1887
Volume 30, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

This study documents the seismic expression of the conduits underlying over 350 mud volcanoes that were erupted in an area of the western Nile Cone in the past 5.3 Myr. The study is based on a . 4300 km2 3D seismic survey. The conduits are interpreted to transect the >1000‐m‐thick Messinian Evaporite succession, demonstrating that the eruptive process is sufficiently dynamic to breach the formidable seal represented by the evaporites. The mud volcano conduits are remarkably similar in geometry and seismic characteristics to many previously described examples of fluid escape pipes. They are vertical to subvertical structures with a crudely cylindrical geometry, but that can either widen or narrow upwards towards their upper terminations in the mud volcano edifices. Imaging at depth within the Messinian Evaporites and pre‐evaporite successions is more uncertain, but direct sampling of mud from surface volcanoes suggests a pre‐Messinian source, confirming the seismic interpretation that they root within presalt stratigraphy. A conceptual model for the genesis of these mud volcano conduits through salt is proposed, for which hydraulic fracturing is driven by high overpressures that developed in the presalt source stratigraphy as a response to the Messinian Salinity Crisis. Dissolution and removal of evaporites resulting in fracturing and collapse via a stoping mechanism is a slow process by comparison to hydraulic fracturing but is argued to potentially contribute to conduit formation. The analysis presented here demonstrates the potential for bypassing a >1‐km‐thick unit of sealing evaporites via focused fluid and sediment mobilisation from deeper overpressured cells in other salt basins worldwide, and has significant implications for hydrocarbon exploration, CO sequestration and nuclear waste disposal.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12250
2017-07-16
2019-12-15
Loading full text...

Full text loading...

References

  1. Aal, A.A., El Barkooky, A., Gerrits, M., Meyer, H., Schwander, M. & Zaki, H. (2000) Tectonic evolution of the Eastern Mediterranean Basin and its significance for hydrocarbon prospectivity in the ultradeepwater of the Nile Delta. Lead. Edge, 19, 1086–1102.
    [Google Scholar]
  2. Barber, P.M. (1981) Messinian subaerial erosion of the proto‐Nile Delta. Mar. Geol., 44, 253–272.
    [Google Scholar]
  3. Bertoni, C. & Cartwright, J. (2005) 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean. J. Geol. Soc., 162, 909–926.
    [Google Scholar]
  4. Bertoni, C. & Cartwright, J.A. (2006) Controls on the basinwide architecture of late Miocene (Messinian) evaporites on the Levant margin (Eastern Mediterranean). Sed. Geol., 188, 93–114.
    [Google Scholar]
  5. Bertoni, C. & Cartwright, J. (2015) Messinian evaporites and fluid flow. Mar. Pet. Geol., 66, 165–176.
    [Google Scholar]
  6. Bertoni, C., Cartwright, J. & Hermanrud, C. (2013) Evidence for large‐scale methane venting due to rapid drawdown of sea level during the Messinian Salinity Crisis. Geology, 41, 371–374.
    [Google Scholar]
  7. Brown, K.M. (1990) The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. J. Geophys. Res., 95, 8969–8982.
    [Google Scholar]
  8. Brown, K. & Westbrook, G. (1988) Mud diapirism and subcretion in the Barbados Ridge accretionary complex: the role of fluids in accretionary processes. Tectonics, 7, 613–640.
    [Google Scholar]
  9. Calves, G., Schwab, A., Huuse, M., Van Rensbergen, P., Clift, P., Tabrez, A. & Inam, A. (2010) Cenozoic mud volcano activity along the Indus Fan: offshore Pakistan. Basin Res., 22, 398–413.
    [Google Scholar]
  10. Cartwright, J. (2007) The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins. J. Geol. Soc., 164, 881–893.
    [Google Scholar]
  11. Cartwright, J.A. & Jackson, M.P.A. (2008) Initiation of gravitational collapse of an evaporite basin margin: the Messinian saline giant, Levant Basin, eastern Mediterranean. Geol. Soc. Am. Bull., 120, 399–413.
