1887
Volume 29, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Pervasive fracture networks are common in many reservoir‐scale carbonate bodies even in the absence of large deformation and exert a major impact on their mechanical and flow behaviour. The Upper Cretaceous Jandaíra Formation is a few hundred meters thick succession of shallow water carbonates deposited during the early post‐rift stage of the Potiguar rift (NE Brazil). The Jandaíra Formation in the present onshore domain experienced <1.5 km thermal subsidence and, following Tertiary exhumation, forms outcrops over an area of >1000 km2. The carbonates have a gentle, <5⁰, dip to the NE and are affected by few regional, low displacement faults or folds. Despite their simple tectonic history, carbonates display ubiquitous open fractures, sub‐vertical veins, and sub‐vertical as well as sub‐horizontal stylolites. Combining structural analysis, drone imaging, isotope studies and mathematical modelling, we reconstruct the fracturing history of the Jandaíra Formation during and following subsidence and analyse the impact fractures had on coeval fluid flow. We find that Jandaíra carbonates, fully cemented after early diagenesis, experienced negligible deformation during the first few hundreds of meters of subsidence but were pervasively fractured when they reached depths >400–500 m. Deformation was accommodated by a dense network of sub‐vertical mode I and hybrid fractures associated with sub‐vertical stylolites developed in a stress field characterised by a sub‐horizontal σ and sub‐vertical σ. The development of a network of hybrid fractures, rarely reported in the literature, activated the circulation of waters charged in the mountainous region, flowing along the porous Açu sandstone underlying the Jandaíra carbonates and rising to the surface through the fractured carbonates. With persisting subsidence, carbonates reached depths of 800–900 m entering a depth interval characterised by a sub‐vertical σ. At this stage, sub‐horizontal stylolites developed liberating calcite which sealed the sub‐vertical open fractures transforming them in veins and preventing further flow. During Tertiary exhumation, several of the pre‐existing veins and stylolites opened and became longer, and new fractures were created typically with the same directions of the older features. The simplicity of our model suggests that most rocks in passive margin settings might have followed a similar evolution and thus display similar structures.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12246
2017-05-29
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/bre/29/6/bre12246.html?itemId=/content/journals/10.1111/bre.12246&mimeType=html&fmt=ahah

References

  1. Ahmadhadi, F., Daniel, J.M., Azzizadeh, M. & Lacombe, O. (2008) Evidence for pre‐folding vein development in the Oligo‐Miocene Asmari Formation in the Central Zagros Fold Belt, Iran. Tectonics, 27. https://doi.org/10.1029/2006TC001978.
    [Google Scholar]
  2. de Araripe, P.T. & Feijó, F.J. (1994) Bacia Potiguar. Boletim de geociencias da petrobrás, 8, 127–141.
    [Google Scholar]
  3. Belayneh, M. & Cosgrove, J.W. (2010) Hybrid veins from the southern margin of the Bristol Channel Basin, UK. J. Struct. Geol., 32, 192–201.
    [Google Scholar]
  4. Bell, J.S. & Babcock, E.A. (1986) The stress regime of the western Canadian basin and implication for hydrocarbon production. Bull. Can. Pet. Geol., 34, 364–378.
    [Google Scholar]
  5. Bertani, R.T., da Costa, I.G. & de Matos, R.M. (1990) Evolacao tectono‐sedimentar, estilo estrutural, e habitat do petroleo na bacia Potiguar. In: Origem e Evolucao de Bacias Sedimentares, Petrobras (Ed. by G.P.Raja Gabagli & E.G.Milani ), pp. 291–310. Petrobras, Rio de Janeiro.
