1887
Volume 30, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The Turonian‐Coniacian Smoky Hollow Member of the Straight Cliffs Formation in the Kaiparowits basin of southern Utah records a stratigraphic transition from isolated fluvial channel bodies to increasingly amalgamated channel belts capped by the Calico bed, a sheet‐like sand‐gravel unit. Characteristics of the Smoky Hollow Member are consistent with a prograding distributive fluvial system including: up‐section increases in average grain size, bed thickness, channel‐body amalgamation, a fan‐shaped planform morphology and a downstream increase in channel sinuosity. The system prograded to the northeast based on thickness and facies patterns, and palaeocurrent indicators. This basin‐axial sediment‐dispersal trend, which was approximately parallel to the fold‐thrust belt at this latitude, is supported by provenance data including detrital zircons and modal sandstone compositions indicating sediment derivation mainly from the Mogollon Highlands and Cordilleran magmatic arc to the southwest, with episodic input from the more proximal Sevier fold‐thrust belt to the west. Progradation occurred during a eustatic still‐stand, relatively stable climatic conditions, and continuous tectonic subsidence, thus suggesting increased extrabasinal sediment supply as a primary control on basin‐fill. Progradation of the Smoky Hollow Member fluvial system culminated in a ~2–3 My hiatus at the top of the lower Calico bed. Correlation with the Notom delta of the Ferron Sandstone, 80 km northeast in the Henry basin, is proposed on the basis of facies relationships and geochronology. The Calico bed unconformity is linked to regional tectonically driven tilting and erosion observed in both basins.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12252
2017-07-24
2024-04-23
Loading full text...

Full text loading...

References

  1. Akyuz, I., Warny, S., Famubode, O. & Bhattacharya, J.P. (2015) Palynology of the Upper Cretaceous (Turonian) Ferron Sandstone Member, Utah, USA: identification of marine flooding surfaces and Milankovitch cycles in subtropical, ever‐wet, paralic to non‐marine paleoenvironments. Palynology, 40, 122–136.
    [Google Scholar]
  2. Allen, J.R.L. (1978) Studies in fluviatile sedimentation: an exploratory quantitative model for the architecture of avulsion‐controlled alluvial suites. Sed. Geol., 21, 129–147.
    [Google Scholar]
  3. Allen, J.R.L. (1984) Sedimentary Structures, Their Character and Physical Basis. Elsevier Ltd, Amsterdam.
    [Google Scholar]
  4. Allen, P.A. & Heller, P.L. (2012) Dispersal and preservation of tectonically generated alluvial gravels in sedimentary basins. In: Tectonics of Sedimentary Basins (Ed. by C.J.Busby & A.Azor ), pp. 111–130. John Wiley & Sons Ltd, Chichester, UK.
    [Google Scholar]
  5. Allen, J.L. & Johnson, C.L. (2010) Facies control on sandstone composition (and influence of statistical methods on interpretations) in the John Henry Member, Straight Cliffs Formation, southern Utah, USA. Sed. Geol., 230, 60–76.
    [Google Scholar]
  6. Allen, J.L. & Johnson, C.L. (2011) Architecture and formation of transgressive‐regressive cycles in marginal marine strata of the John Henry Member, Straight Cliffs Formation, Upper Cretaceous of southern Utah, USA. Sedimentology, 58, 1486–1513.
    [Google Scholar]
  7. Amorosi, A., Pavesi, M., Ricci Lucchi, M., Sarti, G. & Piccin, A. (2008) Climatic signature of cyclic fluvial architecture from the Quaternary of the central Po Plain, Italy. Sed. Geol., 209, 58–68.
    [Google Scholar]
  8. Armitage, J.J., Burgess, P.M., Hampson, G.J. & Allen, P.A. (2016) Deciphering the origin of cyclical gravel front and shoreline progradation and retrogradation in the stratigraphic record. Basin Res.
    [Google Scholar]
  9. Armstrong, R.L. (1968) Sevier orogenic belt in Nevada and Utah. Geol. Soc. Am. Bull., 79, 429–458.
    [Google Scholar]
  10. Aschoff, J.L. & Steel, R.J. (2011) Anatomy and development of a low‐accommodation clastic wedge, upper Cretaceous, Cordilleran Foreland Basin, USA. Sed. Geol., 236, 1–24.
    [Google Scholar]
  11. Barth, A.P. & Wooden, J.L. (2006) Timing of magmatism following initial convergence at a passive margin, southwestern U.S. Cordillera, and ages of lower crustal magma sources. J. Geol., 114, 231–245.
    [Google Scholar]
  12. Barth, A.P., Wooden, J.L., Jacobson, C.E. & Probst, K. (2004) U–Pb geochronology and geochemistry of the McCoy Mountains Formation, southeastern California: A Cretaceous retroarc foreland basin. Geol. Soc. Am. Bull., 116, 142–153.
    [Google Scholar]
  13. Bilodeau, W.L. (1986) The Mesozoic Mogollon Highlands, Arizona: an Early Cretaceous rift shoulder. J. Geol., 94, 724–735.
    [Google Scholar]
  14. Bjørkum, P.A., Mjøs, R., Walderhaug, O. & Hurst, A. (1990) The role of the late Cimmerian unconformity for the distribution of kaolinite in the Gullfaks Field, northern North Sea. Sedimentology, 37, 395–406.
    [Google Scholar]
  15. Bobb, M.C. (1991) The Calico bed, Upper Cretaceous, southern Utah: a fluvial sheet deposit in the Western Interior foreland basin and its relationship to eustasy and tectonics. M.S. Thesis, University of Colorado.
  16. Bourman, R.P. & Ollier, C.D. (2002) A critique of the Schellmann definition and classification of ‘laterite’. Catena, 47, 117–131.
    [Google Scholar]
  17. Bridge, J.S. & Leeder, M.R. (1979) A simulation model of alluvial stratigraphy. Sedimentology, 26, 617–644.
    [Google Scholar]
  18. Bridge, J.S. & Tye, R.S. (2000) Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline‐logs and cores. Am. Asso. Petrol. Geol. Bull., 84, 1205–1228.