    [Google Scholar]
  12. Cartwright, J. & Santamarina, C. (2015) Seismic characteristics of fluid escape pipes in sedimentary basins: implications for pipe genesis. Mar. Pet. Geol., 65, 126–140.
    [Google Scholar]
  13. Cartwright, J., Huuse, M. & Aplin, A. (2007) Seal bypass systems. AAPG. Bull., 91, 1141–1166.
    [Google Scholar]
  14. Charlou, J., Donval, J., Zitter, T., Roy, N., Jean‐Baptiste, P., Foucher, J. & Woodside, J. (2003) Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep Sea Res. Part I, 50, 941–958.
    [Google Scholar]
  15. CIESM
    CIESM (2008) The Messinian Salinity Crisis from mega‐deposits to microbiology – a consensus report. In: N° 33 in CIESM Workshop Monographs (Ed. by F.Briand ), Monaco, 168.
    [Google Scholar]
  16. Clari, P., Cavagna, S., Martire, L. & Hunziker, J. (2004) A Miocene mud volcano and its plumbing system: a chaotic complex revisited (Monferrato, NW Italy). J. Sediment. Res., 74, 662–676.
    [Google Scholar]
  17. Cosgrove, J.W. (2001) Hydraulic fracturing during the formation and deformation of a basin: a factor in the dewatering of low‐permeability sediments. AAPG. Bull., 85, 737–748.
    [Google Scholar]
  18. Davies, R.J. & Stewart, S.A. (2005) Emplacement of giant mud volcanoes in the South Caspian Basin: 3D seismic reflection imaging of their root zones. J. Geol. Soc., 162, 1–4.
    [Google Scholar]
  19. Davies, R.J., Mathias, S.A., Moss, J., Hustoft, S. & Newport, L. (2012) Hydraulic fractures: how far can they go?Mar. Pet. Geol., 37, 1–6.
    [Google Scholar]
  20. Delaney, P.T., Pollard, D.D., Ziony, J.I. & McKee, E.H. (1986) Field relations between dikes and joints: emplacement processes and paleostress analysis. J. Geophys. Res. Solid Earth, 91, 4920–4938.
    [Google Scholar]
  21. Dimitrov, L.I. (2002) Mud volcanoes–the most important pathway for degassing deeply buried sediments. Earth Sci. Rev., 59, 49–76.
    [Google Scholar]
  22. Dolson, J., Boucher, P., Siok, J. & Heppard, P.Key challenges to realizing full potential in an emerging giant gas province: Nile Delta/Mediterranean offshore, deep water, Egypt. Geological Society, London, Petroleum Geology Conference series. Geological Society of London, 607–624, 2005.
  23. Downey, M.W. (1984) Evaluating seals for hydrocarbon accumulations. AAPG. Bull., 68, 1752–1763.
    [Google Scholar]
  24. Dupré, S., Mascle, J., Foucher, J.‐P., Harmegnies, F., Woodside, J. & Pierre, C. (2014) Warm brine lakes in craters of active mud volcanoes, Menes caldera off NW Egypt: evidence for deep‐rooted thermogenic processes. Geo‐Mar. Lett., 34, 153–168.
    [Google Scholar]
  25. Eruteya, O.E., Waldmann, N., Schalev, D., Makovsky, Y. & Ben‐Avraham, Z. (2015) Intra‐to Post‐Messinian deep‐water gas piping in the Levant Basin, SE Mediterranean. Mar. Pet. Geol., 66, 246–261.
    [Google Scholar]
  26. Evans, R.J., Davies, R.J. & Stewart, S.A. (2007) Internal structure and eruptive history of a kilometre‐scale mud volcano system, South Caspian Sea. Basin Res., 19, 153–163.
    [Google Scholar]
  27. Feng, Y.E., Yankelzon, A., Steinberg, J. & Reshef, M. (2016) Lithology and characteristics of the Messinian evaporite sequence of the deep Levant Basin, eastern Mediterranean. Mar. Geol., 376, 118–131.
