1887
Volume 30, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

This natural‐scale experimental study combines structural modelling of soft‐linked normal‐fault relays with a CFD (computational fluid dynamics) numerical simulation of a range of unconfined turbidity currents overrunning the relay‐system topography. The flow, released from an upslope inlet gate 2000‐m wide and 50‐m to 100‐m high, rapidly expands and adjusts its thickness, velocity and sediment load to the substrate slope of 1.5°. A lower initial sediment concentration or smaller thickness renders the quasi‐steady flow slower and its sediment‐transport capacity lower. A 3D pattern of large interfering Kelvin‐Helmholtz waves causes fluctuations of the local flow velocity magnitude and sediment concentration. Four zones of preferential sediment deposition are recognized: a near‐gate zone of abrupt flow expansion and self‐regulation; a flow‐transverse zone on the counter‐slope of fault footwall edges; a flow‐transverse zone at the fault‐scarp toes and a similar transverse zone near the crest of the hanging wall counter‐slopes. The sand deposited on the counter‐slope tends to be re‐entrained and fed back to the current by a secondary reverse underflow. The spatial extent and sediment accumulation capacity of depozones depend upon the released current volume. The impact of relay system on an overrunning current depends upon the fault separation distance and stage of tectonic evolution. An early‐stage relay system, with small vertical displacement and little overlap of faults, is bypassed by the current with minimum flow disturbance and no pronounced deposition. An advanced‐stage system, with greater fault displacement and overlap, gives a similar hydraulic effect as a single fault segment if the fault separation is small. If the separation is relatively large, the flow tends to be internally redirected sideways from the ramp into the hanging wall synclinal depressions. Since normal‐fault relays are common features in extensional basins, the study bears important implications for turbiditic slope‐fan models and for the spatial sand prediction in subsurface exploration of faulted submarine slopes.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12255
2017-08-12
2019-12-15
Loading full text...

Full text loading...

References

  1. Abd El‐Gawad, S., Cantelli, A., Pirmez, C., Minisini, D., Sylvester, Z. & Imran, J. (2012) Three‐dimensional numerical simulation of turbidity currents in a submarine channel on the seafloor of the Niger Delta slope. J. Geophys. Res., 117, C05026.
    [Google Scholar]
  2. Al Ja'Aidi, O.S., Mccaffrey, W.D. & Kneller, B.C. (2004) Factors influencing the deposit geometry of experimental turbidity currents: implications for sand‐body architecture in confined basins. Geol. Soc. London. Spec. Publ., 222, 45–58.
    [Google Scholar]
  3. Anders, M.H. & Schlische, R.W. (1994) Overlapping faults, intrabasin highs, and the growth of normal faults. J. Geol., 102, 165–179.
    [Google Scholar]
  4. Athmer, W. & Luthi, S.M. (2011) The effect of relay ramps on sediment routes and deposition: a review. Sed. Geol., 242, 1–17.
    [Google Scholar]
  5. Athmer, W., Groenenberg, R.M., Luthi, S.M., Donselaar, M.E., Sokoutis, D. & Willingshofer, E. (2010) Relay ramps as pathways for turbidity currents: a study combining analogue sandbox experiments and numerical flow simulations. Sedimentology, 57, 806–823.
    [Google Scholar]
  6. Aydin, A. & Schultz, R.A. (1990) Effect of mechanical interaction on the development of strike‐slip faults with echelon patterns. J. Struct. Geol., 12, 123–129.
    [Google Scholar]
  7. Basani, R., Janocko, M., Cartigny, M.J., Hansen, E.W. & Eggenhuisen, J.T. (2014) Massflow 3D™ as a simulation tool for turbidity currents. In: From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin (Ed. by Martinius A.W., Ravnås, R., Howell, J.A., Steel, R.J. & Wonham, J.P.). Int. Assoc. Sedimentol. Spec. Publ., 46, 587–608.
    [Google Scholar]
  8. Bornhold, B.D. & Prior, D.B. (1990) Morphology and sedimentary processes on the subaqueous Noeick River delta, British Columbia, Canada. In: Coarse‐grained Deltas (Ed. by A. Colella & D.B. Prior),. IAS Spec. Publ., 10, 169–181.
    [Google Scholar]
  9. Breda, A., Mellere, D. & Massari, F. (2007) Facies and processes in a Gilbert‐delta‐filled incised valley (Pliocene of Ventimiglia, NW Italy). Sed. Geol., 200, 31–55.