    [Google Scholar]
  6. Bertotti, G. & Barnhoorn, A. (2016) Geology of mode I, hybrid and mode II fractures: what do we really know? 78th EAGE Conference and Exhibition 2016, Vienna, 3, doi: 10.399/2214-4609.201601352
  7. Bisdom, K., Bertotti, G., Gauthier, B.D.M. & Hardebol, N.J. (2013) A geologically consistent permeability model of fractured folded carbonate reservoirs: Lessons from outcropping analogue. 2nd EAGE Workshop on Naturally Fractured Reservoirs, 8‐11 December 2013, Muscat, Oman, 1‐6. https://doi.org/10.3997/2214-4609.20132006.
  8. Bisdom, K., Bertotti, G. & Nick, H.M. (2016) The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks. J. Geophys. Res. Solid Earth. https://doi.org/10.1002/2015jb012657.
    [Google Scholar]
  9. Bons, P.D., Elburg, M.A. & Gomez‐Rivas, E. (2012) A review of the formation of tectonic veins and their microstructures. J. Struct. Geol., 43, 33–62.
    [Google Scholar]
  10. Boro, H. (2012) Fracturing, Physical Properties and Flow Patterns in Isolated Carbonate Platforms: A field and numerical study of the Latemar Platform (Dolomites, N Italy). PhD Thesis Vrije Universiteit Amsterdam, 155 pp.
  11. Boro, H., Bertotti, G. & Hardebol, N.J. (2013) Distributed fracturing affecting isolated carbonate platforms, the Latemar Platform Natural Laboratory (Dolomites, North Italy). Mar. Pet. Geol., 40, 69–84.
    [Google Scholar]
  12. de Castro, D.L., Bezerra, F.H.R., Sousa, M.O.L. & Fuck, R.A. (2012) Influence of Neoproterozoic tectonic fabric on the origin of the Potiguar Basin, northeastern Brazil and its links with West Africa based on gravity and magnetic data. J. Geodyn., 54, 29–42.
    [Google Scholar]
  13. Costa de Melo, A.C., de Castro, D.L., Rego Bezerra, F.H. & Bertotti, G. (2016) Rift fault geometry and evolution in the Cretaceous Potiguar Basin (NE Brazil) based on fault growth models. J. South Am. Earth Sci., 71, 96–107.
    [Google Scholar]
  14. Couto Anjos, S.M., Sombra, C.L., de Souza, R.S. & Waick, R.N. (1990) Deep‐Reservoir potential of Pendencia Formation, onshore Potiguar Basin. Boletim Geociencias Petrobras, 4(4), 509–530.
    [Google Scholar]
  15. Craig, H. (1961) Isotopic variations in meteoric waters. Science, 133, 1702–1703.
    [Google Scholar]
  16. Duhr, A. & Hilkert, A.W. & Thermo‐Electron Corporation (2004) Finnigan GasBench II : δ 18 O and δ 13 C Determination of Carbonates, pp. 1–4.
  17. Eberli, G.P., Baechle, G.T., Anselmetti, F.S. & Incze, M.L. (2003) Factors controlling elastic properties in carbonate sediments and rocks. Lead. Edge, 22(7), 654.
    [Google Scholar]
  18. Ebner, M., Koehn, D., Toussaint, R., Renard, F. & Schmittbuhl, J. (2009) Stress sensitivity of stylolite morphology. Earth Planet. Sci. Lett., 277(3–4), 394–398.
    [Google Scholar]
  19. Engelder, T. (1999) Transitional‐tensile fracture propagation: a status report. J. Struct. Geol., 21, 1049–1055.
    [Google Scholar]
  20. English, J.M., English, K.L., Corcoran, D.V. & Toussaint, F. (2016) Exhumation charge : the last gasp of a petroleum source rock and implications for unconventional shale resources. AAPG Bull., 100 (1), 1–16.
    [Google Scholar]
  21. de Graaf, S., Bertotti, G., Reijmer, J., Bezerra, F.H.R., Cazarin, C.L., Bisdom, K. & Vonhoff, H. (2017) Fracture‐controlled fluid circulation and calcite vein crystallization during early burial in shallow water carbonates (Jandaíra Formation, northeast Brazil). Mar. Pet. Geol., 80, 382–393.