    [Google Scholar]
  19. Bromley, R.G., Pemberton, S.G. & Rahmani, R.A. (1984) A Cretaceous woodground: The Teredolites ichnofacies. J. Paleontol., 58, 488–498.
    [Google Scholar]
  20. Brozovic, N. & Burbank, D.W. (2000) Dynamic fluvial systems and gravel progradation in the Himalayan foreland. Geol. Soc. Am. Bull., 112, 394–412.
    [Google Scholar]
  21. Bryant, M., Falk, P. & Paola, C. (1995) Experimental study of avulsion frequency and rate of deposition. Geology, 23, 365–368.
    [Google Scholar]
  22. Burbank, D.W. (1992) Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature, 357, 680–683.
    [Google Scholar]
  23. Burbank, D.W., Beck, R.A., Raynolds, R.G.H., Hobbs, R. & Tahirkheli, R.A.K. (1988) Thrusting and gravel progradation in foreland basins: A test of post‐thrusting gravel dispersal. Geology, 16, 1143–1146.
    [Google Scholar]
  24. Burbank, D.W., Beck, R.A. & Mulder, T. (1996) The Himalayan foreland basin. In: The Tectonic Evolution of Asia (Ed. by A.Lin & T.M.Harrison ), pp. 149–188. Cambridge University Press, Cambridge.
    [Google Scholar]
  25. Bureau of Land Management
    Bureau of Land Management (1990) Utah BLM Statewide wilderness final environmental impact statement, U.S. Department of the Interior, 496.
  26. Catuneanu, O. (2004) Retroarc foreland systems—evolution through time. J. Afr. Earth Sc., 38, 225–242.
    [Google Scholar]
  27. Catuneanu, O. & Elango, H.N. (2001) Tectonic control on fluvial styles: the Balfour Formation of the Karoo Basin, South Africa. Sed. Geol., 140, 291–313.
    [Google Scholar]
  28. Cecil, M.R., Rotberg, G., Ducea, M.N., Saleeby, J.B. & Gehrels, G.E. (2012) Magmatic growth and batholithic root development in the northern Sierra Nevada, California. Geosphere, 8, 592–606.
    [Google Scholar]
  29. Chen, J.H. & Moore, J.G. (1982) Uranium‐lead isotopic ages from the Sierra Nevada batholith, California. J. Geophys. Res., 87, 4761–4784.
    [Google Scholar]
  30. Chentnik, B.M., Johnson, C.L., Mulhern, J.S. & Stright, L. (2015) Valleys, estuaries, and lagoons: paleoenvironments and regressive‐transgressive architecture of the Upper Cretaceous Straight Cliffs Formation. J. Sediment. Res., 85, 1166–1196.
    [Google Scholar]
  31. Cleveland, D.M., Atchley, S.C. & Nordt, L.C. (2007) Continental sequence stratigraphy of the Upper Triassic (Norian‐Rhaetian) Chinle strata, northern New Mexico, U.S.A.: allocyclic and autocyclic origins of paleosol‐nearing alluvial successions. J. Sediment. Res., 77, 909–924.
    [Google Scholar]
  32. Cobban, W.A., Merewether, E.A., Fouch, T.D. & Obradovich, J.D. (1994) Some Cretaceous shorelines in the western interior of the United States. In: Mesozoic Systems of the Rocky Mountain Region, U.S.A. (Ed. by M.V.Cuputo , J.A.Peterson & K.J.Franczyk ), pp. 393–414. Rocky Mountain Section Society for Sedimentary Geology, Denver, CO.
    [Google Scholar]
  33. Coleman, D.S., Carl, B.S., Glazner, A.F. & Bartley, J.M. (2000) Cretaceous dikes within the Jurassic Independence dike swarm in eastern California. Geol. Soc. Am. Bull., 112, 504–511.
    [Google Scholar]
  34. Colombera, L., Mountney, N.P. & McCaffrey, W.D. (2015) A meta‐study of relationships between fluvial channel‐body stacking pattern and aggradation rate: Implications for sequence stratigraphy. Geology, 43, 283–286.
    [Google Scholar]
  35. Currie, B.S. (1997) Sequence stratigraphy of nonmarine Jurassic‐Cretaceous rocks, central Cordilleran foreland‐basin system. Geol. Soc. Am. Bull., 109, 1206–1222.
    [Google Scholar]
  36. Dalrymple, R.W. & Choi, K. (2007) Morphologic and facies trends through the fluvial–marine transition in tide‐dominated depositional systems: A schematic framework for environmental and sequence‐stratigraphic interpretation. Earth Sci. Rev., 81, 135–174.
    [Google Scholar]
  37. Davidson, S.K., Hartley, A.J., Weissmann, G.S., Nichols, G.J. & Scuderi, L.A. (2013) Geomorphic elements on modern distributive fluvial systems. Geomorphology, 180–181, 82–95.
    [Google Scholar]
  38. Davis, R.A. (2012) Tidal signatures and their preservation potential in stratigraphic sequences. In: Principles of Tidal Sedimentology (Ed. by R.A.Davis , R.W.Dalrymple ), pp. 35–56. Springer Netherlands, Dordrecht.
    [Google Scholar]
  39. Davis, S.J., Dickinson, W.R., Gehrels, G.E., Spencer, J.E., Lawton, T.F. & Carroll, A.R. (2010) The Paleogene California River: Evidence of Mojave‐Uinta paleodrainage from U‐Pb ages of detrital zircons. Geology, 38, 931–934.
    [Google Scholar]
  40. Decelles, P.G. (2004) Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U.S.A. Am. J. Sci., 304, 105–168.
    [Google Scholar]
  41. Decelles, P.G. & Cavazza, W. (1999) A comparison of fluvial megafans in the Cordilleran (Upper Cretaceous) and modern Himalayan foreland basin systems. Geol. Soc. Am. Bull., 111, 1315–1334.
    [Google Scholar]
  42. Decelles, P.G. & Coogan, J.C. (2006) Regional structure and kinematic history of the Sevier fold‐and‐thrust belt, central Utah. Geol. Soc. Am. Bull., 118, 841–864.
