1887
Volume 30, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The Centinela Mining District (CMD), Atacama Desert (northern Chile), includes several mid‐late Eocene porphyry Cu deposits that contains supergene mineralization and provides access to a record of gravel deposits that host syn‐sedimentary exotic Cu mineralized bodies. By studying these gravels, we reconstruct the unroofing history and constrain the geomorphological conditions that produced supergene and exotic Cu mineralization. We present an integrated study based on stratigraphic and sedimentological data, lithology clast counts, 40Ar/39Ar and U/Pb ages from interbedded tuff layers and U/Pb detrital zircon geochronology data. To relate the gravel deposition episodes to the timing of the supergene mineralization, we provide in‐situ and exotic supergene mineral ages (40Ar/39Ar and K‐Ar). Six gravel units were deposited between the mid‐Eocene and the mid‐Miocene. The Esperanza gravels were deposited concurrently with the emplacement of porphyry Cu deposits at depth. The subsequent Tesoro I, II and III and Atravesado gravels register the unroofing of these deposits, from the advanced argillic zone to the sericitic and prophylitic hypogene zones. The Arrieros gravels register landscape pediplanation, that is, denudational removal and wear of the landscape to base level on a relatively stable tectonic regime, occurring roughly contemporaneous with supergene activity. The supergene mineral ages of the CMD define a time span (. 25–12 Ma) during which most of the supergene ages cluster in northern Chile. This time span corresponds with a period of warm and humid climate conditions in the southern hemisphere. We conclude that landscape pediplanation favours supergene mineralization and helps preserve the former supergene mineralized zones from significant erosion. Low erosion rates during pediplanation may constitute a necessary condition for the efficiency of the supergene processes in such semi‐arid climate.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12258
2017-09-26
2020-08-13
Loading full text...

Full text loading...

References

  1. Aguilar, G., Riquelme, R., Martinod, J., Darrozes, J. & Maire, E. (2011) Erosion rates variability on landscape's transience state in the semiarid Chilean Andes. Earth Surface Processes and Landforms, 36, 1736–1748.
    [Google Scholar]
  2. Alpers, C.N. & Brimhall, G.H. (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Geol. Soc. Am. Bull., 100, 1640–1656.
    [Google Scholar]
  3. Amundson, R., Dietrich, W., Bellugi, D., Ewing, S., Nishiizumi, K., Chong, G., Owen, J., Finkel, R., Heimsath, A., Stewart, B. & Caffee, M. (2012) Geomorphologic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert. Geol. Soc. Am. Bull., 124, 1048–1070.
    [Google Scholar]
  4. Anderson, J. (1982) Characteristics of leached capping and techniques of appraisal. In: Advances in the Geology of the Porphyry Copper Deposits (Ed. by S.R.Titley ), pp. 275–296. University of Arizona Press, Tucson, AZ.
    [Google Scholar]
  5. Arancibia, G., Matthews, S.J. & de Arce, C.P. (2006) K‐Ar and 40Ar/39Ar geochronology of supergene processes in the Atacama Desert, Northern Chile: tectonic and climatic relations. J. Geol. Soc. London, 163, 107–118.
    [Google Scholar]
  6. Arriagada, C., Roperch, P., Mpodozis, C. & Cobbold, P.R. (2008) Paleogene building of the Bolivian orocline: tectonic restoration of the Central Andes in 2‐D map view. Tectonics, 27, TC6014, 14 p. https://doi.org/10.1029/2008 TC002269.
    [Google Scholar]
  7. Basso, M. & Mpodozis, C. (2012) Carta Cerro Quimal, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 143, 1‐46. 1 mapa escala 1:100.000. Santiago, Chile.
  8. Bissig, T. & Riquelme, R. (2009) Contrasting landscape evolution and development of supergene enrichment in the El Salvador porphyry Cu and Potrerillos‐El Hueso Cu–Au districts, Northern Chile. In: Supergene Environments, Processes and Products (Ed. by TitleyS. ) Soc. Econ. Geol. Spec. Publ., 14, 59–68.
