1887
Volume 30, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The position and mobility of drainage divides is an expression of exogenic landscape forcing and autogenic channel network processes integrated across a range of scales. At the large scale, represented by major rivers and continental drainage divides, the organization of drainage patterns and divide migration reflects the long‐wavelength gradients of the topography, which are exogenically influenced by tectonics, isostasy, and/or dynamic topography. This analysis utilizes long‐wavelength topography synthesized by a low‐pass filter, which provides a novel framework for predicting the direction of divide movement as well as an estimate of the ultimate divide location that is complementary to recent studies that have focused on the χ channel metric. The Gibraltar Arc active plate boundary and Appalachian stable plate interior, two tectonically diverse settings with ongoing drainage system reorganization, are chosen to explore the length scales of exogenic forcings that influence continental drainage divide location and migration. The major watersheds draining both the active‐ and decay‐phase orogens studied here are organized by topographic gradients that are expressed in long‐wavelength low‐pass filtered topography (λ ≥ 100 km). In contrast, the river network and divide location is insensitive to topographic gradients measured over filtered wavelengths <100 km that are set by local crustal structures and rock type. The lag time between exogenic forcing and geomorphic response and feedbacks cause divide migration to be unsteady, and occur through pulses of drainage capture and drainage network reorganization that are recorded in sedimentological, geomorphic, or denudation data.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12256
2017-08-21
2024-04-19
Loading full text...

Full text loading...

References

  1. Anderson, A.L. (1947) Drainage diversion in the northern Rocky Mountains of east‐central Idaho. J. Geol., 55, 61–75.
    [Google Scholar]
  2. Azañón, J.M., Tuccimei, P., Azor, A., Sánchez‐Almazo, I.M., Alonso‐Zarza, A.M., Soligo, M. & Pérez‐Peña, J.V. (2006) Calcrete features and age estimates from U/Th dating: implications for the analysis of Quaternary erosion rates in the northern limb of the Sierra Nevada range (Betic Cordillera, southeast Spain. In: Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates (Ed. by A.M.Alonso‐Zarza & L.H.Tanner ), Geol. Soc. America Special Paper416, 223–239.
    [Google Scholar]
  3. Azañón, J.M., Pérez‐Peña, J.V., Giaconia, F., Booth‐Rea, G., Martínez‐Martínez, J.M. & Rodríguez‐Peces, M.J. (2012) Active tectonics in the central and eastern Betic Cordillera through morphotectonic analysis: the case of Sierra Nevada and Sierra Alhamilla. J. Iberian Geol., 38, 225–238.
    [Google Scholar]
  4. Azañón, J.M., Galve, J.P., Pérez‐Peña, J.V. & Roldan, F.J. (2015) Relief and drainage evolution during exhumation of the Sierra Nevada (SE Spain): Is denudation keeping pace with uplift?Tectonophysics, 663, https://doi.org/10.1016/j.tecto.2015.06.015.
    [Google Scholar]
  5. Beaumont, C., Fullsack, P. & Hamilton, J. (1992) Erosional control of active compressional orogens. In: Thrust Tectonics (Ed. by McClayK.R. ), pp. 1–18. Springer, Dordrecht.
    [Google Scholar]
  6. Bellin, N., Vanacker, V. & Kubik, P.W. (2014) Denudation rates and tectonic geomorphology of the Spanish Betic Cordillera. Earth Planet. Sci. Lett., 390, 19–30.
    [Google Scholar]
  7. Berti, C., Anastasio, D.J., Pazzaglia, F.J., Brocard, G.Y., Moodie, A., Pares, J.M., Cenieh, P.S.A. & Soto, J.I. (2014) Drainage network reorganization and divide migration in response to active tectonics in the Betic Range, Spain. Geol. Soc. Am. Abst. Programs46(6).
    [Google Scholar]
  8. Bezada, M.J., Humphreys, E.D., Toomey, D.R., Harnafi, M., Davila, J.M. & Gallart, J. (2013) Evidence for slab rollback in westernmost Mediterranean from improved upper mantle imaging. Earth Planet. Sci. Letters, 368, 51–60.
    [Google Scholar]
  9. Bezada, M.J., Humphreys, E.D., Davila, J.M., Carbonell, R., Harnafi, M., Palomeras, I. & Levander, A. (2014) Piecewise delamination of Moroccan lithosphere from beneath the Atlas Mountains. Geochem. Geophys. Geosyst., https://doi.org/10.1002/2013GC005059.
    [Google Scholar]
  10. Biryol, C.B., Wagner, L.S., Fischer, K.M. & Hawman, R.B. (2016) Relationship between observed upper mantle structures and recent tectonic activity across the Southeastern United States. J Geophys. Res. Solid Earth, 121, https://doi.org/10.1002/2015JB012698.
    [Google Scholar]
  11. Black, B.A., Perron, J.T., Hemingway, D., Bailey, E., Nimmo, F. & Zebker, H. (2017) Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan. Science, 356, 727–731.