    [Google Scholar]
  43. Decelles, P.G. & Currie, B.S. (1996) Long‐term sediment accumulation in the Middle Jurassic‐early Eocene Cordilleran retroarc foreland‐basin system. Geology, 24, 591–594.
    [Google Scholar]
  44. Decelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  45. Dickinson, W.R. & Gehrels, G.E. (2008a) Sediment delivery to the Cordilleran foreland basin: Insights from U‐Pb ages of detrital zircons in Upper Jurassic and Cretaceous strata of the Colorado Plateau. Am. J. Sci., 308, 1041–1082.
    [Google Scholar]
  46. Dickinson, W.R. & Gehrels, G.E. (2008b) U‐Pb ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across southwest Laurentia. J. Sediment. Res., 78, 745–764.
    [Google Scholar]
  47. Dickinson, W.R. & Gehrels, G.E. (2009) U‐Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado plateau: Evidence for transcontinental dispersal and intraregional recycling of sediment. Geol. Soc. Am. Bull., 121, 408–433.
    [Google Scholar]
  48. Dickinson, W.R. & Suczek, C.A. (1979) Plate Tectonics and sandstone compositions. Am. Asso. Petrol. Geol. Bull., 63, 2164–2182.
    [Google Scholar]
  49. Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. & Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull., 94, 222–235.
    [Google Scholar]
  50. Dickinson, W.R., Lawton, T.F., Pecha, M., Davis, S.J., Gehrels, G.E. & Young, R.A. (2012) Provenance of the Paleogene Colton Formation (Uinta Basin) and Cretaceous‐Paleogene provenance evolution in the Utah foreland: Evidence from U‐Pb ages of detrital zircons, paleocurrent trends, and sandstone petrofacies. Geosphere, 8, 854–880.
  51. Dumitru, T.A. & Stockli, D.F. (1998) A better way to separate apatite from zircon using constriction tubes. In: Advances in Fission‐Track Geochronology (Ed. by P.van de Haute & F.de Corte ), pp. 325–330. Springer Netherlands, Dordrecht.
    [Google Scholar]
  52. Eaton, J.G. (1991) Biostratigraphic framework for the Upper Cretaceous rocks of the Kaiparowits Plateau, southern Utah. In: Stratigraphy, Depositional Environments, and Sedimentary Tectonics of the Western Margin, Cretaceous Western Interior Seaway (Ed. by NationsJ.D. & EatonJ.G. ) Geol. Soc. Am. Spec. Pap., 260, 47–63.
    [Google Scholar]
  53. Eaton, J.G. & Nations, J.D. (1991) Introduction: Tectonic setting along the margin of the Cretaceous Western Interior Seaway, southwestern Utah and northern Arizona. In: Stratigraphy, Depositional Environments, and Sedimentary Tectonics of the Western Margin, Cretaceous Western Interior Seaway (Ed. by NationsJ.D. & EatonJ.G. ) Geol. Soc. Am. Spec. Pap., 260, 1–8.
    [Google Scholar]
  54. Eisele, J. & Isachsen, C.E. (2001) Crustal growth in southern Arizona: U‐Pb geochronologic and Sm‐Nd isotopic evidence for addition of the Paleoproterozoic Cochise block to the Mazatzal province. Am. J. Sci., 301, 773–797.
    [Google Scholar]
  55. Elston, D.P. & Young, R.A. (1991) Cretaceous‐Eocene (Laramide) landscape development and Oligocene‐Pliocene drainage reorganization of Transition Zone and Colorado Plateau, Arizona. J. Geophys. Res., 96, 12389–12406.
    [Google Scholar]
  56. Emery, D., Myers, K.J. & Young, R. (1990) Ancient subaerial exposure and freshwater leaching in sandstones. Geology, 18, 1178–1181.
    [Google Scholar]
  57. Ethridge, F.G., Wood, L.J. & Schumm, S.A. (1998) Cyclic variables controlling fluvial sequence development problems and perspectives. In: Relative Role of Eustasy, Climate, and Tectonism in Continental Rocks (Ed. by ShanleyK.W. & McCabeP.J. ) SEPM Special Publ., 59, 17–29.
    [Google Scholar]
  58. Famubode, O.A. & Bhattacharya, J.P. (2016) Sequence stratigraphic analysis of the youngest nonmarine sequence in the Cretaceous Ferron Notom Delta, south central Utah, U.S.A. J. Sediment. Res., 86, 168–198.
    [Google Scholar]
  59. Fanti, F. & Catuneanu, O. (2010) Fluvial sequence stratigraphy: the Wapiti Formation, west‐central Alberta, Canada. J. Sediment. Res., 80, 320–338.
    [Google Scholar]
  60. Fielding, C.R. (2010) Planform and facies variability in asymmetric deltas: facies analysis and depositional architecture of the Turonian Ferron Sandstone in the western Henry Mountains, south‐central Utah, U.S.A. J. Sediment. Res., 80, 455–479.
    [Google Scholar]
  61. Fielding, C.R. (2011) Foreland basin structural growth recorded in the Turonian Ferron Sandstone of the Western Interior Seaway Basin, USA. Geology, 39, 1107–1110.
    [Google Scholar]
  62. Fielding, C.R. (2015) Anatomy of falling‐stage deltas in the Turonian Ferron Sandstone of the western Henry Mountains Syncline, Utah: Growth faults, slope failures and mass transport complexes. Sedimentology, 62, 1–26.
    [Google Scholar]
  63. Fleck, R.J. & Carr, M.D. (1990) The age of the Keystone Thrust: laser‐fusion 40Ar/39Ar dating of foreland basin deposits, southern Spring Mountains, Nevada. Tectonics, 9, 467–476.
    [Google Scholar]
  64. Ford, G.L. & Pyles, D.R. (2014) A hierarchical approach for evaluating fluvial systems: Architectural analysis and sequential evolution of the high net‐sand content, middle Wasatch Formation, Uinta Basin, Utah. AAPG Bulletin, 98, 1273–1304.
    [Google Scholar]
  65. Frey, R.W., Howard, J.D. & Pryor, W.A. (1978) Ophiomorpha: Its morphologic, taxonomic, and environmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol., 23, 199–229.