    [Google Scholar]
  22. Hancock, P.L. (1985) Brittle microtectonics: principles and practice. J. Struct. Geol., 7(3–4), 437–457.
    [Google Scholar]
  23. Hardebol, N.H. & Bertotti, G. (2013) DigiFract: a software and data model implementation for flexible acquisition and processing of fracture data from outcrops. Comp. Geosci., 54, 326–336.
    [Google Scholar]
  24. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D. & Müller, B. (2010) Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482(1–4), 3–15.
    [Google Scholar]
  25. Hoefs, J. (1973) Stable Isotope Geochemistry, 142 pp. Springer, New York.
    [Google Scholar]
  26. Hudson, J.D. (1977) Stable isotopes and limestone lithification. Geol. Soc. Lond., 133, 637–660.
    [Google Scholar]
  27. Jacquemyn, C., el Desouky, H., Hunt, D., Casini, G. & Swennen, R. (2014) Dolomitization of the Latemar platform: fluid flow and dolomite evolution. Mar. Pet. Geol., 55, 43–67.
    [Google Scholar]
  28. Javernick, L., Brasinton, J. & Caruso, B. (2014) Modeling the topography of shallow braided rivers using Structure‐from‐Motion photogrammetry. Geomorphology, 213, 166–172.
    [Google Scholar]
  29. Lamarche, J., Lavenu, A.P.C., Gauthier, B.D.M., Guglielmi, Y. & Jayet, O. (2012) Relationships between fracture patterns, geodynamics and mechanical stratigraphy in Carbonates (South‐East Basin, France). Tectonophysics, 581, 231–245.
    [Google Scholar]
  30. Lorenz, J.C., Teufel, L.W. & Warpinski, N.R. (1991) Regional Fractures I: a mechanism for the formation of regional fractures at depth in flat‐lying reservoirs. Am. Assoc. Pet. Geol. Bull., 75 (11), 1714–1737.
    [Google Scholar]
  31. Maraschin, A.J., Mizusaki, A.M.P., de Ros, L.F., The, S. & May, N. (2004) Northeastern Brazil Near‐Surface K‐feldspar precipitation in Cretaceous Sandstones from the Potiguar Basin, Northeastern Brazil. J. Geol., 112 (3), 317–334.
    [Google Scholar]
  32. de Matos, R.M.D. (1992) The Northeast Brazilian Rift System. Tectonics, 11 (4), 766.
    [Google Scholar]
  33. Mello, U.T. (1989) Tectonic controls in the stratigraphy of the Potiguar Basin; An Integration of geodynamic models. Buletim Geociencias Petrobras, 3(4), 347–364.
    [Google Scholar]
  34. Morais‐Neto, J.M., Hegarty, K.A., Karner, G.D. & Alkmim, F.F. (2009) Timing and mechanisms of generation and modification of of the anomalous topography of the Borborema Province, northeastern Brazil. Mar. Pet. Geol., 26, 1070–1086.
    [Google Scholar]
  35. Nogueira, F.C.C., Marques, F.O., Bezerra, F.H.R., de Castro, D.L. & Fuck, R.A. (2015) Cretaceous intracontinental rifting and post‐rift inversion in NE Brazil: Insights from the Rio do Peixe Basin. Tectonophysics, 644–645, 92–107.
    [Google Scholar]
  36. Olson, J.E. (2003) Sublinear scaling of fracture aperture versus length: an exception or the rule?J. Geophys. Res., 108(B9), 2413.
    [Google Scholar]
  37. Pascal, C. & Cloetingh, S.A.P.L. (2009) Gravitational potential stresses and stress field of passive continental margins: insights from the south‐Norway shelf. Earth Planet. Sci. Lett., 277(3–4), 464–473.
    [Google Scholar]
  38. Peacock, D.C.P. (2004) Differences between veins and joints using the example of the Jurassic limestones of Somerset. Geol. Soc. Lond. Spec. Publ., 231(1), 209–221.