    [Google Scholar]
  10. Browne, G.H. & Slatt, R.M. (2002) Outcrop and behind‐outcrop characterization of a late Miocene slope fan system, Mt. Messenger Formation, New Zealand. Am. Assoc. Pet. Geol. Bull., 86, 841–862.
    [Google Scholar]
  11. Browne, G.H., Slatt, R.M. & King, P.R. (2000) Contrasting styles of basin‐floor fan and slope fan deposition: Mount Messenger Formation, New Zealand. AAPG Memoir., 72, 143–151.
    [Google Scholar]
  12. Chikita, K. (1989) A field study on turbidity currents initiated from spring runoffs. Water Resour. Res., 25, 257–271.
    [Google Scholar]
  13. Cowie, P.A. (1998) A healing–reloading feedback control on the growth rate of seismogenic faults. J. Struct. Geol., 20, 1075–1087.
    [Google Scholar]
  14. Cowie, P.A., Attal, M., Tucker, G.E., Whittaker, A.C., Naylor, M., Ganas, A. & Roberts, G.P. (2006) Investigation of the surface process response to fault interaction and linkage using a numerical modeling approach. Basin Res., 18, 231–266.
    [Google Scholar]
  15. Densmore, A.L., Dawers, N.H., Gupta, S., Allen, P.A. & Gilpin, R. (2003) Landscape evolution at extensional relay zones. J. Geophys. Res., 108, 2273. https://doi.org/10.1029/2001JB001741.
    [Google Scholar]
  16. Droz, L. & Bellaiche, G. (1985) Rhone deep‐sea fan: Morphostructure and growth pattern. Am. Assoc. Pet. Geol. Bull., 69, 460–479.
    [Google Scholar]
  17. Egawa, K., Furukawa, T., Saeki, T., Suzuki, K. & Narita, H. (2013) Three‐dimensional paleomorphologic reconstruction and turbidite distribution prediction revealing a Pleistocene confined basin system in the northeast Nankai Trough area. Am. Assoc. Pet. Geol. Bull., 97, 781–798.
    [Google Scholar]
  18. FlowScience
    FlowScience . (2012) Flow‐3D Documentation: Release 10.1. Flow Science, Inc., Santa Fe (NM), 813 pp.
  19. Fugelli, E.M.G. & Olsen, T.R. (2007) Delineating confined slope turbidite systems offshore mid‐Norway: the Cretaceous deep‐marine Lysing Formation. Am. Assoc. Pet. Geol. Bull., 91, 1577–1601.
    [Google Scholar]
  20. Gawthorpe, R. & Hurst, J. (1993) Transfer zones in extensional basins: their structural style and influence on drainage development and stratigraphy. J. Geol. Soc. London, 150, 1137–1152.
    [Google Scholar]
  21. Ge, Z., Nemec, W., Gawthorpe, R. & Hansen, E. (2017) Response of unconfined turbidity current to normal‐fault topography. Sedimentology, 64, 932–959.
    [Google Scholar]
  22. Georgoulas, A., Angelidis, P., Panagiotidis, T. & Kotsovinos, N. (2010) 3D numerical modelling of turbidity currents. Environ. Fluid Mech., 10, 603–635.
    [Google Scholar]
  23. Giba, M., Walsh, J. & Nicol, A. (2012) Segmentation and growth of an obliquely reactivated normal fault. J. Struct. Geol., 39, 253–267.
    [Google Scholar]
  24. Gobo, K., Ghinassi, M., Nemec, W. & Sjursen, E. (2014) Development of an incised valley‐fill at an evolving rift margin: pleistocene eustasy and tectonics on the southern side of the Gulf of Corinth, Greece. Sedimentology, 61, 1086–1119.
    [Google Scholar]
  25. Gupta, A. & Scholz, C.H. (2000) A model of normal fault interaction based on observations and theory. J. Struct. Geol., 22, 865–879.
    [Google Scholar]
  26. Gupta, A., Underhill, J.R., Sharp, I.R. & Gawthorpe, R. (1999) Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt. Basin Res., 11, 167–189.
    [Google Scholar]
  27. Haughton, P., Davis, C., McCaffrey, W. & Barker, S. (2009) Hybrid sediment gravity flow deposits–classification, origin and significance. Mar. Pet. Geol., 26, 1900–1918.