    [Google Scholar]
  66. Friend, P.F., Slater, M.J. & Williams, R.C. (1979) Vertical and lateral building of river sandstone bodies, Ebro Basin, Spain. J. Geol. Soc., 136, 39–46.
    [Google Scholar]
  67. Fürsich, F.T. (1975) Trace fossils as environmental indicators in the Corallian of England and Normandy. Lethaia, 8, 151–172.
    [Google Scholar]
  68. Gallin, W.N., Johnson, C.L. & Allen, J.L. (2010) Fluvial and Marginal Marine Architecture of the John Henry Member, Straight Cliffs Formation, Kelly Grade of the Kaiparowits Plateau, South‐Central Utah. In: Geology of South‐Central Utah (Ed. by CarneyS.M. , TabetD.E. & JohnsonC.L. ) Utah Geol. Soc. Publ., 39, 248–275.
    [Google Scholar]
  69. Garcia‐Castellanos, D. (2002) Interplay between lithospheric flexure and river transport in foreland basins. Basin Res., 14, 89–104.
    [Google Scholar]
  70. Gardner, M.H. (1995) Tectonic and eustatic controls on the stratal architecture of mid‐Cretaceous stratigraphic sequences, central Western Interior foreland basin of North America. In: Stratigraphic Evolution of Foreland Basins (Ed. by DorobekS.L. & RossG.M. ) Soc. Sedim. Geol. Spec. Publ., 52, 243–281.
    [Google Scholar]
  71. Gehrels, G.E. (2011) Detrital zircon U–Pb geochronology: current methods and new opportunities. In: Tectonics of Sedimentary Basins (Ed. by C.J.Busby & A.Azor ), pp. 47–62. Chichester, UK, John Wiley & Sons Ltd.
    [Google Scholar]
  72. Genise, J.F., Garrouste, R., Nel, P., Grandcolas, P., Maurizot, P., Cluzel, D., Cornette, R., Fabre, A.C. & Nel, A. (2012) Asthenopodichnium in fossil wood: Different trace makers as indicators of different terrestrial palaeoenvironments. Palaeogeogr. Palaeoclimatol. Palaeoecol., 365–366, 184–191.
    [Google Scholar]
  73. Gingras, M.K. & Maceachern, J.A. (2012) Tidal ichnology of shallow‐water clastic settings. In: Principles of Tidal Sedimentology (Ed. by R.A.Davis & R.W.Dalrymple ), pp. 335–369. Springer Netherlands, Dordrecht.
    [Google Scholar]
  74. Goldstrand, P.M. (1994) Tectonic development of Upper Cretaceous to Eocene strata of southwestern Utah. Geol. Soc. Am. Bull., 106, 145–154.
    [Google Scholar]
  75. Gooley, J.T., Johnson, C.L. & Pettinga, L. (2016) Spatial and temporal variation of fluvial architecture within a prograding clastic wedge of the Late Cretaceous Western Interior Basin (Kaiparowits Plateau), U.S.A. J. Sediment. Res., 86, 125–147.
    [Google Scholar]
  76. Hajek, E.A. & Wolinsky, M.A. (2012) Simplified process modeling of river avulsion and alluvial architecture: connecting models and field data. Sed. Geol., 257–260, 1–30.
    [Google Scholar]
  77. Hajek, E.A., Heller, P.L. & Sheets, B.A. (2010) Significance of channel‐belt clustering in alluvial basins. Geology, 38, 535–538.
    [Google Scholar]
  78. Haq, B.U., Hardenbol, J. & Vail, P.R. (1988) Mesozoic and Cenozoic chronostratigraphy and eustatic cycles. In: Sea‐Level Changes: An Integrated Approach (Ed. by WilgusC.K. , HastingsB.S. , KendallC.G.S.C. , PosamentierH.W. , RossC.A. & Van WagonerJ.C. ) SEPM Spec. Publ., 42, 71–108.
    [Google Scholar]
  79. Hartley, A.J., Weissmann, G.S., Nichols, G.J. & Warwick, G.L. (2010) Large distributive fluvial systems: characteristics, distribution, and controls on development. J. Sediment. Res., 80, 167–183.
    [Google Scholar]
  80. Hartley, A.J., Weissmann, G.S., Bhattacharyya, P., Nichols, G.J., Scuderi, L.A., Davidson, S.K., Leleu, S., Chackraborty, T. & Ghosh, P. (2013) Soil development on modern distributive fluvial systems: Preliminary observations with implications for interpretation of paleosols in the rock record. In: New Frontiers in Paleopedology and Terrestrial Paleoclimatology (Ed. by DrieseS.G. , NordtL.C. & McCarthyP.J. ) SEPM Spec. Publ., 104, 149–158.
    [Google Scholar]
  81. Heller, P.L., Angevine, C.L., Winslow, N.S. & Paola, C. (1988) Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  82. Heller, P.L., Ratigan, D., Trampush, S., Noda, A., McElroy, B., Drever, J. & Huzurbazar, S. (2015) Origins of bimodal stratigraphy in fluvial deposits: an example from the Morrison Formation (Upper Jurassic), western U.S.A. J. Sediment. Res., 85, 1466–1477.
    [Google Scholar]
  83. Hettinger, R.D., Mccabe, P.J. & Shanley, K.W. (1993) Detailed facies anatomy of transgressive and highstand systems tracts from the Upper Cretaceous of southern Utah, U.S.A. In: Siliciclastic Sequence Stratigraphy (Ed. by WeimerP. & PosamentierH.W. ) AAPG Memoir, 58, 235–257.
    [Google Scholar]
  84. Horton, B.K., Constenius, K.N. & Decelles, P.G. (2004) Tectonic control on coarse‐grained foreland‐basin sequences: An example from the Cordilleran foreland basin, Utah. Geology, 32, 637–640.
    [Google Scholar]
  85. Howard, J.D. & Frey, R.W. (1984) Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east‐central Utah. Can. J. Earth Sci., 21, 200–219.
    [Google Scholar]
  86. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. & Sares, S.W. (1984) The effect of grain size on detrital modes: a test of the Gazzi‐Dickinson point‐counting method. J. Sediment. Res., 54, 103–116.