    [Google Scholar]
  28. Fowler, S., Mildenhall, J., Zalova, S., Riley, G., Elsley, G., Desplanques, A. & Guliyev, F. (2000) Mud volcanoes and structural development on Shah Deniz. J. Petrol. Sci. Eng., 28, 189–206.
    [Google Scholar]
  29. Giresse, P., Loncke, L., Huguen, C., Muller, C. & Mascle, J. (2010) Nature and origin of sedimentary clasts associated with mud volcanoes in the Nile deep‐sea fan. Relationships with fluid venting. Sed. Geol., 228, 229–245.
    [Google Scholar]
  30. Graue, K. (2000) Mud volcanoes in deepwater Nigeria. Mar. Pet. Geol., 17, 959–974.
    [Google Scholar]
  31. Hedberg, H.D. (1980) Methane generation and petroleum migration. AAPG. Bull. Spec. Vol., 10, 179–206.
    [Google Scholar]
  32. Hermanrud, C., Venstad, J.M., Cartwright, J., Rennan, L., Hermanrud, K. & Bolås, H.M.N. (2013) Consequences of water level drops for soft sediment deformation and vertical fluid leakage. Math. Geosci., 45, 1–30.
    [Google Scholar]
  33. Hsü, K.J., Montadert, L., Bernoulli, D., Cita, M.B., Erickson, A., Garrison, R.E., Kidd, R.B., Mèlierès, F., Müller, C. & Wright, R. (1977) History of the Mediterranean salinity crisis. Nature, 297, 399–403.
  34. Hudec, M.R. & Jackson, M. (2007) Terra infirma: understanding salt tectonics. Earth Sci. Rev., 82, 1–28.
    [Google Scholar]
  35. Huguen, C., Foucher, J.P., Mascle, J., Ondreas, H., Thouement, M., Gontharet, S., Stadnitskaia, A., Pierre, C., Bayon, G. & Loncke, L. (2009) Menes caldera, a highly active site of brine seepage in the Eastern Mediterranean sea: “in situ” observations from the NAUTINIL expedition (2003). Mar. Geol., 261, 138–152.
    [Google Scholar]
  36. Hustoft, S., Mienert, J., Bünz, S. & Nouzé, H. (2007) High‐resolution 3D‐seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid‐Norwegian margin. Mar. Geol., 245, 89–106.
    [Google Scholar]
  37. Hustoft, S., Bünz, S. & Mienert, J. (2010) Three‐dimensional seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid‐Norway. Basin Res., 22, 465–480.
    [Google Scholar]
  38. Huuse, M., Jackson, C.A.L., Van Rensbergen, P., Davies, R.J., Flemings, P.B. & Dixon, R.J. (2010) Subsurface sediment remobilization and fluid flow in sedimentary basins: an overview. Basin Res., 22, 342–360.
    [Google Scholar]
  39. Jolly, R.J. & Lonergan, L. (2002) Mechanisms and controls on the formation of sand intrusions. J. Geol. Soc., 159, 605–617.
    [Google Scholar]
  40. Jowett, E.C., Cathles, L.M.III & Davis, B.W. (1993) Predicting depths of gypsum dehydration in evaporitic sedimentary basins. AAPG. Bull., 77, 402–413.
    [Google Scholar]
  41. Kirkham, C., Cartwright, J., Hermanrud, C. & Jebsen, C. (2017) The spatial, temporal and volumetric analysis of a large mud volcano province within the Eastern Mediterranean. Mar. Pet. Geol., 81, 1–16.
    [Google Scholar]
  42. Kopf, A.J. (2002) Significance of mud volcanism. Rev. Geophys., 40, 1–52.
    [Google Scholar]
  43. Lofi, J., Déverchère, J., Gaullier, V., Gillet, H., Gorini, C., Guennoc, P., Loncke, L., Maillard, A., Sage, F. & Thinon, I. (2011) Seismic atlas of the Messinian Salinity Crisis markers in the Mediterranean and Black Seas. Mémoire de la Société Géologique ns, 179, 1–72.