    [Google Scholar]
  9. Bissig, T. & Riquelme, R. (2010) Andean uplift and climate evolution in the southern Atacama Desert deduced from geomorphology and supergene alunite‐group minerals. Earth Planet. Sci. Lett., 299, 447–457.
    [Google Scholar]
  10. Blanco, N. & Tomlinson, A. (2002) Estudio estratigráfico y sedimentológico del Distrito Minero El Tesoro. Unplublished report, 29 pp.
  11. Bordy, E.M. & Catuneanu, O. (2001) Sedimentology of the upper Karoo fluvial strata in the Tuli Basin. J. Afr. Earth Sci., 33, 605–629.
    [Google Scholar]
  12. Bouzari, F. & Clark, A. (2002) Anatomy, evolution, and metallogenic significance of the supergene orebody of the Cerro Colorado porphyry copper deposit, I Región, Northern Chile. Econ. Geol., 97, 1701–1740.
    [Google Scholar]
  13. Brachert, T.C. & Dullo, W.C. (2000) Shallow burial diagenesis of skeletal carbonates; selective loss of aragonite shell material (Miocene to Recent, Queensland Plateau and Queensland Trough, NE Australia); implications for shallow coolwater carbonates. Sediment. Geol., 136, 169–187.
    [Google Scholar]
  14. Braxton, D.P., Cooke, D.R., Dunlap, J., Norman, M., Reiners, P., Stein, H. & Waters, P. (2012) From crucible to graben in 2.3 Ma: a high‐resolution geochronological study of porphyry life cycles, Boyongan‐Bayugo copper‐gold deposits, Philippines. Geology, 40, 471–474.
    [Google Scholar]
  15. Brimhall, G.H., Alpers, C.N. & Cunningham, A.B. (1985) Analysis of supergene ore‐forming processes and ground water solute transport using mass balance principles. Econ. Geol., 80, 1227–1256.
    [Google Scholar]
  16. Campos, E., Menzies, A., Sola, S., Hernández, V., Riquelme, R. & Barraza, M. (2015) Understanding Exotic‐Cu Mineralisation: Part I – Characterization of Chrysocolla. 13th SGA Biennial Meeting, France.
  17. Carretier, S., Tolorza, V., Rodriguez, M.P., Aguilar, G., Martinod, J., Riquelme, R., Christophoul, F., Charrier, R., Gayer, E., Farías, M., Audin, L. & Lagane, C. (2014) Erosion in the Andes between 27S and 40S: Tectonic, climatic or geomorphic control ?. In: Geodynamic Processes in the Andes of Central Chile and Argentina (Ed. by SepúlvedaS.A. , GiambiagiL.B. , MoreirasS.M. , PintoL. , TunikM. , HokeG.D. & FaríasM. ) Geol. Soc. London Spec. Publ., 399. https://doi.org/10.1144/sp399.16.
    [Google Scholar]
  18. Chávez, W.X. (2000) Supergene oxidation of copper deposits: zoning and distribution of copper oxide minerals. Soc. Econ. Geol. Newsletter, 41, 1–21.
    [Google Scholar]
  19. Clark, A.H., Mortimer, C. & Sillitoe, R.H. (1967) Implications of the isotopic ages of ignimbrite flows, Southern Atacama Desert, Chile. Nature, 215(5102), 723–724.
    [Google Scholar]
  20. Clark, A.H., Tosdal, R.M., Farrar, E. & Plazolles, V.A. (1990) Geomorphologic environment and age of supergene enrichment of the Cuajone, Quellaveco, and Toquepala porphyry copper deposits southern Peru. Econ. Geol., 85, 1604–1628.
    [Google Scholar]
  21. Cornejo, P., Mpodozis, C., Ramírez, C. F. & Tomlinson, A. (1993). Estudio geológico de la región de Potrerillos y El Salvador (26°–27° Lat. S). Servicio Nacional de Geología y Minería (SERNAGEOMIN), Santiago, Chile, Registered Report IR‐93‐01.