    [Google Scholar]
  87. Jackson, R.G. (1976) Depositional model of point bars in the Lower Wabash River. J. Sediment. Res., 46, 579–594.
    [Google Scholar]
  88. Johnson, C.L., Stright, L., Purcell, R. & Durkin, P. (2016) Stratigraphic evolution of an estuarine fill succession and the reservoir characterization of inclined heterolithic strata, Cretaceous of southern Utah, USA. In: Sedimentology of Paralic Reservoirs: Recent Advances (Ed. by HampsonG.J. , ReynoldsA.D. , KosticB. & WellsM.R. ) Geol. Soc. London. Spec. Publ., 444.
    [Google Scholar]
  89. Jordan, T.E. (1995) Retroarc foreland and related basins. In: Tectonics of Sedimentary Basins (Ed. by C.J.Busby & R.V.Ingersoll ), pp. 331–362. Blackwell Science, Cambridge, MA.
    [Google Scholar]
  90. Ketzer, J.M., Morad, S. & Amorosi, A. (2003) Predictive diagenetic clay‐mineral distribution in siliciclastic rocks within a sequence stratigraphic framework. In: Clay Mineral Cements in Sandstones (Ed. by WordenR.H. & MoradS. ) Int. Assoc. Sediment. Spec. Publ., 34, 43–61.
    [Google Scholar]
  91. Khidir, A. & Catuneanu, O. (2009) Predictive diagenetic clay‐mineral distribution in siliciclastic rocks as a tool for identifying sequence boundaries in non‐marine successions: the Coalspur Formation, west‐central Alberta. Geologos, 15, 169–180.
    [Google Scholar]
  92. Knapp, J.H. & Heizler, M.T. (1990) Thermal history of crystalline nappes of the Maria fold and thrust belt, west central Arizona. J. Geophys. Res., 95, 20049–20073.
    [Google Scholar]
  93. Kominz, M.A., Browning, J.V., Miller, K.G., Sugarman, P.J., Mizintseva, S.F. & Scotese, C.R. (2008) Late Cretaceous to Miocene sea‐level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Res., 20, 211–226.
    [Google Scholar]
  94. Laskowski, A.K., Decelles, P.G. & Gehrels, G.E. (2013) Detrital zircon geochronology of Cordilleran retroarc foreland basin strata, western North America. Tectonics, 32, 1027–1048.
    [Google Scholar]
  95. Lawton, T.F. & Bradford, B.A. (2011) Correlation and provenance of Upper Cretaceous (Campanian) fluvial strata, Utah, U.S.A., from zircon U‐Pb geochronology and petrography. J. Sediment. Res., 81, 495–512.
    [Google Scholar]
  96. Lawton, T.F., Pollock, S.L. & Robinson, R.A.J. (2003) Integrating sandstone petrology and nonmarine sequence stratigraphy: application to the Late Cretaceous fluvial systems of southwestern Utah, U.S.A. J. Sediment. Res., 73, 389–406.
    [Google Scholar]
  97. Lawton, T.F., Hunt, G.J. & Gehrels, G.E. (2010) Detrital zircon record of thrust belt unroofing in Lower Cretaceous synorogenic conglomerates, central Utah. Geology, 38, 463–466.
    [Google Scholar]
  98. Lawton, T.F., Schellenbach, W.L. & Nugent, A.E. (2014) Late Cretaceous fluvial‐megafan and axial‐river systems in the southern Cordilleran foreland basin: Drip Tank Member of Straight Cliffs Formation and adjacent strata, southern Utah, USA. J. Sediment. Res., 84, 407–434.
    [Google Scholar]
  99. Leclair, S.F. & Bridge, J.S. (2001) Quantitative interpretation of sedimentary structures formed by river dunes. J. Sediment. Res., 71, 713–716.
    [Google Scholar]
  100. Leeder, M.R. (1978) A quantitative stratigraphic model for alluvium with special reference to channel deposit density and interconnectedness. In: Fluvial Sedimentology (Ed. by MiallA.D. ) Canadian Soc. Petrol. Geol. Memoir, 5, 587–596.
    [Google Scholar]
  101. Li, Y. & Bhattacharya, J.P. (2013) Facies‐architecture study of a stepped, forced regressive compound incised valley in the Ferron Notom Delta, southern central Utah, U.S.A. J. Sediment. Res., 83, 206–225.
    [Google Scholar]
  102. Li, W., Bhattacharya, J.P. & Campbell, C. (2010) Temporal evolution of fluvial style in a compound incised‐valley fill, Ferron “Notom Delta”, Henry Mountains region, Utah (U.S.A.). J. Sediment. Res., 80, 529–549.
    [Google Scholar]
  103. Li, W., Bhattacharya, J.P. & Zhu, Y. (2011) Architecture of a forced regressive systems tract in the Turonian Ferron “Notom Delta”, southern Utah, U.S.A. Mar. Pet. Geol., 28, 1517–1529.
    [Google Scholar]
  104. Little, W.W. (1997) Tectonic and eustatic controls on cyclical fluvial patterns, Upper Cretaceous strata of the Kaiparowits Basin, Utah. In: Learning from the Land: Grand Staircase‐Escalante National Monument Science Symposium Proceedings (Ed. by L.M.Hill ), pp. 489–504. Salt Lake City, Bureau of Land Management.
    [Google Scholar]
  105. Ludwig, K.R. (2012) Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Berkeley, CA.
    [Google Scholar]
  106. Macaulay, C.I., Fallick, A.E. & Haszeldine, R.S. (1993) Textural and isotopic variations in diagenetic kaolinite from the Magnus Oilfield sandstones. Clay Miner., 28, 625–639.
    [Google Scholar]
  107. Maceachern, J.A. & Gingras, M.K. (2007) Recognition of brackish‐water trace‐fossil suites in the Cretaceous Western Interior Seaway of Alberta, Canada. In: Sediment‐Organism Interactions: A Multifaceted Ichnology (Ed. by BromleyR.G. , BuatoisL.A. , MánganoG. , GeniseJ.F. & MelchorR.N. ) SEPM Spec. Publ., 88, 149–193.