    [Google Scholar]
  12. Bossu, C.M., Beaulieu, J.M., Caes, P.A. & Near, T.J. (2013) Explicit tests of palaeodrainage connections of southeastern North America and the historical biogeography of Orangethroat Darters (Percidae: Etheostoma: Ceasia). Mol. Ecol., 22, 5397–5417.
    [Google Scholar]
  13. Calvache, M. & Viseras, C. (1997) Long‐term control mechanisms of stream piracy processes in southeast Spain. Earth Surf. Proc. Land., 22, 93–105.
    [Google Scholar]
  14. Calvert, A., Sandvol, E., Seber, D., Barazangi, M., Roecker, S., Mourabit, T., Vidal, F., Alguacil, G. & Jabour, N. (2000) Geodynamic evolution of the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: constraints from travel time tomography. J. Geophys. Res., 105(B5), https://doi.org/10.1029/2000JB900024.
    [Google Scholar]
  15. Ciolkosz, E.J., Carter, B.J., Hoover, M.T., Cronce, R.C., Waltman, W.J. & Dobos, R.R. (1990) Genesis of soils and landscapes in the Ridge and Valley province of central Pennsylvania. In: Soils and Geomorphology (Ed. by McFaddenL.D. & KnuepferP.L.K. ), 3(3–4), 245–262.
    [Google Scholar]
  16. Clark, S.J.P. & Dempster, T.J. (2009) The record of tectonic denudation and erosion in an emerging orogen: an apatite fission‐track study of the Sierra Nevada, southern Spain. J. Geol. Soc., 166, 87–100.
    [Google Scholar]
  17. Clift, P.D. (2006) Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett., 241, 571–580.
    [Google Scholar]
  18. Crosby, B.T. & Whipple, K.X. (2006) Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand. Geomorphology, 82, 16–38.
    [Google Scholar]
  19. D'Agostino, N., Jackson, J.A., Dramis, F. & Funiciello, R. (2001) Interactions between mantle upwelling, drainage evolution and active normal faulting: an example from the central Apennines (Italy). Geophys. J. Int., 147(2), 475–497.
    [Google Scholar]
  20. Davis, W.M. (1903) The stream contest along the Blue Ridge. Geograph. Soc. Philadelphia Bullet., 3, 213–244.
    [Google Scholar]
  21. Faill, R.T. (1997a) A geologic history of the north‐central Appalachians; Part 1, Orogenesis from the Mesoproterozoic through the Taconic Orogeny. Am. J. Sci., 297, 551–619.
    [Google Scholar]
  22. Faill, R.T. (1997b) A geologic history of the north‐central Appalachians; Part 2, The Appalachian Basin from the Silurian through the Carboniferous. Am. J. Sci., 297, 729–761.
    [Google Scholar]
  23. Fischer, K.M. (2002) Waning buoyancy in the crustal roots of old mountains. Nature, 417(6892), 933–936.
    [Google Scholar]
  24. Flament, N., Gurnis, M. & Muller, R.D. (2013) A review of observations and models of dynamic topography. Lithosphere, 5, 189–210.
    [Google Scholar]
  25. Forte, A.M., Peltier, W.R., Dziewonski, A.M. & Woodward, R.L. (1993) Dynamic surface topography: a new interpretation based upon mantle flow models derived from seismic tomography. Geophys. Res. Lett., 20(3), 225–228.
    [Google Scholar]
  26. Forte, A.M., Mitrovica, J.X., Moucha, R., Simmons, N.A. & Grand, S.P. (2007) Descent of the ancient Farallon slab drives localized mantle flow below the New Madrid seismic zone. Geophys. Res. Lett., 34(4), https://doi.org/10.1029/2006gl027895.
    [Google Scholar]
  27. Forzoni, A., Storms, J.E.A., Whittaker, A.C. & de Jager, G. (2014) Delayed delivery from the sediment factory: modeling the impact of catchment response time to tectonics on sediment flux and fluvio‐deltaic stratigraphy. Earth Surf. Proc. Land., 39, 689–704.
    [Google Scholar]
  28. Fullea, J., Fernàndez, M., Afonso, J., Vergàs, J. & Zeyen, H. (2010) The structure and evolution of the lithosphere‐asthenosphere boundary beneath the Atlantic‐Mediterranean Transition Region. Lithos, 120(1–2), 74–95.
    [Google Scholar]
  29. Gallen, S.F., Wegmann, K.W. & Bohnenstieh, D.R. (2013) Miocene rejuvenation of topographic relief in the southern Appalachians. GSA Today, 23(2), 4–10.
    [Google Scholar]
  30. García, A.F., Zhu, Z., Ku, T.L., de Sanz Galdeano, C., Chadwick, O.A. & Chacon Montero, J. (2003) Tectonically driven landscape development within the eastern Alpujarran Corridor, Betic Cordillera, E Spain (Almería). Geomorphology, 50, 83–110.
    [Google Scholar]
  31. García, A.F., Zhu, Z., Ku, T.L., Chadwick, O.A. & Montero, J.C. (2004) An incision wave in the geologic record, Alpujarran Corridor, southern Spain (Almeria). Geomorphology, 60, 37–72.