  22. Cornejo, P. & Mpodozis, C. (2015) Aptian (122‐116 Ma) silver mineralization in extensión‐related magmatism in the Domeyko Cordillera: the Caracoles district, northern Chile. XIV Congreso Geológico Chileno, La Serena.
  23. Davis, W.M. (1905) The geographical cycle in an arid climate. J. Geol., 13, 381–407.
    [Google Scholar]
  24. Dill, H.G. (2007) A review of mineral resources in Malawi: with special reference to aluminum variation in mineral deposits. J. Afr. Earth Sc., 47, 153–173.
    [Google Scholar]
  25. Dilles, J., Tomlinson, A., García, M. & Alcota, H. (2011) The geology of the Fortuna Granodiorite Complex, Chuquicamata district, northern Chile: Relation to porphyry copper deposits, SGA Biennial Meeting, 11 th, Antofagasta, 399−401.
  26. Dohrenwend, J.C. & Parsons, A.J. (2009) Pediments in arid environments. Geomorphology of Desert Environments, pp. 377–411. Springer Science + Business Media B.V., Amsterdam, the Netherlands.
    [Google Scholar]
  27. Dunai, T.J., Gónzalez‐López, G.A., Juez‐Larré, J. & Carrizo, D. (2005) Oligocene/Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion sensitive landforms. Geology, 33, 321–324.
    [Google Scholar]
  28. Emmons, W.H. (1917) The enrichment of ore deposits. U.S. Geol. Surv. Bull., 625, 530p.
    [Google Scholar]
  29. Evenstar, L.A., Hartley, A.J., Stuart, F.M., Mather, A.E., Rice, C.M. & Chong, G. (2009) Multiphase development of the Atacama Planation Surface recorded by cosmogenic He‐3 exposure ages: implications for uplift and Cenozoic climate change in western South America. Geology, 37, 658–658.
    [Google Scholar]
  30. Farías, M., Charrier, R., Comte, D., Martinod, J. & Hérail, G. (2005) Late Cenozoic deformation and uplift of the western flank of the Altiplano: evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19°30′S). Tectonics, 24. https://doi.org/10.1029/2004tc001667 (TC4001).
    [Google Scholar]
  31. Fernández‐Mort, A., Alonso‐Zarza, A.M., Riquelme, R. & Campos, E. (2016) Origen y contexto sedimentario de depósitos de cobre exótico Cenozoicos del Desierto de Atacama, norte de Chile. Geo‐Temas, 16(1), 213–216.
    [Google Scholar]
  32. Flower, B.P. & Kennett, J.P. (1994) The middle Miocene climatic transition; East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol., 108(1994), 537–555.
    [Google Scholar]
  33. Garcia, M., Riquelme, R., Farias, M., Herail, G. & Charrier, R. (2011) Late Miocene‐Holocene canyon incision in the western Altiplano, northern Chile; 11 tectonic or climatic forcing?J. Geol. Soc., 168, 1–14.
    [Google Scholar]
  34. Gehrels, G. (2010) Detrital Zircon U‐Pb Geochronology: Current Methods and New Opportunities. In: Recent Advances in Tectonics of Sedimentary Basins (Ed. by C.Busby & A.Azor ), pp. 47–62. Blackwell Publishing, Hoboken, NJ.
    [Google Scholar]
  35. Gustafson, L.B. & Hunt, J.P. (1975) The porphyry copper deposit at El Salvador Chile. Econ. Geol., 70, 857–912.
    [Google Scholar]
  36. Hartley, A.J. (2003) Andean uplift and climate change. J. Geol. Soc., 160, 7–10.
    [Google Scholar]
  37. Hartley, A.J. & Chong, G. (2002) Late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology, 30, 43–46.
    [Google Scholar]
  38. Hartley, A.J. & Rice, C.M. (2005) Controls on supergene enrichment of porphyry copper deposits in the Central Andes: a review and discussion. Miner. Deposita, 40, 515–525.