    [Google Scholar]
  108. Maceachern, J.A., Raychaudhuri, I. & Pemberton, S.G. (1992) Stratigraphic applications of the Glossifungites ichnofacies: delineating discontinuities in the rock record>. In: Applications of Ichnology to Petroleum Exploration: A Core Workshop (Ed. by PembertonS.G. ) SEPM Core Workshop, 17, 169–198.
    [Google Scholar]
  109. McCarthy, P.J. & Plint, A.G. (1998) Recognition of interfluve sequence boundaries: integrating paleopedology and sequence stratigraphy. Geology, 26, 387–390.
    [Google Scholar]
  110. Miall, A.D. (1978) Lithofacies types and vertical profile models in braided river deposits: a summary. In: Fluvial Sedimentology (Ed. by MiallA.D. ) Canadian Soc. Petrol. Geol. Memoir, 5, 597–600.
    [Google Scholar]
  111. Miall, A.D. (1996) The Geology of Fluvial Deposits. Springer‐Verlag, Berlin.
    [Google Scholar]
  112. Miall, A.D. (2006) Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: A reality check. Am. Asso. Petrol. Geol. Bull., 90, 989–1002.
    [Google Scholar]
  113. Miller, G.M. (1963) Outline of structural‐stratigraphic units of the Wah Wah Mountains, southwest Utah. In: Guidebook to the Geology of Southwestern Utah: Transition Between Basin‐Range and Colorado Plateau Provinces (Ed. by E.B.Heylmun ), pp. 96–102. Intermountain Association of Petroleum Geologists, Salt Lake City, UT.
    [Google Scholar]
  114. Miller, G.M. (1966) Structure and stratigraphy of southern part of Wah Wah Mountains, southwest Utah. Am. Asso. Petrol. Geol. Bull., 50, 858–900.
    [Google Scholar]
  115. Miller, K.G. (2009) Sea Level Change, Last 250 Million Years. In: Encyclopedia of Paleoclimatology and Ancient Environments (Ed. by V.Gornitz ), pp. 879–887. Springer Netherlands, Dordrecht.
    [Google Scholar]
  116. Miller, J.S., Glazner, A.F., Walker, J.D. & Martin, M.W. (1995) Geochronologic and isotopic evidence for Triassic‐Jurassic emplacement of the eugeoclinal allochthon in the Mojave Desert region, California. Geol. Soc. Am. Bull., 107, 1441–1457.
    [Google Scholar]
  117. Moore, D.W. & Straub, A.W. (2009) Correlation of Upper Cretaceous and Paleogene(?) rocks beneath the Claron Formation, Crow Creek, western Markagunt Plateau, southwest Utah. In: The Geologic Transition, High Plateaus to Great Basin: A Symposium and Field Guide: The Macklin Volume (Ed. by ErskinM.C. , FauldsJ.E. , BartleyJ.M. & RowleyP.D. ) Utah Geol. Assoc. Publ., 30, 75–95.
    [Google Scholar]
  118. Moran, K., Hilbert‐Wolf, H.L., Golder, K., Malenda, H.F., Smith, C.J., Storm, L.P., Simpson, E.L., Wizevich, M.C. & Tindall, S.E. (2010) Attributes of the wood‐boring trace fossil Asthenopodichnium in the Late Cretaceous Wahweap Formation, Utah, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol., 297, 662–669.
    [Google Scholar]
  119. Mulhern, J.S. & Johnson, C.L. (2016) Time–space variability of paralic strata deposited in a high accommodation, high sediment supply setting: example from the Cretaceous of Utah. In: Sedimentology of Paralic Reservoirs: Recent Advances (Ed. by HampsonG.J. , ReynoldsA.D. , KosticB. & WellsM.R. ) Geol. Soc. London. Spec. Publ., 444.
    [Google Scholar]
  120. Newell, A.J., Tverdokhlebov, V.P. & Benton, M.J. (1999) Interplay of tectonics and climate on a transverse fluvial system, Upper Permian, southern Uralian Foreland Basin, Russia. Sed. Geol., 127, 11–29.
    [Google Scholar]
  121. Ollier, C.D. & Galloway, R.W. (1990) The laterite profile, ferricrete, and unconformity. Catena, 17, 97–109.
    [Google Scholar]
  122. Olsen, T., Steel, R.J., Høgseth, K., Skar, T. & Røe, S.‐L. (1995) Sequential architecture in a fluvial succession: sequence stratigraphy in the Upper Cretaceous Mesaverde Group, Price Canyon, Utah. J. Sediment. Res., B65, 265–280.
    [Google Scholar]
  123. Owen, A., Nichols, G.J., Hartley, A.J., Weissmann, G.S. & Scuderi, L.A. (2015) Quantification of a distributive fluvial system: The Salt Wash DFS of the Morrison Formation, SW U.S.A. J. Sediment. Res., 85, 544–561.
    [Google Scholar]
  124. Owen, A., Nichols, G.J., Hartley, A.J. & Weissmann, G.S. (2017) Vertical trends within the prograding Salt Wash distributive fluvial system, SW United States. Basin Res., 29, 64–80.
    [Google Scholar]
  125. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom., 26, 2508–2518.
    [Google Scholar]
  126. Peterson, F. (1969a) Cretaceous sedimentation and tectonism in the southeastern Kaiparowits region, Utah. Open‐File Report, U.S. Geological Survey 69‐202, 259.
    [Google Scholar]
  127. Peterson, F. (1969b) Four new members of the Upper Cretaceous Straight Cliffs Formation in the southeastern Kaiparowits region, Kane County, Utah. U.S. Geol. Surv. Bull., 1274‐J, 28.
    [Google Scholar]
  128. Peterson, F. & Kirk, A.R. (1977) Correlation of the Cretaceous rocks in the San Juan, Black Mesa, Kaiparowits and Henry Basins, Southern Colorado Plateau. In: San Juan Basin III (Ed. by J.F.Fassett & H.L.James ), New Mexico Geological Society 28th Annual Field Conference Guidebook, 167–178.