    [Google Scholar]
  32. Garcia‐Castellanos, D. & Villaseñor, A. (2011) Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar Arc. Nature, 480(7377), 359–363.
    [Google Scholar]
  33. Gilbert, G.K. (1877) Report on the Geology of the Henry Mountains. US Geographical and Geological Survey of the Rocky Mountain Region, Department of the Interior, 2nd edition.
  34. Gunnell, Y. & Harbor, D.J. (2010) Butte detachment: How pre‐rift geological structure and drainage integration drive escarpment evolution at rifted continental margins. Earth Surf. Proc. Land., 35, 1373–1385.
    [Google Scholar]
  35. Gurnis, M., Mitrovica, J.X., Ritsema, J. & van Heijst, H.‐J. (2000) Constraining mantle density structure using geological evidence of surface uplift rates: the case of the African superplume. Geochem. Geophys. Geosyst., 1(7), 1–31.
    [Google Scholar]
  36. Hack, J.T. (1975) Dynamic equilibrium and landscape evolution. In: Theories of Landform Development (Ed. by W.N.Melhorn , R.C.Flemal ), pp. 87–102. Publications in Geomorphology, State University of New York, Binghamton, NY.
    [Google Scholar]
  37. Hack, J.T. (1979) Rock control and tectonism: their importance in shaping the Appalachian highlands. U. S. Geological Survey Professional Paper1126‐B, B1–B17.
    [Google Scholar]
  38. Hack, J.T. (1982) Physiographic divisions and differential uplift in the Piedmont and Blue Ridge. U. S. Geological Survey Professional Paper. 1265.
  39. Hajek, E.A. & Straub, K.M. (2017) Autogenic sedimentation in clastic stratigraphy. Annu. Rev. Earth Planet. Sci., 45, 681–709.
    [Google Scholar]
  40. Harbor, D., Bacastow, A., Heath, A. & Rogers, J. (2005) Capturing the variable knickpoint retreat in the central Appalachians, USA. Geografia Fisica e Dinammica Quaternaria, 28, 23–36.
    [Google Scholar]
  41. Harkins, N., Kirby, E., Heimsath, A., Robinson, R. & Reiser, U. (2007) Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China. J. Geophys. Res., Series F, 112, F03S04.
    [Google Scholar]
  42. Harrington, H.J., Simpson, C.J. & Moore, R.F. (1982) Analysis of continental structures using a digital terrain model (DTM) of Australia. BMR J. Aust. Geol. Geophys., 7, 68–72.
    [Google Scholar]
  43. Harvey, A.M. & Wells, S.G. (1987) Response of Quaternary fluvial systems to differential epeirogenic uplift: Aguas and Feos river systems, southeast Spain. Geology, 15, 689–693.
    [Google Scholar]
  44. Hawman, R.B., Khalifa, M.O. & Baker, M.S. (2012) Isostatic compensation for a portion of the Southern Appalachians: evidence from a reconnaissance study using wide‐angle, three‐component seismic soundings. Geol. Soc. Am. Bull., 124(3–4), 291–317.
    [Google Scholar]
  45. Heimsath, A.M., Chappell, J., Finkel, R.C., Fifield, K. & Alimanovic, A. (2006) Escarpment erosion and landscape evolution in southeast Australia. In: Tectonics, Climate, and Landscape Evolution (Ed. by WillettS.D. , HoviusN. , BrandonM.T. & FisherD.M. ) Geol Soc America Special Paper 398, Penrose Conference Series,173–190.
    [Google Scholar]
  46. Howard, A.D. (1994) A detachment‐limited model of drainage basin evolution. Water Resour. Res., 30(7), 2261–2285.
    [Google Scholar]
  47. Howard, A.D. & Kerby, G. (1983) Channel changes in badlands. Geol. Soc. Am. Bull., 94, 739–752.
    [Google Scholar]
  48. Johnson, D.W. (1907) Drainage modifications in the Tallulah district. Boston Soc. Nat. History Proceed., 23, 211–248.
    [Google Scholar]
  49. Johnson, D.W. (1931) Stream Sculpture on the Atlantic Slope. Columbia University Press, New York.
    [Google Scholar]
  50. Johnson, C. (1997) Resolving denudational histories in orogenic belts with apatite fission‐track thermochronology and structural data: an example from southern Spain. Geology, 25(7), 623–626.
    [Google Scholar]
  51. Judson, S. (1975) Evolution of Appalachian topography. In: Theories of Landform Development (Ed. by W.N.Melhorn , R.C.Fleman ), pp. 29–44. Publications in Geomorphology, State University of New York, Binghamton, NY.
    [Google Scholar]
  52. Karlstrom, K.E., Coblenz, D., Dueker, K., Ouimet, W., Kirby, E., Van Wijk, J., Schmandt, B., Kelley, S., Lazear, G., Crossey, L.J., Crow, R., Aslan, A., Darling, A., Aster, R., MacCarthy, J., Hansen, S.M., Stachnik, J., Stockli, D.F., Garcia, R.V., Hoffman, M., McKeon, R., Feldman, J., Heizler, M. & Donahue, M.S. & The Crest Working Group . (2012) Mantle‐driven dynamic uplift of the Rocky Mountains and Colorado Plateau and its surface response: toward a unified concept. Lithosphere, 4, 3–22.
