studies. Tectonics, 32, 1358–1370.
    [Google Scholar]
  108. Yue, Y.J. & Liou, J.G. (1999) Two‐stage evolution model for the Altyn Tagh fault, China. Geology, 27, 227–230.
    [Google Scholar]
  109. Yue, Y.J., Ritts, B.D. & Graham, S.A. (2001) Initiation and long‐term slip history of the Altyn Tagh fault. Int. Geol. Rev., 43, 1087–1093.
    [Google Scholar]
  110. Yue, Y.J., Ritts, B.D., Graham, S.A., Wooden, J.L., Gehrels, G.E. & Zhang, Z.C. (2004) Slowing extrusion tectonics: lowered estimate of post‐Early Miocene slip rate for the Altyn Tagh fault. Earth Planet. Sci. Lett., 217, 111–122.
    [Google Scholar]
  111. Yue, Y.J., Graham, S.A., Ritts, B.D. & Wooden, J.L. (2005) Detrital zircon provenance evidence for large‐scale extrusion along the Altyn Tagh fault. Tectonophysics, 406, 165–178.
    [Google Scholar]
  112. Zack, T., Kronz, A., Foley, S.F. & Rivers, T. (2002) Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem. Geol., 184, 97–122.
    [Google Scholar]
  113. Zack, T., von Eynatten, H. & Kronz, A. (2004a) Rutile geochemistry and its potential use in quantitative provenance studies. Sediment. Geol., 171, 37–58.
    [Google Scholar]
  114. Zack, T., Moraes, R. & Kronz, A. (2004b) Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib. Mineral Petrol., 148, 471–488.
    [Google Scholar]
  115. Zeng, L.B., Tang, X.M., Qi, J.F., Gong, L., Yu, F.S. & Wang, T.C. (2012) Insight into the Cenozoic tectonic evolution of the Qaidam Basin, Northwest China from fracture information. Int. J. Earth Sci. (Geol. Rundsch.), 101, 2183–2191.
    [Google Scholar]
  116. Zhang, J.X., Zhang, Z.M., Xu, Z.Q., Yang, J.S. & Cui, J.W. (2000) Discovery of khondalite series from the western segment of Altyn Tagh and their petrological and geochronological studies. Sci. China Earth Sci., 43, 308–316.
    [Google Scholar]
  117. Zhang, J.X., Zhang, Z.M., Xu, Z.Q., Yang, J.S. & Cui, J.W. (2001) Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos, 56, 187–206.
    [Google Scholar]
  118. Zhang, A.D., Liu, L., Sun, Y., Chen, D.L., Wang, Y. & Luo, J.H. (2004) SHRIMP U‐Pb zircon ages for the UHP metamorphosed granitoid gneiss in Altyn Tagh and their geological significance. Chinese Sci. Bull., 49, 2527–2532.
    [Google Scholar]
  119. Zhang, J.X., Mattinson, C.G., Meng, F.C. & Wan, Y.S. (2005a) An Early Paleozoic HP/HT granulite‐garnet peridotite association in the south Altyn Tagh, NW China: P‐T history and U‐Pb geochronology. J. Metamorhphic Geol., 23, 491–510.
    [Google Scholar]
  120. Zhang, J.X., Meng, F.C. & Yang, J.S. (2005b) A new HP/LT metamorphic terrane in the northern Altyn Tagh, western China. Int. Geol. Rev., 47, 371–386.
    [Google Scholar]
  121. Zhang, W.L., Appel, E., Fang, X.M., Song, C.H. & Cirpka, O. (2012) Magnetostratigraphy of deep drilling core SG‐1 in the western Qaidam Basin (NE Tibetan Plateau) and its tectonic implications. Quat. Res., 78, 139–148.
    [Google Scholar]
  122. Zhang, J.X., Mattinson, C.G., Yu, S.Y. & Li, Y.S. (2014) Combined rutile‐zircon thermometry and U‐Pb geochronology: new constraints on Early Paleozoic HP/UHT granulite in the south Altyn Tagh, north Tibet, China. Lithos, 200–201, 241–257.
    [Google Scholar]
  123. Zhou, J.X., Xu, F.Y., Wang, T.C., Cao, A.F. & Yin, C.M. (2006) Cenozoic deformation history of the Qaidam Basin, NW China: results from cross‐section restoration and implications for Qinghai‐Tibet Plateau tectonics. Earth Planet. Sci. Lett., 243, 195–210.
    [Google Scholar]
  124. Zhu, L.D., Wang, C.S., Zheng, H.B., Xiang, F., Yi, H.S. & Liu, D.Z. (2006) Tectonic and sedimentary evolution of basins in the northeast of Qinghai‐Tibet Plateau and their implication for the northward growth of the Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol., 241, 49–60.
    [Google Scholar]
  125. Zhuang, G.S., Hourigan, J.K., Ritts, B.D. & Kent‐Corson, M.L. (2011) Cenozoic multiple‐phase tectonic evolution of the northern Tibetan Plateau: constraints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, Northwest China. Am. J. Sci., 311, 116–152.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12241
Loading
/content/journals/10.1111/bre.12241
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error