    [Google Scholar]
  39. Preto, N., Franceschi, M., Gattolin, G., Massironi, M., Riva, A., Gramigna, P., Bertoldi, L. & Nardon, S. (2011) The Latemar: a Middle Triassic polygonal fault‐block platform controlled by synsedimentary tectonics. Sed. Geol., 234(1–4), 1–18.
    [Google Scholar]
  40. Reis, Á.F.C., Bezerra, F.H.R., Ferreira, J.M., do Nascimento, A.F. & Lima, C.C. (2013) Stress magnitude and orientation in the Potiguar Basin, Brazil: implications on faulting style and reactivation. J. Geophys. Res. Solid Earth, 118 (10), 5550–5563.
    [Google Scholar]
  41. Riley, P., Gordon, C., Simo, J.A., Tikoff, B. & Soussi, M. (2011) Structure of the Alima and associated anticlines in the foreland basin of the southern Atlas Mountains, Tunisia. Lithosphere, 3(1), 76–91.
    [Google Scholar]
  42. Roberts, S.J. & Nunn, J.A. (1995) Episodic fluid expulsion from geopressured sediments. Mar. Pet. Geol., 12, 195–204.
    [Google Scholar]
  43. Said, A., Baby, P., Chardon, D. & Ouali, J. (2011) Structure, paleogeographic inheritance, and deformation history of the Southern Atlas foreland fold and thrust belt of Tunisia. Tectonics, 30(6), 1–15.
    [Google Scholar]
  44. Sanderson, D.J. & Nixon, C.W. (2015) The use of topology in fracture network characterization. J. Struct. Geol., 72(55), 66.
    [Google Scholar]
  45. Schmittbuhl, J., Renard, F., Gratier, J.‐P. & Toussaint, R. (2004) Roughness of stylolites: implications of 3D high resolution topography measurements. Phys. Rev. Lett., 93(23), 238501.
    [Google Scholar]
  46. Secor, D.T. (1965) Role of fluid pressure in jointing. Am. J. Sci., 263, 633–646.
    [Google Scholar]
  47. Sibson, R.H. (2000) Fluid involvement in normal faulting. J. Geodyn., 29(3–5), 469–499.
    [Google Scholar]
  48. Sibson, R.H. (2003) Brittle‐failure controls on maximum sustainable overpressure in different tectonic regimes. AAPG Bull., 87(6), 901–908.
    [Google Scholar]
  49. Snow, D.T. (1969) Anisotropic permeability of fractured media. Water Resour. Res., 5(6), 12–73.
    [Google Scholar]
  50. Tavani, S., Granado, P., Corradetti, A., Girundo, M., Iannace, A., Arbués, P., Muñoz, J.A. & Mazzoli, S. (2014) Building a virtual outcrop, extracting geological information from it, and sharing the results in Google Earth via OpenPlot and Photoscan: an example from the Khaviz Anticline (Iran). Comput. Geosci., 63, 44–53.
    [Google Scholar]
  51. Tibana, P. & Terra, G.J.S. (1981) Sequencias carbonaticas do Cretaceo na bacia Potiguar. Boletim tecnico Petrobras, 24(3), 174–182.
    [Google Scholar]
  52. Trindade, L.A.F., Brassell, S.C. & Santos Neto, E.V. (1992) Petroleum Migration and Mixing in the Potiguar Basin, Brazil. AAPG Bull., 76(12), 1903–1924.
    [Google Scholar]
  53. Vonhof, H.B., Breukelen, M.R., Postma, O., Rowe, P.J., Atkinson, T.C. & Kroon, D. (2006) A continuous‐flow crushing device for on‐line d2H analysis of fluid inclusion water in speleothems. Rapid Commun. Mass Spectrom., 20, 2553–2558.
    [Google Scholar]
  54. Zoback, M. (2007) Reservoir Geomechanics. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12246
Loading
/content/journals/10.1111/bre.12246
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error