    [Google Scholar]
  129. Petrus, J.A. & Kamber, B.S. (2012) VizualAge: A novel approach to laser ablation ICP‐MS U‐Pb geochronology data reduction. Geostand. Geoanal. Res., 36, 247–270.
    [Google Scholar]
  130. Primm, J.W. (2016) Decoupled accommodation and sediment supply in the Late Cretaceous Cordilleran basin of southern Utah: An extrabasinal affair. M.S. Thesis, University of Utah.
  131. Raines, M.K., Hubbard, S.M., Kukulski, R.B., Leier, A.L. & Gehrels, G.E. (2013) Sediment dispersal in an evolving foreland: Detrital zircon geochronology from Upper Jurassic and lowermost Cretaceous strata, Alberta Basin, Canada. Geol. Soc. Am. Bull., 125, 741–755.
    [Google Scholar]
  132. Roberts, E.M. (2007) Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah. Sed. Geol., 197, 207–233.
    [Google Scholar]
  133. Ryer, T.A. (1981) Deltaic coals of Ferron Sandstone Member of Mancos Shale: predictive model for Cretaceous coal‐bearing strata of Western Interior. Am. Asso. Petrol. Geol. Bull., 65, 2323–2340.
    [Google Scholar]
  134. Ryer, T.A. (1993) Speculations on the origins of mid‐Cretaceous clastic wedges, central Rocky Mountain region, United States. In: Evolution of the Western Interior Basin (Ed. by CaldwellW.G.E. & KauffmanE.G. ) Geol. Assoc. Canada Spec. Publ., 39, 189–198.
    [Google Scholar]
  135. Ryer, T.A. (2004) Previous studies of the Ferron Sandstone. In: Regional to Wellbore Analog for Fluvial‐Deltaic Reservoir Modeling: Ferron Sandstone of Utah (Ed. by ChidseyT.C. , AdamsR.D. & MorrisT.H. ) AAPG Studies Geol., 50, 2–38.
    [Google Scholar]
  136. Salem, A.C. (2009) Mesozoic tectonics of the Maria fold and thrust belt and McCoy Basin, southeastern California: an examination of polyphase deformation and synorogenic response. Ph.D. Dissertation, University of New Mexico.
  137. Schmitt, J.G., Jones, D.A. & Goldstrand, P.M. (1991) Braided stream deposition and provenance of the Upper Cretaceous‐Paleocene(?) Canaan Peak Formation, Sevier foreland basin, southwestern Utah. In: Stratigraphy, Depositional Environments, and Sedimentary Tectonics of the Western Margin, Cretaceous Western Interior Seaway (Ed. by NationsJ.D. & EatonJ.G. ) Geol. Soc. Am. Spec. Pap., 260, 27–45.
    [Google Scholar]
  138. Shanley, K.W. & McCabe, P.J. (1991) Predicting facies architecture through sequence stratigraphy ‐ an example from the Kaiparowits Plateau, Utah. Geology, 19, 742–745.
    [Google Scholar]
  139. Shanley, K.W. & Mccabe, P.J. (1993) Alluvial architecture in a sequence stratigraphic framework: a case history from the Upper Cretaceous of southern Utah, USA. In: The Geological Modeling of Hydrocarbon Reservoirs and Outcrop Analogues (Ed. by FlintS.S. & BryantI.D. ) Int. Assoc. Sediment. Spec. Publ., 15, 21–56.
    [Google Scholar]
  140. Shanley, K.W. & McCabe, P.J. (1994) Perspectives on the sequence stratigraphy of continental strata. Am. Asso. Petrol. Geol. Bull., 78, 544–568.
    [Google Scholar]
  141. Shanley, K.W. & Mccabe, P.J. (1995) Sequence stratigraphy of Turonian–Santonian strata, Kaiparowits Plateau, southern Utah, U.S.A.: Implications for regional correlation and foreland basin evolution. In: Sequence Stratigraphy of Foreland Basin Deposits: Outcrop and Subsurface Examples from the Cretaceous of North America (Ed. by Van WagonerJ.C. & BertramG.T. ) AAPG Memoir, 64, 103–136.
    [Google Scholar]
  142. Shanley, K.W., McCabe, P.J. & Hettinger, R.D. (1992) Tidal influence in Cretaceous fluvial strata from Utah, USA: a key to sequence stratigraphic interpretation. Sedimentology, 39, 905–930.
    [Google Scholar]
  143. Sheets, B.A., Paola, C. & Kelberer, J.M. (2007) Creation and preservation of channel‐form sand bodies in an experimental alluvial system. In: Sedimentary Processes, Environments and Basins: A Tribute to Peter Friend (Ed. by NicholsG.J. , WilliamsE. & PaolaC. ) Intl. Assoc. Sediment. Spec. Publ., 38, 555–567.
    [Google Scholar]
  144. Sircombe, K.N. & Stern, R.A. (2002) An investigation of artificial biasing in detrital zircon U‐Pb geochronology due to magnetic separation in sample preparation. Geochim. Cosmochim. Acta, 66, 2379–2397.
    [Google Scholar]
  145. Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N. & Whitehouse, M.J. (2008) Plešovice zircon — A new natural reference material for U‐Pb and Hf isotopic microanalysis. Chem. Geol., 249, 1–35.
    [Google Scholar]
  146. Smith, N.D., Cross, T.A., Dufficy, J.P. & Clough, S.R. (1989) Anatomy of an avulsion. Sedimentology, 36, 1–23.
    [Google Scholar]
  147. Szwarc, T.S., Johnson, C.L., Stright, L.E. & McFarlane, C.M. (2015) Interactions between axial and transverse drainage systems in the Late Cretaceous Cordilleran foreland basin: Evidence from detrital zircons in the Straight Cliffs Formation, southern Utah, USA. Geol. Soc. Am. Bull., 127, 372–392.