    [Google Scholar]
  39. Hinojosa, L.F. (2005) Cambios climaticos y vegetacionales inferidos a partir de paleofloras cenozoicas del sur de Sadamerica. Rev. Geol. Chile, 32(1), 95–115.
    [Google Scholar]
  40. Hinojosa, L.F. & Villagran, C. (2005) Did South American Mixed Paleofloras evolve under thermal equability or in the absence of an effective Andean barrier during the Cenozoic?Palaeogeogr. Palaeoclimatol. Palaeoecol., 217, 1–23.
    [Google Scholar]
  41. Hogg, S. (1982) Sheetfloods, sheetwash, shetflow, or..?Earth‐Cience Rev., 18, 59–76.
    [Google Scholar]
  42. Horton, B.K. & Schmitt, J.G. (1996) Sedimentology of the lacustrine fan‐delt'a system, Miocene Horse Camp Formation, Nevada, USA. Sedimentology, 43, 133–155.
    [Google Scholar]
  43. Jordan, T.E., Kirk‐Lawlor, N., Blanco, N., Nester, P. & Rech, J. (2014) Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile. Geol. Soc. Am. Bull., 126, B30978–B30971.
    [Google Scholar]
  44. Kay, S.M., Godoy, E. & Kurtz, A. (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south‐central Andes. GSA Bull., 117, 67–88.
    [Google Scholar]
  45. Lamb, S. & Davis, P. (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature, 425, 792–797.
    [Google Scholar]
  46. Lanphere, M.A. & Dalrymple, G.B. (2000) First‐principles calibration of 38 Ar tracers: implications for the ages of 40 Ar/ 39 Ar fluence monitors. U.S. Geological Survey Professional Paper, 1621, 10 pp.
  47. Layer, P.W. (2000) 40 Argon/ 39 Argon age of the El'gygytgyn impact event, Chukotka, Russia. Meteorit. Planet. Sci., 35, 591–599.
    [Google Scholar]
  48. Li, J.‐W. & Vasconcelos, P. (2002) Cenozoic continental weathering and its implications for the palaeoclimate: evidence from 40 Ar/ 39 Ar geochronology of supergene K‐Mn oxides in Mt Tabor, central Queensland, Australia. Earth Planet. Sci. Lett., 200, 223–239.
    [Google Scholar]
  49. Ludwig, K.R. (2008) Isoplot 3.6. Berkeley Geochron. Ctr. Spec. Pub., 4, 1–77.
    [Google Scholar]
  50. Maksaev, V. & Zentilli, M. (1999) Fission track thermochronology of the Domeyko Cordillera, Northern Chile: implications for Andean tectonics and porphyry copper metallogenesis. Explor. Min. Geol., 8, 65–89.
    [Google Scholar]
  51. Marinovic, N. & García, M. (1999) Hoja Pampa Unión, Región de Antofagasta. Escala 1:100.000, Servicio Nacional de Geología y Minería, Mapas Geológicos, N° 9, Santiago.
  52. Marsh, T., Einaudi, M. & McWilliams, M. (1997) 40Ar/39Ar geochronology of Cu–Au and Au–Ag mineralization in the Potrerillos District, Chile. Econ. Geol., 92, 784–806.
    [Google Scholar]
  53. May, G., Hartley, A., Chong, G., Stuart, F., Turner, P. & Kape, S. (2005) Eocene to Pleistocene lithoestratigraphy, chonostratigraphy and tectono‐sedimentary evolution of the Calama Basin, northern Chile. Rev. Geol. Chile, 32, 33–58.
    [Google Scholar]
  54. Menzies, A., Campos, E., Hernández, V., Sola, S. & Riquelme, R. (2015) Understanding Exotic‐Cu Mineralisation: Part II ‐ Characterisation of Black Copper (“Cobre Negro”). 13th SGA Biennial Meeting, France.