    [Google Scholar]
  44. Loncke, L., Mascle, J. & Parties, F.S. (2004) Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep‐sea fan (Eastern Mediterranean): geophysical evidences. Mar. Pet. Geol., 21, 669–689.
    [Google Scholar]
  45. Løseth, H., Wensaas, L., Arntsen, B., Hanken, N.‐M., Basire, C. & Graue, K. (2011) 1000 m long gas blow‐out pipes. Mar. Pet. Geol., 28, 1047–1060.
    [Google Scholar]
  46. Macgregor, D.S. (2012) The development of the Nile drainage system: integration of onshore and offshore evidence. Petrol. Geosci., 18, 417–431.
    [Google Scholar]
  47. Marsh, B.D. (1982) On the mechanics of igneous diapirism, stoping, and zone melting. Am. J. Sci., 282, 808–855.
    [Google Scholar]
  48. Mascle, J., Mary, F., Praeg, D., Brosolo, L., Camera, L., Ceramicola, S. & Dupré, S. (2014) Distribution and geological control of mud volcanoes and other fluid/free gas seepage features in the Mediterranean Sea and nearby Gulf of Cadiz. Geo‐Mar. Lett., 34, 89–110.
    [Google Scholar]
  49. McDonnell, A., Loucks, R.G. & Dooley, T. (2007) Quantifying the origin and geometry of circular sag structures in northern Fort Worth Basin, Texas: paleocave collapse, pull‐apart fault systems, or hydrothermal alteration?AAPG. Bull., 91, 1295–1318.
    [Google Scholar]
  50. Milkov, A.V. (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol., 167, 29–42.
    [Google Scholar]
  51. Morley, C. (2003) Outcrop examples of mudstone intrusions from the Jerudong anticline, Brunei Darussalam and inferences for hydrocarbon reservoirs. Geol. Soc. Lond. Spec. Publ., 216, 381–394.
    [Google Scholar]
  52. Morley, C., Crevello, P. & Ahmad, Z.H. (1998) Shale tectonics and deformation associated with active diapirism: the Jerudong Anticline, Brunei Darussalam. J. Geol. Soc., 155, 475–490.
    [Google Scholar]
  53. Moss, J. & Cartwright, J. (2010) 3D seismic expression of km‐scale fluid escape pipes from offshore Namibia. Basin Res., 22, 481–501.
    [Google Scholar]
  54. Muerdter, D. & Ratcliff, D. (2001) Understanding subsalt illumination through ray‐trace modeling, Part 1: simple 2‐D salt models. Lead. Edge, 20, 578–594.
    [Google Scholar]
  55. Netzeband, G., Hübscher, C. & Gajewski, D. (2006) The structural evolution of the Messinian evaporites in the Levantine Basin. Mar. Geol., 230, 249–273.
    [Google Scholar]
  56. O'Brien, M.J. & Gray, S.H. (1996) Can we image beneath salt?Lead. Edge, 15, 17–22.
    [Google Scholar]
  57. Osborne, M.J. & Swarbrick, R.E. (1997) Mechanisms for generating overpressure in sedimentary basins; a reevaluation. AAPG. Bull., 81, 1023–1041.
    [Google Scholar]
  58. Peach, C.J. & Spiers, C.J. (1996) Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock. Tectonophysics, 256, 101–128.
    [Google Scholar]
  59. Pickering, K.T., Agar, S.M. & Ogawa, Y. (1988) Genesis and deformation of mud injections containing chaotic basalt‐limestone‐chert associations: examples from the southwest Japan forearc. Geology, 16, 881–885.
    [Google Scholar]
  60. Pierre, C., Rouchy, J.‐M. & Blanc‐Valleron, M.‐M. (2002) Gas hydrate dissociation in the Lorca Basin (SE Spain) during the Mediterranean Messinian salinity crisis. Sed. Geol., 147, 247–252.