    [Google Scholar]
  53. Kucks, R.P. (1999) Bouguer gravity anomaly data grid for the conterminous US. Online at http://mrdata.usgs.gov/gravity/bouguer/.
  54. Laske, G., Masters, G., Ma, Z. & Pasyanos, M. (2013) Update on CRUST1.0 – A 1‐degree Global Model of Earth's Crust. Geophys. Res. Abstracts, 15, Abstract EGU2013‐2658.
    [Google Scholar]
  55. Leeder, M.R., Harris, T. & Kirkby, M.J. (1998) Sediment supply and climate change: implications for basin stratigraphy. Basin Res., 10, 7–18.
    [Google Scholar]
  56. Link, P.K. & Hodges, M.K.V. (2011) The Neogene drainage history of south‐central Idaho. In: Geologic Field Trips to the Basin and Range, Rocky Mountains, Snake River Plain and Terranes of the U.S. Cordillera (Ed. by LeeJ. & EvansJ.P. ) Geol. Soc. America Field Guide, 21, 103–123.
    [Google Scholar]
  57. Lis Mancilla, F.D., Stich, D., Berrocoso, M., Martín, R., Morales, J., Fernandez‐Ros, A., Páez, R. & Pérez‐Peña, A. (2013) Delamination in the Betic Range: deep structure, seismicity, and GPS motion. Geology, 41(3), 307–310.
    [Google Scholar]
  58. Lonergan, L. (1993) Timing and kinematics of deformation in the Malaguide Complex, internal zone of the Betic Cordillera, southeast Spain. Tectonics, 12(2), 460–476. https://doi.org/10.1029/92TC02507.
    [Google Scholar]
  59. Lonergan, L. & Mange‐Rajetzky, M. (1994) Evidence for Internal Zone unroofing from foreland basin sediments, Betic Cordillera, SE Spain. J. Geol. Soc., 151, https://doi.org/10.1144/gsjgs.151.3.0515.
    [Google Scholar]
  60. Lonergan, L. & White, N. (1997) Origin of the Betic‐Rif mountain belt. Tectonics, 16(3), 504–522.
    [Google Scholar]
  61. Maher, E. & Harvey, A.M. (2008) Fluvial system response to tectonically induced base‐level change during the late Quaternary: the Rio Alias southeast Spain. Geomorphology, 100, 180–192.
    [Google Scholar]
  62. Mather, A.E. (2000) Adjustment of a drainage network to capture induced base‐level change: an example from the Sorbas Basin, SE Spain. Geomorphology, 34, 271–289.
    [Google Scholar]
  63. Matmon, A.S., Bierman, P., Larsen, J., Southworth, S., Pavich, M., Finkel, R. & Caffee, M. (2003) Erosion of an ancient mountain range, the Great Smoky Mountains, North Carolina and Tennessee. Am. J. Sci., 303, 817–855.
    [Google Scholar]
  64. Mazza, S.E., Gazel, E., Johnson, E.A., Kunk, M.J., McAleer, R., Spotila, J.A. & Coleman, D.S. (2014) Volcanoes of the passive margin: the youngest magmatic event in eastern North America. Geology, 42, 483–486.
    [Google Scholar]
  65. McKeon, R.E., Zeitler, P.K., Pazzaglia, F.J., Idleman, B.D. & Enkelmann, E. (2013) Decay of an old orogen: inferences about Appalachian landscape evolution from low‐temperature thermochronology. Geol. Soc. Am. Bull., 126(1–2), 31–46.
    [Google Scholar]
  66. Meyerhoff, H.A. (1972) Postorogenic development of the Appalachians. Geol. Soc. Am. Bull., 83, 1709–1728.
    [Google Scholar]
  67. Meyerhoff, H.A. & Olmsted, E.W. (1936) The origins of Appalachian drainage. Am. J. Sci., 32, 21–42.
    [Google Scholar]
  68. Mills, H.H. (2000) Apparent increasing rates of stream incision in the eastern United States during the late Cenozoic. Geology, 28(10), 955–957.
    [Google Scholar]
  69. Mitrovica, J.X., Beaumont, C. & JarvisG.T. (1989) Tilting of continental interiors by the dynamical effects of subduction. Tectonics, 8(5), 1079–1094.
    [Google Scholar]
  70. Moucha, R. & Ruetenik, G.A. (2017) Interplay between dynamic topography and flexure along the U.S. Atlantic passive margin: insights from landscape evolution modeling. Global Planet. Change, 149, 72–78.
    [Google Scholar]
  71. Moucha, R., Forte, A.M., Mitrovica, J.X., Rowley, D.B., Quéré, S., Simmons, N.A. & Grand, S.P. (2008) Dynamic topography and long‐term sea‐level variations: there is no such thing as a stable continental platform. Earth Planet. Sci. Lett., 271(1–4), 101–108.