  55. Miall, A.D. (1977) A review of the braided river depositional environment. Earth‐Sci. Rev., 13, 1–62.
    [Google Scholar]
  56. Miall, A.D. (1996) The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology, 582 pp. Springer, New York.
    [Google Scholar]
  57. Mora, R., Artal, J., Brockway, H., Martínez, E. & Muhr, R. (2004) El Tesoro exotic copper deposit, Antofagasta Region, northern Chile. Soc. Econ. Geol. Spec. Publ., 11, 187–197.
    [Google Scholar]
  58. Morandé, J. (2014) El basamento pre‐Mesozoico de la Sierra Limón Verde: Implicancias para la evolución tectónica del norte de Chile. M. Sc. Thesis (Unpublished), Departamento de Geología, Universidad de Chile, 121 pp.
  59. Mortimer, C. (1973) The Cenozoic history of the southern Atacama Desert, Chile. Geol. Soc. London J., 129, 505–526.
    [Google Scholar]
  60. Mortimer, C. (1980) Drainage evolution of the Atacama Desert of northernmost Chile. Rev. Geol. Chile, 11, 3–28.
    [Google Scholar]
  61. Mote, T., Becker, T., Renne, P. & Brimhall, G. (2001) Chronology of exotic mineralization at El Salvador, Chile, by 40Ar/39Ar dating of copper wad and supergene alunite. Econ. Geol., 96, 351–366.
    [Google Scholar]
  62. Mpodozis, C. & Cornejo, P. (2012) Cenozoic tectonics and porphyry copper systems of the Chilean Andes. Soc. Econ. Geol. Spec. Publ., 16, 329–360.
    [Google Scholar]
  63. Mpodozis, C. & Perelló, J. (2003) Porphyry copper metallogeny of the middle‐Eocene‐early Oligocene arc of western South America. Relationships with volcanism and arc segmentation‐ In: X Congreso Geológico Chileno, Concepción, Extended Abstracts (CD), 1 p.
  64. Mpodozis, C., Marinovic, N., Smoje, I. & Cuitiño, L. (1993) Estudio geológico‐estructural de la Cordillera de Domeyko entre Sierra Limón Verde y Sierra Mariposa, Región de Antofagasta. Escala 1:100.000, Santiago, Chile, Servicio Nacional de Geología y Minería, Informe Registrado, IR‐93‐04, 282 p., Santiago.
  65. Münchmeyer, C. (1996). Exotic deposits – products of lateral migration of supergene solutions from porphyry copper deposits. In: Andean Copper Deposits: New Discoveries, Mineralization, Styles and Metallogeny (Ed. by F.Camus , R. H.Sillitoe & R.Petersen ) Soc. Econ. Geol. Spec. Publ., 5, 43–58.
    [Google Scholar]
  66. Nalpas, T., Hérail, G., Mpodozis, C., Riquelme, R., Clavero, J. & Dabard, M.P. (2005) Thermochronological data and denudation history along a transect between Chañaral and Pedernales (˜26° S), North Chilean Andes: Orogenic implications. In: International Symposium on Andean Geodynamics, 6 th, Barcelona, 548−551.
  67. Nalpas, T., Dabard, M.‐P., Ruffet, G., Vernon, A., Mpodozis, C., Loi, A. & Hérail, G. (2008) Sedimentation and preservation of the Miocene Atacama Gravels in the Pedernales–Chañaral Area, Northern Chile: Climatic or tectonic control?Tectonophysics, 259, 161–173.
    [Google Scholar]
  68. Nemec, W. & Steel, R.J. (1984) Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass‐flow deposits. In: Sedimentology of Gravels and Conglomerates (Ed. by E.H. Koster & R.J. Steel), Canadian Society of Petroleum Geologists Memoir, 10, 1–31.
    [Google Scholar]
  69. Niemeyer, H. & Urrutia, C. (2009) Transcurrencia a lo largo de la Falla Sierra de Varas (Sistema de fallas de la Cordillera de Domeyko), norte de Chile. Andean Geol., 36, 37–49.