    [Google Scholar]
  148. Tilton, T.L. (2001) Geologic Map of the Alton Quadrangle, Kane County, Utah. Utah Geological Survey, MP‐01‐4, 1–22.
    [Google Scholar]
  149. Titus, A.L., Powell, J.D., Roberts, E.M., Sampson, S.D., Pollock, S.L., Kirkland, J.I. & Albright, L.B. (2005) Late Cretaceous stratigraphy, depositional environments, and macrovertebrate paleontology of the Kaiparowits Plateau, Grand Staircase–Escalante National Monument, Utah. In: Interior Western United States (Ed. by PedersonJ. & DehlerC.M. ) Geol. Soc. Am. Field Guide, 6, 101–128.
    [Google Scholar]
  150. Titus, A.L., Roberts, E.M. & Albright, L.B., III (2013) Geologic Overview. In: At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (Ed. by A.L.Titus & M.A.Loewen ), pp. 13–41. Indiana University Press, Bloomington, IN.
    [Google Scholar]
  151. Trendell, A.M., Atchley, S.C. & Nordt, L.C. (2012) Depositional and diagenetic controls on reservoir attributes within a fluvial outcrop analog: Upper Triassic Sonsela member of the Chinle Formation, Petrified Forest National Park, Arizona. Am. Asso. Petrol. Geol. Bull., 96, 679–707.
    [Google Scholar]
  152. Uygur, K. & Picard, M.D. (1980) Reservoir characteristics of Jurassic Navajo Sandstone, southern Utah. In: Henry Mountains Symposium (Ed. by PicardM.D. ) Utah Geol. Assoc. Publ., 8, 277–286.
    [Google Scholar]
  153. Van Wagoner, J.C. (1995) Sequence Stratigraphy and Marine to Nonmarine Facies Architecture of Foreland Basin Strata, Book Cliffs, Utah, U.S.A. In: Sequence Stratigraphy of Foreland Basin Deposits: Outcrop and Subsurface Examples from the Cretaceous of North America (Ed. by Van WagonerJ.C. & BertramG.T. ) AAPG Memoir, 64, 137–223.
    [Google Scholar]
  154. Walker, J.D., Burchfiel, B.C. & Davis, G.A. (1995) New age controls on initiation and timing of foreland belt thrusting in the Clark Mountains, southern California. Geol. Soc. Am. Bull., 107, 742–750.
    [Google Scholar]
  155. Weissmann, G.S., Hartley, A.J., Nichols, G.J., Scuderi, L.A., Olson, M., Buehler, H. & Banteah, R. (2010) Fluvial form in modern continental sedimentary basins: Distributive fluvial systems. Geology, 38, 39–42.
    [Google Scholar]
  156. Weissmann, G.S., Hartley, A.J., Nichols, G.J., Scuderi, L.A., Olson, M.E., Buehler, H.A. & Massengill, L.C. (2011) Alluvial facies distributions in continental sedimentary basins‐Distributive fluvial systems. In: From River to Rock Record: The Preservation of Fluvial Sediments and Their Subsequent Interpretation (Ed. by DavidsonS.K. , LeleuS. & NorthC.P. ) SEPM Spec. Publ., 97, 327–355.
    [Google Scholar]
  157. Weissmann, G.S., Hartley, A.J., Scuderi, L.A., Nichols, G.J., Davidson, S.K., Owen, A., Atchley, S.C., Bhattacharyya, P., Michel, L. & Tabor, N.J. (2013) Prograding distributive fluvial systems ‐ geomorphic models and ancient examples. In: New Frontiers in Paleopedology and Terrestrial Paleoclimatology (Ed. by DrieseS.G. & NordtL.C. ) SEPM Spec. Publ., 104, 131–147.
    [Google Scholar]
  158. Weissmann, G.S., Hartley, A.J., Scuderi, L.A., Nichols, G.J., Owen, A., Wright, S., Felicia, A.L., Holland, F. & Anaya, F.M.L. (2015) Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review. Geomorphology, 250, 187–219.
    [Google Scholar]
  159. Wernicke, B. (2011) The California River and its role in carving the Grand Canyon. Geol. Soc. Am. Bull., 123, 1288–1316.
    [Google Scholar]
  160. White, T., Furlong, K.P. & Arthur, M.A. (2002) Forebulge migration in the Cretaceous Western Interior basin of the central United States. Basin Res., 14, 43–54.
    [Google Scholar]
  161. Whitmeyer, S.J. & Karlstrom, K.E. (2007) Tectonic model for the Proterozoic growth of North America. Geosphere, 3, 220–259.
    [Google Scholar]
  162. Widdowson, M. (2007) Laterite and Ferricrete. In: Geochemical Sediments and Landscapes (Ed. by D.J.Nash & S.J.McLaren ), pp. 45–94. Blackwell Publishing Ltd, Oxford, UK.
    [Google Scholar]
  163. Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M.F., Oberli, F., von Quadt, A., Roddick, J.C. & Speigel, W. (1995) Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostandards Newslett., 19, 1–23.
    [Google Scholar]
  164. Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, P.M., Rhede, D., Satoh, H., Schulz‐Dobrick, B., Skår, Ø., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q. & Zheng, Y.F. (2004) Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res., 28, 9–39.
    [Google Scholar]
  165. Wright, V.P. & Marriott, S.B. (1993) The sequence stratigraphy of fluvial depositional systems: the role of floodplain sediment storage. Sed. Geol., 86, 203–210.
    [Google Scholar]
  166. Young, R.A. & McKee, E.H. (1978) Early and middle Cenozoic drainage and erosion in west‐central Arizona. Geol. Soc. Am. Bull., 89, 1745–1750.
    [Google Scholar]
  167. Zhu, Y., Bhattacharya, J.P., Li, W., Lapen, T.J., Jicha, B.R. & Singer, B.S. (2012) Milankovitch‐scale sequence stratigraphy and stepped forced regressions of the Turonian Ferron Notom Deltaic Complex, south‐central Utah, U.S.A. J. Sediment. Res., 82, 723–746.
    [Google Scholar]
  168. Zuffa, G.G. (1985) Optical Analyses of Arenites: Influence of Methodology on Compositional Results. In: Provenance of Arenites (Ed. by G.G.Zuffa ), pp. 165–189. Springer Netherlands, Dordrecht.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12252
Loading
/content/journals/10.1111/bre.12252
Loading

Data & Media loading...

Supplements

Full DZ Data.

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error