    [Google Scholar]
  72. Müller, R.D., Flament, N., Matthews, K.J., Williams, S.E. & Gurnis, M. (2016) Formation of Australian continental margin highlands driven by plate‐mantle interaction. Earth Planet. Sci. Lett., 441, 60–70.
    [Google Scholar]
  73. Naeser, N.D., Naeser, C.W., Morgan, B.A.III, Schultz, A.P. & Southworth, C.S. (1999) Paleozoic to recent cooling history of the Blue Ridge province, Virginia, North Carolina, and Tennessee, from apatite and zircon fission‐track analysis. Geol. Soc. Am. Abst. Programs31(7), A‐117.
    [Google Scholar]
  74. Naeser, N.D., Naeser, C.W., Southworth, C.S., Morgan, B.A.III & Schultz, A.P. (2004) Paleozoic to recent tectonic and denudation history of rocks in the Blue Ridge province, central and southern Appalachians—evidence from fission‐track thermochronology. Geol. Soc. Am. Abst. Programs, 36(2), 114.
    [Google Scholar]
  75. Naeser, N.D., Naeser, C.W., Newell, W.L., Southworth, S., Weems, R.E. & Edwards, L.E. (2006) Provenance studies in the Atlantic Coastal Plain: What fission‐track ages of detrital zircons can tell us about the erosion history of the Appalachians. Geol. Soc. Am. Abst. Programs, 38(7), 503.
    [Google Scholar]
  76. Naeser, C.W., Naeser, N.D., Newell, W.L., Southworth, S., Edwards, L.E. & Weems, R.E. (2016) Erosional and depositional history of the Atlantic passive margin as recorded in detrital zircon fission‐track ages and lithic detritus in Atlantic Coastal Plain sediments. Am. J. Sci., 316, 110–168.
    [Google Scholar]
  77. Oliver, J., Cook, F. & Brown, L. (1983) COCORP and continental crust. J. Geophys. Res., 88, 3329–3347.
    [Google Scholar]
  78. Palomeras, I., Thurner, S., Levander, A., Liu, K., Villasenor, A., Carbonell, R. & Harnafi, M. (2014) Finite‐frequency Rayleigh wave tomography of the western Mediterranean: mapping its lithospheric structure. Geochem. Geophys. Geosyst., 15, 140–160.
    [Google Scholar]
  79. Pavich, M.J. (1989) Regolith residence time and the concept of surface age of the Piedmont “peneplain”. In: Appalachian Geomorphology (Ed. by GardnerT.W. & SevonW.D. ), 2(1–3), 181–196.
    [Google Scholar]
  80. Pazzaglia, F.J. (1993) Stratigraphy, petrography, and correlation of late Cenozoic middle Atlantic Coastal Plain deposits: implications for late‐stage passive margin geologic evolution. Geol. Soc. Am. Bull., 105, 1617–1634.
    [Google Scholar]
  81. Pazzaglia, F.J. & Brandon, M.T. (1996) Macrogeomorphic evolution of the post‐Triassic Appalachian mountains determined by deconvolution of the offshore basin sedimentary record. Basin Res., 8(3), 255–278.
    [Google Scholar]
  82. Pazzaglia, F.J. & Gardner, T.W. (1994) Late Cenozoic flexural deformation of the middle U. S. Atlantic passive margin. J. Geophys. Res., 99(B6), 12143–12157.
    [Google Scholar]
  83. Pazzaglia, F.J. & Gardner, T.W. (2000) Late Cenozoic landscape evolution of the US Atlantic passive margin: insights into a North American Great Escarpment. In: Geomorphology and Global Tectonics (Ed. by M.A.Summerfield ), pp. 284–302. Wiley Interscience, Chirchester.
    [Google Scholar]
  84. Pazzaglia, F.J., Carter, M., Berti, C., Counts, R., Hancock, G., Harbor, D., Harrison, R., Heller, M., Mahan, S., Malenda, H., McKeon, R., Nelson, M., Prince, P., Rittenour, T., Spotila, J. & Whittecar, R. (2015) Geomorphology, active tectonics, and landscape evolution in the mid‐Atlantic region. In: Tripping From the Fall Line: Field Excursions for the GSA Annual Meeting, Baltimore, 2015, (Ed. by BrezinskiD.K. , HalkaJ.P. & OrttR.A. Jr.) Geol. Soc. America Field Guide, 40, 109–169.
    [Google Scholar]
  85. Pérez‐Peña, J.V., Azañón, J.M., Azor, A., Tuccimei, P., Della Seta, M. & Soligo, M. (2009) Quaternary landscape evolution and erosion rates for an intramontane Neogene basin (Guadix‐Baza basin, SE Spain). Geomorphology, 106(3–4), 206–218.
    [Google Scholar]
  86. Perron, J.T. & Royden, L. (2013) An integral approach to bedrock river profile analysis. Earth Surf. Proc. Land., 38, 570–576.