    [Google Scholar]
  70. Oerter, E., Amundson, R., Heimsath, A., Jungers, M., Chong, G. & Renne, P. (2016) Early to middle miocene climate in the atacama desert of Northern Chile. Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 890–900.
    [Google Scholar]
  71. Olivares, B. (2001). Alzamiento, termocronometría y evolución tectónica de bloques en la Cordillera de Domeyko, Norte de Chile. M. Sc. Thesis (Unpublished), Departamento de Geología, Universidad de Chile, 70 pp.
  72. de Oliveira Carmo, I. & Vasconcelos, P.M. (2006) 40Ar/39Ar geochronology constraints on late Miocene weathering rates in Minas Gerais, Brazil. Earth Planet. Sci. Lett., 241, 80–94.
    [Google Scholar]
  73. Parnel, J., Mark, D.F., Frei, R., Fallick, A.E. & Ellam, R.M. (2014) 40 Ar/ 39 Ar dating of exceptional concentration of metals by weathering of Precambrian rocks at the Precambrian–Cambrian boundary. Precambr. Res., 246, 54–63.
    [Google Scholar]
  74. Perelló, J., Muhr, R., Mora, R., Martinez, E., Brockway, H., Swaneck, T., Artal, J., Mpodozis, C., Münchmeyer, C., Clifford, J., Acuña, E., Valenzuela, D. & Argandoña, R. (2010) Wealth Creation through Exploration in a Mature Terrain: the Case History of the Centinela District, Northern Chile Porphyry Copper Belt. Soc. Econ. Geol. Spec. Publ., 15, 229–252.
    [Google Scholar]
  75. Phillips, J.D. (2002) Erosion, isostatic response, and the missing peneplains. Geomorphology, 45(2002), 225–241.
    [Google Scholar]
  76. Quang, C.X., Clark, A.H., Lee, J.K.W. & Guillén, B.J. (2003) 40Ar–39Ar ages of hypogene and supergene mineralization in the Cerro Verde‐Santa Rosa porphyry Co–Mo cluster, Arequipa, Peru′. Econ. Geol., 98, 1683–1696.
    [Google Scholar]
  77. Quang, C.X., Clark, A.H., Lee, J.K.W. & Hawkes, N. (2005) Response of supergene process to episodic Cenozoic uplift, pediment erosion, and ignimbrite eruption in the porphyry copper province of Southern Perú. Econ. Geol., 100, 87–114.
    [Google Scholar]
  78. Ransome, F.L. (1919) The copper deposits of Ray and Miami, Arizona. U.S. Geol. Surv. Prof. Pap., 115, 192p.
    [Google Scholar]
  79. Rech, J.A., Currie, B.S., Michalski, G. & Cowan, M. (2006) Neogene climate change and uplift in the Atacama Desert, Chile. Geology, 34, 761–764.
    [Google Scholar]
  80. Rech, J.A., Currie, B.S., Shullenberger, E.D., Dunagean, S.P., Jordan, T.E., Blanco, N., Tomlinson, A.J., Rowe, H.D. & Houston, J. (2010) Evidence for the development of the Andean rain shadow from a Neogene isotopic record in the Atacama Desert, Chile. Earth Planet. Sci. Lett., 292, 371–382.
    [Google Scholar]
  81. Reich, M., Palacios, C., Vargas, G., Luo, S., Cameron, E.M., Leybourne, M.I., Parada, M.A., Zúñiga, A. & You, C.‐F. (2009) Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile. Minerallium. Deposita, 44, 497–504.
    [Google Scholar]
  82. Reutter, K.‐J., Scheuber, E. & Chong, G. (1996) The Precordilleran fault system of Chuquicamata, northern Chile: Evidence for reversals along arc‐parallel strike‐slip faults. Tectonophysics, 259, 213–228.