    [Google Scholar]
  61. Pierre, C., Bayon, G., Blanc‐Valleron, M.‐M., Mascle, J. & Dupré, S. (2014) Authigenic carbonates related to active seepage of methane‐rich hot brines at the Cheops mud volcano, Menes caldera (Nile deep‐sea fan, eastern Mediterranean Sea). Geo‐Mar. Lett., 34, 253–267.
    [Google Scholar]
  62. Prinzhofer, A. & Deville, E. (2011) Origins of hydrocarbon gas seeping out from offshore mud volcanoes in the Nile delta. Tectonophysics, 591, 52–61.
    [Google Scholar]
  63. Reiche, S., Hübscher, C. & Beitz, M. (2014) Fault‐controlled evaporite deformation in the Levant Basin, Eastern Mediterranean. Mar. Geol., 354, 53–68.
    [Google Scholar]
  64. Roberts, K., Davies, R. & Stewart, S. (2010) Structure of exhumed mud volcano feeder complexes, Azerbaijan. Basin Res., 22, 439–451.
    [Google Scholar]
  65. Robertson, A.H. & Kopf, A. (1998) Tectonic setting and processes of mud volcanism on the Mediterranean Ridge accretionary complex: evidence from Leg 160. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 160; Chapter 50.
  66. Roveri, M., Gennari, R., Lugli, S., Manzi, V., Minelli, N., Reghizzi, M., Riva, A., Rossi, M.E. & Schreiber, B.C. (2016) The Messinian salinity crisis: open problems and possible implications for Mediterranean petroleum systems. Petrol. Geosci., 22, 283–290.
    [Google Scholar]
  67. Sestini, G. (1989) Nile Delta: a review of depositional environments and geological history. Geol. Soc. Lond. Spec. Publ., 41, 99–127.
    [Google Scholar]
  68. Stewart, S.A. & Davies, R.J. (2006) Structure and emplacement of mud volcano systems in the South Caspian Basin. AAPG. Bull., 90, 771–786.
    [Google Scholar]
  69. Sun, Q., Cartwright, J., Wu, S. & Chen, D. (2013) 3D seismic interpretation of dissolution pipes in the South China Sea: genesis by subsurface, fluid induced collapse. Mar. Geol., 337, 171–181.
    [Google Scholar]
  70. Tanikawa, W., Sakaguchi, M., Wibowo, H.T., Shimamoto, T. & Tadai, O. (2010) Fluid transport properties and estimation of overpressure at the Lusi mud volcano, East Java Basin. Eng. Geol., 116, 73–85.
    [Google Scholar]
  71. Testa, G. & Lugli, S. (2000) Gypsum–anhydrite transformations in Messinian evaporites of central Tuscany (Italy). Sed. Geol., 130, 249–268.
    [Google Scholar]
  72. Urai, J., Schléder, Z., Spiers, C. & Kukla, P. (2008) Flow and transport properties of salt rocks. In: Dynamics of Complex Intracontinental Basins: The Central European Basin System (Ed. by R.Littke , U.Bayer , D.Gajewski & S.Nelskamp ), pp. 277–290. Springer‐Verlag, Berlin.
    [Google Scholar]
  73. Vandré, C., Cramer, B., Gerling, P. & Winsemann, J. (2007) Natural gas formation in the western Nile delta (Eastern Mediterranean): thermogenic versus microbial. Org. Geochem., 38, 523–539.
    [Google Scholar]
  74. Warren, J.K. (2016) Salt usually seals, but sometimes leaks: implications for mine and cavern stability in the short and long term. Earth Sci. Rev., 165, 302–341.
    [Google Scholar]
  75. Yakubov, A., Ali‐Zade, A. & Zeilanov, M. (1971) Mud Volcanoes of Azerbaijan. SSR: Atlas, Azerbaijan Academy of Science, Baku.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12250
Loading
/content/journals/10.1111/bre.12250
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error