    [Google Scholar]
  87. Perron, J.T., Dietrich, W.E. & Kirchner, J.W. (2008) Controls on the spacing of first‐order valleys. J. Geophys. Res., 113, F04016.
    [Google Scholar]
  88. Perron, J.T., Kirchner, J.W. & Dietrich, W.E. (2009) Formation of evenly spaced ridges and valleys. Nature, 460, 502–505.
    [Google Scholar]
  89. Pierce, K.L. & Morgan, L.A. (1992) The track of the Yellowstone hot spot—volcanism, faulting and uplift. In: Regional Geology of Eastern Idaho and Western Wyoming (Ed. by LinkP.K. , KuntzM.A. & PlattL.W. ) Geol. Soc. America Memoir, 179, 1–53.
    [Google Scholar]
  90. Platt, J.P., Behr, W.M., Johanesen, K. & Williams, J.R. (2013) The Betic‐Rif Arc and its Orogenic Hinterland: a review. Annu. Rev. Earth Planet. Sci., 41(1), 313–357.
    [Google Scholar]
  91. Poag, C.W. (1985) Depositional history and reference section for central Baltimore Canyon trough. In: Geologic Evolution of the United States Atlantic Margin (Ed. by CWPoag ), pp. 217–263. Van Nostrand Reinhold, New York.
    [Google Scholar]
  92. Poag, C.W. (1992) U.S. Middle Atlantic continental rise; provenance, dispersal, and deposition of Jurassic to Quaternary sediments. In: Geologic Evolution of Atlantic Continental Rises (Ed. by C.W.Poag , P.C.de Graciansky ), pp. 100–156. Van Nostrand Reinhold, New York.
    [Google Scholar]
  93. Poag, C.W. & Sevon, W.D. (1989) A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic continental margin. Geomorphology, 2, 119–157.
    [Google Scholar]
  94. Portenga, E.W., Bierman, P.R., Rizzo, D.M. & Rood, D.H. (2013) Low rates of bedrock outcrop erosion in the central Appalachian Mountains inferred from in situ 10Be. Geol. Soc. Am. Bull., 125(1–2), 201–215.
    [Google Scholar]
  95. Prince, P.S., Spotila, J.A. & Henika, W.S. (2010) New physical evidence of the role of stream capture in active retreat of the Blue Ridge escarpment, southern Appalachians. Geomorphology, 123(3–4), 305–319.
    [Google Scholar]
  96. Prince, P.S., Spotila, J.A. & Henika, W.S. (2011) Stream capture as driver of transient landscape evolution in a tectonically quiescent setting. Geology, 39, 823–826.
    [Google Scholar]
  97. Reinhardt, L.J., Bishop, P., Hoey, T.B., Dempster, T.J. & Sanderson, D.C.W. (2007) Quantification of the transient response to base‐level fall in a small mountain catchment: Sierra Nevada, southern Spain. J. Geophys. Res., 112(F3), https://doi.org/10.1029/2006JF000524.
    [Google Scholar]
  98. Reusser, L.J., Bierman, P.R., Pavich, M.J., Zen, E.‐A., Larsen, J. & Finkel, R. (2004) Rapid Late Pleistocene incision of Atlantic passive‐margin river gorges. Science, 305, 499–502.
    [Google Scholar]
  99. Reusser, L., Bierman, P., Pavich, M., Larsen, J. & Finkel, R. (2006) An episode of rapid bedrock channel incision during the last glacial cycle, measured with 10Be. Am. J. Sci., 306, 69–102.
    [Google Scholar]
  100. Reuter, J.M. (2005) Erosion rates and pattern inferred from cosmogenic 10Be in the Susquehanna River basin. MS Thesis, Burlington, University of Vermont, 160 p.
  101. Roering, J.J., Kirchner, J.W. & Dietrich, W.E. (1999) Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Reso. Res., 35, 853–870.
    [Google Scholar]
  102. Rosenbaum, G., Lister, G.S. & Duboz, C. (2002) Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. In: Reconstruction of the Evolution of the Alpine‐Himalayan Orogen (Ed. by RosenbaumG. & ListerG.S. ), J. Virt. Exp., 8(6). https://doi.org/10.3809/jvirtex.2002.00053.
    [Google Scholar]
  103. Rowley, D.B., Forte, A.M., Moucha, R., Mitrovica, J.X., Simmons, N.A. & Grand, S.P. (2013) Dynamic topography change of the Eastern United States Since 3 million years ago. Science, 340(6140), 1560–1563.
    [Google Scholar]
  104. Ruetenik, G.A., Moucha, R. & Hoke, G.D. (2016) Landscape response to changes in dynamic topography. Terra Nova, 28, 289–296.
    [Google Scholar]
  105. Sanz de Galdeano, C. & Lopez‐Garrido, A.C. (1999) Nature and impact of the neotectonic deformation in the western Sierra Nevada (Spain). Geomorphology, 30, 259–272.
    [Google Scholar]
  106. Schmandt, B. & Lin, F.‐C. (2014) P and S wave tomography of the mantle beneath the United States. Geophys. Res. Lett., 41, 6342–6349.