    [Google Scholar]
  83. Riquelme, R., Martinod, J., Hérail, G., Darrozes, J. & Charrier, R. (2003) A geomorphological approach to determining the Neogene to Recent tectonic deformation in the Coastal Cordillera of northern Chile (Atacama). Tectonophysics, 361, 255–275.
    [Google Scholar]
  84. Riquelme, R., Hérail, G., Martinod, J., Charrier, R. & Darrozes, J. (2007) Late Cenozoic geomorphologic signal of Andean forearc deformation and tilting associated with the uplift and climate changes of the Southern Atacama Desert (26°S‐28°S). Geomorphology, 86, 283–306.
    [Google Scholar]
  85. Rodriguez, M.P., Carretier, S., Charrier, R., Saillard, M., Regard, V., Herail, G., Hall, S., Farber, D. & Audin, L. (2013) Geochronology of pediments and marine terraces in north‐central Chile and their implications for Quaternary uplift in the Western Andes. Geomorphology, 180, 33–46.
    [Google Scholar]
  86. Sáez, A., Cabrera, L., Jensen, A. & Chong, G. (1999) Late Neogene lacustrine record and paleogeography in the Quillagua‐Llamara basin, Central Andean fore‐arc (northern Chile). Palaeogeogr. Palaeoclimatol. Palaeoecol., 151, 5–37.
    [Google Scholar]
  87. Sáez, A., Cabrera, L., Garcés, M., van den Bogaard, P., Jensen, A. & Gimeno, D. (2012) The stratigraphic record of changing hyperaridity in the Atacama Desert over the last 10 Ma. Earth Planet. Sci. Lett., 355–356, 32–38.
    [Google Scholar]
  88. Sanchez, C., Brichau, S., Riquelme, R., Lopez, C., Campos, E., Farias, M., Mpodozis, C., Regard, V. & Herail, G. (2015) Low temperature thermochronology, porphyry‐Cu exhumation history and supergene enrichment in the Centinela District, Atacama Desert, Chile. XIV Congreso Geológico Chileno, La Serena, Extended Abstracts (CD), 1 pp.
  89. Sillitoe, R. (2005) Supergene Oxidized and Enriched Porphyry Copper and related Deposits. Economic Geology 100 th Anniversary Volume, 723–768.
  90. Sillitoe, R. (2010) Porphyry copper systems. Econ. Geol., 105, 3–41.
    [Google Scholar]
  91. Sillitoe, R. & McKee, H. (1996) Age of supergene oxidation and enrichment in the Chilean porphyry copper province. Econ. Geol., 91, 164–179.
    [Google Scholar]
  92. Sillitoe, R.H. & Perelló, J. (2005) Andean copper province: Tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery. Economic Geology 100 th Anniversary Volume, 845–890.
  93. Sillitoe, R.H., Mortimer, C. & Clark, A.H. (1968) A chronology of landform evolution and supergene mineral alteration, southern Atacama Desert, Chile. Trans. Inst. Min. Metall. (Sect. B: Appl. Earth sci.), 77, B166–B169.
    [Google Scholar]
  94. Smith, G.A. (1986) Coarse‐grained nonmarine volcaniclastic sediment: terminology and depositional process. Geol. Soc. Am. Bull., 97, 1–10.
    [Google Scholar]
  95. Spier, C.A., Vasconcelos, P.M. & Oliviera, S.M.B. (2006) 40 Ar/ 39 Ar geochronological constraints on the evolution of lateritic iron deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Chem. Geol., 234, 79–104.
    [Google Scholar]
  96. Stern, C.R. (2004) Active Andean volcanism: its geologic and tectonic setting. Rev. Geol. Chile, 31, 161–206.
    [Google Scholar]
  97. Strudley, M.W. & Murray, A.B. (2007) Sensitivity analysis of pediment development through numerical simulation and selected geospatial query. Geomorphology, 88, 329–351.