    [Google Scholar]
  28. Heimsund, S. (2007) Numerical Simulation of Turbidity Currents: A New Perspective for Small‐ and Large‐Scale Sedimentological Experiments. MSc Thesis, University of Bergen, Bergen, 114 pp.
  29. Heimsund, S., Xu, J. & Nemec, W. (2007). Numerical simulation of recent turbidity currents in the Monterey Canyon system, offshore California. AGU 2007 Fall Meeting Abstracts, Pt. 1, p. 996.
  30. Hemelsdaël, R. & Ford, M. (2014) Relay zone evolution: a history of repeated fault propagation and linkage, central Corinth rift, Greece. Basin Res., 28, 34–56.
    [Google Scholar]
  31. Heritier, F.E., Lossel, P. & Wathne, E. (1979) Frigg Field – large submarine‐fan trap in lower Eocene rocks of North Sea Viking Graben. Am. Assoc. Pet. Geol. Bull., 63, 1999–2020.
    [Google Scholar]
  32. Hopkins, M.C. & Dawers, N.C. (2015) Changes in bedrock channel morphology driven by displacement rate increase during normal fault interaction and linkage. Basin Res., 27, 43–59.
    [Google Scholar]
  33. Hsü, S., Kuo, J., Lo, C., Tsai, C., Doo, W., Ku, C. & Sibuet, J. (2008) Turbidity currents, submarine landslides and 2006 Pingtung earthquake off SW Taiwan. Terr. Atmos. Ocean Sci., 19, 767–772.
    [Google Scholar]
  34. Imber, J., Tuckwell, G., Childs, C., Walsh, J., Manzocchi, T., Heath, A., Bonson, C. & Strand, J. (2004) Three‐dimensional distinct element modelling of relay growth and breaching along normal faults. J. Struct. Geol., 26, 1897–1911.
    [Google Scholar]
  35. Jackson, J.A. (1987) Active normal faulting and crustal extension. Geol. Soc. London. Spec. Publ., 28, 3–17.
    [Google Scholar]
  36. Janocko, M., Cartigny, M.B.J., Nemec, W. & Hansen, E.W.M. (2013a) Turbidity current hydraulics and sediment deposition in erodible sinuous channels: laboratory experiments and numerical simulations. Mar. Pet. Geol., 41, 222–249.
    [Google Scholar]
  37. Janocko, M., Nemec, W., Henriksen, S. & Warchoł, M. (2013b) The diversity of deep‐water sinuous channel belts and slope valley‐fill complexes. Mar. Pet. Geol., 41, 7–34.
    [Google Scholar]
  38. Keith, B.D. & Friedman, G.M. (1977) A slope‐fan‐basin‐plain model, Taconic sequence, New York and Vermont. J. Sed. Petrol., 47, 1220–1241.
    [Google Scholar]
  39. Kim, W. & Paola, C. (2007) Long‐period cyclic sedimentation with constant tectonic forcing in an experimental relay ramp. Geology, 35, 331–334.
    [Google Scholar]
  40. Kneller, B. (1995) Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. Geol. Soc. London. Spec. Publ., 94, 31–49.
    [Google Scholar]
  41. Leeder, M.R. & Gawthorpe, R.L. (1987) Sedimentary models for extensional tilt‐block/half‐graben basins. Geol. Soc. London. Spec. Publ., 28, 139–152.
    [Google Scholar]
  42. Leszczyński, S. (1989) Characteristics and origin of fluxoturbidites from the Carpathian flysch (Cretaceous–Palaeogene), south Poland. Ann. Soc. Geol. Pol., 59, 351–382.
    [Google Scholar]
  43. Leszczyński, S. & Nemec, W. (2015) Dynamic stratigraphy of composite peripheral unconformity in a foredeep basin. Sedimentology, 62, 645–680.
    [Google Scholar]
  44. Leszczyński, S., Dziadzio, P.S. & Nemec, W. (2015) Some current sedimentological controversies in the Polish Carpathian flysch – Guide to field trip B8. In: Guidebook for Field Trips, 31st IAS Meeting of Sedimentology (Ed. by G.Haczewski ), pp. 247–287. Polish Geological Society, Kraków.