    [Google Scholar]
  107. Scholle, P.A. (1977) Geological studies on the COST No. B‐2 well, U.S. mid‐Atlantic outer continental shelf area. U.S. Geological Survey Circular 750. 71 p.
    [Google Scholar]
  108. Scholle, P.A. (1980) Geological studies of the COST No. B‐3 well, United States mid‐Atlantic continental slope area. U.S. Geological Survey Circular 833. 130 p.
    [Google Scholar]
  109. Schulte, L., Julià, R., Burjachs, F. & Hilgers, A. (2008) Middle Pleistocene to Holocene geochronology of the River Aguas terrace sequence (Iberian Peninsula): fluvial response to Mediterranean environmental change. Geomorphology, 98, 13–33.
    [Google Scholar]
  110. Schwanghart, W. & Scherler, D. (2014) TopoToolbox 2 – MATLAB‐based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dynam., 2, 1–7.
    [Google Scholar]
  111. Sears, J.W., Hendrix, M.S., Thomas, R.C. & Fritz, W.J. (2009) Stratigraphic record of the Yellowstone hotspot track, Neogene Sixmile Creek Formation grabens, southwest Montana. J. Volcanol. Geoth. Res., 188, 250–259.
    [Google Scholar]
  112. Seber, D., Barazangi, M., Ibenbrahim, A. & Demnati, A. (1996) Geophysical evidence for lithosphereic delamination beneath the Alboran Sea and Rif‐Betic mountains. Nature, 379, 785–790.
    [Google Scholar]
  113. Seidl, M.A., Weissel, J.K. & Pratson, L.F. (1996) The kinematics and pattern of escarpment retreat across the rifted continental margin of SE Australia. Basin Res., 8, 301–316.
    [Google Scholar]
  114. Sheridan, R.E. & Grow, J.A. (1988) The Atlantic continental margin. U. S. Geological Society of America, The Geology of North America, 1–2, 527.
    [Google Scholar]
  115. Simpson, R.W., Jachens, R.C., Blakely, R.J. & Saltus, R.W. (1986) A New isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies. J. Geophys. Res., 91(B8), 8348. https://doi.org/10.1029/JB091iB08p08348.
    [Google Scholar]
  116. Simpson, R.W., Hildenbrand, T.G., Godson, R.H. & Kane, M.F. (1987) Digital colored Bouguer gravity, free‐air gravity, station location, and terrain maps for the conterminous united states. Geophysical Investigations Map: 2 sheets.
  117. Smith, R.V. (1980) Provenance of mid‐Atlantic continental margin sediments from the COST B‐2 test well. unpublished MS Thesis. 182 p. University of Delaware, Newark, DE.
  118. Snyder, N.P., Whipple, K.X., Tucker, G.E. & Merritts, D.J. (2000) Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geol. Soc. Am. Bull., 112, 1250–1263.
    [Google Scholar]
  119. Spakman, W. & Wortel, R. (2004) A tomographic view on western Mediterranean geodynamics. In: The TRANSMED Atlas. The Mediterranean Region From Crust to Mantle (Ed. by W.Cavazza , F.Roure , W.Spakman , G.M.Stampfli & P.A.Ziegler ), pp. 31–52. Springer Berlin Heidelberg, Berlin, Heidelberg.
    [Google Scholar]
  120. Spotila, J.A., Bank, G.C., Reiners, P.W., Naeser, C.W. & Henika, W.S. (2004) Origin of the Blue Ridge escarpment along the passive margin of eastern North America. Basin Res., 16, 41–63.
    [Google Scholar]
  121. Stokes, M. (2008) Plio‐Pleistocene drainage development in an inverted sedimentary basin: Vera basin, Betic Cordillera, SE Spain. Geomorphology, 100, 193–211.
    [Google Scholar]
  122. Stokes, M. & Mather, A.E. (2003) Tectonic origin and evolution of a transverse drainage: the Rio Almanzora, Betic Cordilleria, southeast Spain. Geomorphology, 50, 59–81.
    [Google Scholar]
  123. Stokes, M., Mather, A.E. & Harvey, A.M. (2002) Quantification of river‐capture‐induced base‐level changes and landscape development, Sorbas Basin, SE Spain. Geol. Soc. Spec. Publ., 191, 23–35.
    [Google Scholar]
  124. Thornbury, W.D. (1965) Regional Geomorphology of the United States. 609 p. John Wiley and Sons, New York.
    [Google Scholar]
  125. Tucker, G.E. & Hancock, G.R. (2010) Modelling landscape evolution. Earth Surf. Proc. Land., 35, 28–50.
    [Google Scholar]
  126. Vázquez, M., Jabaloy, A., Barbero, L. & Stuart, F. (2011) Deciphering tectonic and erosion‐driven exhumation of the Nevado‐Filábride Complex (Betic Cordillera, Southern Spain) by low temperature thermochronology. Terra Nova, 23, 257–263.