    [Google Scholar]
  98. Svendsen, J., Stollhofen, H., Krapf, C.B.E. & Stanistreet, I.G. (2003) Mass and hyperconcentrated flow deposits record dune damming and catastrophic breakthrough of ephemeral rivers, Skeleton Coast Erg, Namibia. Sediment. Geol., 160, 7–31.
    [Google Scholar]
  99. Tapia, M., Riquelme, R., Marquardt, C., Mpodozis, C. & Mora, R. (2012) Estratigrafía y sedimentología de la Cuenca El Tesoro, Distrito Centinela (región de Antofagasta) y su relación con la mineralización exótica de cobre. In: XIII Congreso Geológico Chileno, Antofagasta.
  100. Tomlinson, A.J. & Blanco, N. (1997a) Structural evolution and displacement history of the West fault system, Precordillera, Chile: Pt. 1. Synmineral history. In: VIII Congreso Geológico Chileno, Antofagasta, 3, 1873−1878.
  101. Tomlinson, A.J. & Blanco, N. (1997b) Structural evolution and displacement history of the West fault system, Precordillera, Chile: Pt. 2. Postmineral history. In VIII Congreso Geológico Chileno, Antofagasta, 3, 1878–1882.
  102. Tomlinson, A.J., Dilles, J.H. & Maksaev, V. (2001) Application of apatite (U‐Th)/He thermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper deposit, Chile—a discussion. Econ. Geol., 96, 1307–1309.
    [Google Scholar]
  103. Tosdal, R.M. (1978) The timing of the geomorphic and tectonic evolution of the southernmost Peruvian Andes. Unpublished M.Sc. thesis, Kingston, Ontario, Queen's University, 136 pp.
  104. Truswell, E.M. (1993) Vegetation changes in the Australian Tertiary in response to climatic and phytogeographic forcing factors. Aust. Syst. Bot., 6(1993), 533–557.
    [Google Scholar]
  105. Uba, C.E., Heubeck, C. & Hulka, C. (2005) Facies analysis and basin architecture of the Neogene Subandean synorogenic wedge, southern Bolivia. Sediment. Geol., 180, 91–123.
    [Google Scholar]
  106. Vasconcelos, P.M. (1999) K–Ar and 40Ar/39Ar geochronology of weathering processes. Annu. Rev. Earth Planet. Sci., 27, 183–229.
    [Google Scholar]
  107. Vasconcelos, P.M., Reich, M. & Shuster, L. (2015) The paleoclimatic signatures of supergene metal deposits. Elements, 11, 317–322.
    [Google Scholar]
  108. Waresback, D.B. & Turbeville, B.N. (1990) Evolution of a Plio‐Pleistocene volcanogenic–alluvial fan: the Puye Formation, Jemez Mountains, NewMexico. Geol. Soc. Am. Bull., 102, 298–314.
    [Google Scholar]
  109. de Wet, C.B., Godfrey, L. & Andrew, P. (2015) Sedimentology and stable isotopes from a lacustrine‐to‐palustrine limestone deposited in an arid setting, climatic and tectonic factors: Miocene‐Pliocene Opache Formation, Atacama Desert, Chile. Palaeogeogr. Palaeoclimatol. Palaeoecol., 426, 46–67.
    [Google Scholar]
  110. Yanites, B.J. & Kesler, S.E. (2015) A climate signal in exhumation patterns revealed by porphyry copper deposits. Nat. Geosci., 8, 462–465.
    [Google Scholar]
  111. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science, 292, 686.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12258
Loading
/content/journals/10.1111/bre.12258
Loading

Data & Media loading...

Supplements

Table of equivalences between the stratigraphic units previously defined in the Centinela district and the gravel units presented in this work.

WORD

. Geologic map reported by Blanco & Tomlinson (2002). The focus is on the gravel units exposed around the Tesoro and Tesoro NE mine and includes the qualitative data for the clast composition from these gravels. The equivalence between these gravels units and the gravel units reported in this work is presented in the Table S1.

PDF

. Volcanic tuff age geochronological data. . Detrital Zircon geochronological data.

PDF
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error