    [Google Scholar]
  45. Lewis, K.B. (1971) Slumping on a continental slope inclined at 1°–4°. Sedimentology, 16, 97–110.
    [Google Scholar]
  46. Long, J.J. & Imber, J. (2011) Geological controls on fault relay zone scaling. J. Struct. Geol., 33, 1790–1800.
    [Google Scholar]
  47. Morley, C. (1995) Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration. Geol. Soc. London. Spec. Publ., 80, 1–32.
    [Google Scholar]
  48. Mulder, T., Syvitski, J.P. & Skene, K.I. (1998) Modelling of erosion and deposition by turbidity currents generated at river mouths. J. Sed. Res., 68, 124–137.
    [Google Scholar]
  49. Mulder, T., Syvitski, J.P., Migeon, S., Faugeres, J.‐C. & Savoye, B. (2003) Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Mar. Petrol. Geol., 20, 861–882.
    [Google Scholar]
  50. Mutti, E. (1979) Turbidites et cones sous‐marins profonds. In: Sedimentation Detritique (Fluvial, Littoral et Marine) (Ed. by P.Homewood ), pp. 353–419. Université de Fribourg, Institut de Géologie.
    [Google Scholar]
  51. Mutti, E. (1992) Turbidite Sandstones. Agip, San Donato Milanese, 275 pp.
  52. Normark, W.R., Barnes, N.E. & Coumes, F. (1985) Rhone Fan, Mediterranean. In: Submarine Fans and Related Turbidite Systems (Ed. by A.H.Bouma , W.R.Normark , N.E.Barnes ), pp. 151–156. Springer‐Verlag, New York.
    [Google Scholar]
  53. Normark, W.R., Posamentier, H. & Mutti, E. (1993) Turbidite systems: state of the art and future directions. Rev. Geophys., 31, 91–116.
    [Google Scholar]
  54. Peacock, D. & Sanderson, D. (1994) Geometry and development of relay ramps in normal fault systems. Am. Assoc. Pet. Geol. Bull., 78, 147–165.
    [Google Scholar]
  55. Posametier, H.W., Erskine, R.D. & Mitchum, R.M.Jr (1991) Models for submarine‐fan deposition within a sequence‐stratigraphic framework. In: Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems (Ed. by P. Weimer , M.H.Link ), pp. 127–136. Springer‐Verlag, New York.
    [Google Scholar]
  56. Ravnås, R. & Steel, R.J. (1998) Architecture of marine rift‐basin successions. Am. Assoc. Pet. Geol. Bull., 82, 110–146.
    [Google Scholar]
  57. Reading, H.G. & Richards, M. (1994) Turbidite systems in deep‐water basin margins classified by grain size and feeder system. Am. Assoc. Pet. Geol. Bull., 78, 792–822.
    [Google Scholar]
  58. Schlische, R.W. (1995) Geometry and origin of fault‐related folds in extensional settings. Am. Assoc. Pet. Geol. Bull., 79, 1661–1678.
    [Google Scholar]
  59. Soliva, R. & Benedicto, A. (2004) A linkage criterion for segmented normal faults. J. Struct. Geol., 26, 2251–2267.
    [Google Scholar]
  60. Soliva, R., Benedicto, A. & Maerten, L. (2006) Spacing and linkage of confined normal faults: importance of mechanical thickness. J. Geophys. Res., 111, B01402.
    [Google Scholar]
  61. Soreghan, M.J., Scholz, C.A. & Wells, J.T. (1999) Coarse‐grained, deep‐water sedimentation along a border fault margin of Lake Malawi, Africa: seismic stratigraphic analysis. J. Sed. Res., 69B, 832–846.
    [Google Scholar]
  62. Trudgill, B.D. (2002) Structural controls on drainage development in the Canyonlands Grabens of southeast Utah. Am. Assoc. Pet. Geol. Bull., 86, 1095–1112.
    [Google Scholar]
  63. Willemse, E.J. (1997) Segmented normal faults: correspondence between three‐dimensional mechanical models and field data. J. Geophys. Res., 102, 675–692.
    [Google Scholar]
  64. Xu, J.P., Noble, M.A. & Rosenfeld, L.K. (2004) In‐situ measurements of velocity structure within turbidity currents. Geophys. Res. Lett., 31, L09311.
    [Google Scholar]
  65. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. & Speziale, C.G. (1992) Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A, 4, 1510–1520.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12255
Loading
/content/journals/10.1111/bre.12255
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error