    [Google Scholar]
  127. Wagner, L.S., Stewart, K. & Metcalf, K. (2012) Crustal‐scale shortening structures beneath the Blue Ridge Mountains, North Carolina, USA. Lithosphere, 4(3), 242–256.
    [Google Scholar]
  128. Ward, D.J., Spotila, J.S., Hancock, G.S. & Galbraith, J.M. (2005) New constraints on the late Cenozoic incision history of the New River, Virginia. Geomorphology, 72, 54–72.
    [Google Scholar]
  129. Wegmann, K.W., Zurek, B.D., Regalla, C.A., Bilardello, D., Wollenberg, J.L., Kopczynski, S.E., Ziemann, J.M., Haight, S.L., Apgar, J.D., Zhao, C. & Pazzaglia, F.J. (2007) Position of the Snake River watershed divide as an indicator of geodynamic processes in the greater Yellowstone region, western North America. Geosphere, 3(4), 272. https://doi.org/10.1130/GES00083.1.
    [Google Scholar]
  130. Weijermars, R., Roep, Th.B., Van den Eeckhout, B., Postma, G. & Kleverlaan, K. (1985). Uplift history of a Betic fold nappe inferred from Neogene‐Quaternary sedimentation and tectonics (in the Sierra Alhamilla and Almeria, Sorbas and Tabernas Basins of the Betic Cordilleras, SE Spain). Geol. Mijnbouw, 64, 397–411.
    [Google Scholar]
  131. Wessel, P. & Smith, W.H.F. (1991) Free software helps map and display data. Eos, Trans. Am. Geophys. Union, 72(41), 441–448.
    [Google Scholar]
  132. Whipple, K.X. & Tucker, G.E. (1999) Dynamics of the stream power river incision model: implications for height limits of mountain ranges, landscape response timescales and research needs. J. Geophys. Res., 104, 17661–17674.
    [Google Scholar]
  133. Whipple, K.X., Dibiase, R.A., Ouimet, W.B. & Forte, A.M. (2017a) Preservation or piracy: diagnosing low‐relief, high‐elevation surface formation mechanisms. Geology, 45(1), https://doi.org/10.1130/G38490.1.
    [Google Scholar]
  134. Whipple, K.X., Forte, S.M., Dibiase, R.A., Gasparini, N.M. & Ouimet, W.B. (2017b) Timescales of landscape response to divide migration and drainage capture: implications for the role of divide mobility in landscape evolution. J. Geophys. Res., Series F, 122, 248–273.
    [Google Scholar]
  135. Willett, S.D., McCoy, S.W., Perron, J.T., Goren, L. & Chen, C.Y. (2014) Dynamic reorganization of river basins. Science, 343(6175), https://doi.org/10.1126/science.1248765.
    [Google Scholar]
  136. Wilson, J.T. (1966) Did the Atlantic close and then re‐open?Nature, 211, 676–681.
    [Google Scholar]
  137. Yang, R., Willett, S.D. & Goren, L. (2015) In situ low‐relief landscape formation as a result of river network disruption. Nature, 520, 526–529.
    [Google Scholar]
  138. Yanites, B.J., Ehlers, T.A., Becker, J.K., Schnellmann, M. & Heuberger, S. (2013) High magnitude and rapid incision from river capture: Rhine River, Switzerland. J. Geophys. Res., 118, https://doi.org/10.1002/jgrf.20056.
    [Google Scholar]
  139. Young, R.W. (1989) Crustal constraints on the evolution of the continental divide of eastern Australia. Geology, 17(6), 528.
    [Google Scholar]
  140. Zeck, H.P., Moniѐ, P., Villa, I.M. & Hansen, B.T. (1992) Very high rates of cooling and uplift in the Alpine belt of the Betic Cordilleras, southern Spain. Geology, 10, 79–83.
    [Google Scholar]
  141. Zeitler, P.K., Koons, P.O., Bishop, M.L., Chamberlain, C.P., Craw, D., Edwards, M.A., Hamidullah, S., Jan, M.Q., Khan, M.A., Khattak, M.U.K., Kidd, W.S.F., Mackie, R.L., Meltzer, A.S., Park, S.K., Pecher, A., Poage, M.A., Sarker, G., Schneider, D.A., Seeber, L. & Shroder, J. (2001a) Crustal reworking at Nanga Parbat, Pakistan: evidence for erosional focusing of crustal strain. Tectonics, 20, 712–728.
    [Google Scholar]
  142. Zeitler, P.K., Meltzer, A.S., Koons, P., Craw, D., Hallet, B., Chamberlain, C.P., Kidd, W., Park, S., Seeber, L., Bishop, M. & Shroder, J. (2001b) Erosion, Himalayan geodynamics, and the geology of metamorphism. GSA Today, 11, 4–8.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12256
Loading
/content/journals/10.1111/bre.12256
Loading

Data & Media loading...

Supplements

Evaluation of Equation S8 to estimate area distortion in χ values calculation. Compilation of erosion rate data from the literature for the Gibraltar Arc study setting. Compilation of erosion rate data from the literature for the Appalachian study location. Details and scripts for study methods.

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error