1887
Volume 30, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Integration of detrital zircon geochronology and three‐dimensional (3D) seismic‐reflection data from the Molasse basin of Austria yields new insight into Oligocene‐early Miocene palaeogeography and patterns of sediment routing within the Alpine foreland of central Europe. Three‐dimensional seismic‐reflection data show a network of deep‐water tributaries and a long‐lived (>8 Ma) foredeep‐axial channel belt that transported Alpine detritus greater than 100 km from west to east. We present 793 new detrital zircon ages from 10 sandstone samples collected from subsurface cores located within the seismically mapped network of deep‐water tributaries and the axial channel belt. Grain age populations correspond with major pre‐Alpine orogenic cycles: the Cadomian (750–530 Ma), the Caledonian (490–380 Ma) and the Variscan (350–250 Ma). Additional age populations correspond with Eocene‐Oligocene Periadriatic magmatism (40–30 Ma) and pre‐Alpine, Precambrian sources (>750 Ma). Although many samples share the same age populations, the abundances of these populations vary significantly. Sediment that entered the deep‐water axial channel belt from the west (Freshwater Molasse) and southwest (Inntal fault zone) is characterized by statistically indistinguishable age distributions that include populations of Variscan, Caledonian and Cadomian zircon at modest abundances (15–32% each). Sandstone from a shallow marine unit proximal to the northern basin margin consists of >75% Variscan (350–300 Ma) zircon, which originated from the adjacent Bohemian Massif. Mixing calculations based on the Kolmogorov–Smirnoff statistic suggest that the Alpine fold‐thrust belt south of the foreland was also an important source of detritus to the deep‐water Molasse basin. We interpret evolving detrital zircon age distributions within the axial foredeep to reflect a progressive increase in longitudinal sediment input from the west (Freshwater Molasse) and/or southwest (Inntal fault zone) relative to transverse sediment input from the fold‐thrust belt to the south. We infer that these changes reflect a major reorganization of catchment boundaries and denudation rates in the Alpine Orogen that resulted in the Alpine foreland evolving to dominantly longitudinal sediment dispersal. This change was most notably marked by the development of a submarine canyon during deposition of the Upper Puchkirchen Formation that promoted sediment bypass eastward from Freshwater Molasse depozones to the Molasse basin deep‐water axial channel belt. The integration of 3D seismic‐reflection data with detrital zircon geochronology illustrates sediment dispersal patterns within a continental‐scale orogen, with implications for the relative role of longitudinal vs. transverse sediment delivery in peripheral foreland basins.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12259
2017-09-21
2024-03-29
Loading full text...

Full text loading...

References

  1. Allen, P.A., Crampton, S.L. & Sinclair, H.D. (1991) The inception and early evolution of the North Alpine Foreland Basin, Switzerland. Basin Res., 3, 143–163.
    [Google Scholar]
  2. Anfinson, O.A., Stockli, D.F., Miller, J.C. & Smye, A.J. (2014) Detrital Zircon and Rutile Geochronology and Petrochronology of the Central Northern Alpine Foreland Basin, Switzerland. International Sedimentologic Congress, Geneva, Switzerland.
    [Google Scholar]
  3. Anfinson, O.A., Malusà, M.G., Ottria, G., Dafov, L.N. & Stockli, D.F. (2016) Tracking coarse‐grained gravity flows by LASS‐ICP‐MS depth‐profiling of detrital zircon (Aveto Formation, Adriatic foredeep, Italy). Mar. Pet. Geol., 77, 1163–1176.
    [Google Scholar]
  4. Bachmann, G.H. & Müller, M. (1991) The Molasse basin, Germany: evolution of a classic petroliferous foreland basin. In: Generation, Accumulation, and Production of Europe's Hydrocarbons (Ed. by SpencerA.M. ) European Association of Petroleum Geoscientists, Spec. Publ., 1, 263–276.
    [Google Scholar]
  5. Beltrán‐Triviño, A., Winkler, W. & Von Quadt, A. (2013) Tracing Alpine sediment sources through laser ablation U‐Pb dating and Hf‐isotopes of detrital zircons. Sedimentology, 60, 197–224.
    [Google Scholar]
  6. Bernhardt, A., Jobe, Z.R., Grove, M. & Lowe, D.R. (2012) Palaeogeography and diachronous infill of an ancient deep‐marine foreland basin, Upper Cretaceous Cerro Toro Formation, Magallanes Basin. Basin Res., 24, 269–294.
    [Google Scholar]
  7. Black, L.P., Kamo, S., Allen, C., Davis, D., Aleinikoff, J.N., Valley, J., Mundil, R., Campbell, I.H., Korsch, R., Williams, I.S., & Foudoulis, C. (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace‐element related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol., 205(1–2), 115–140.
    [Google Scholar]
  8. Brügel, A. (1998) Provenances of alluvial conglomerates from the East Alpine foreland: Oligo‐Miocene denudation history and drainage evolution of the Eastern Alps: Tübinger Geowissenschaftliche Arbeiten, Band 40, 168 p.
  9. Brügel, A., Dunkl, I., Frisch, W., Kuhlemann, J. & Balogh, K. (2000) The record of Periadriatic volcanism in the Eastern Alpine Molasse zone and its palaeogeographic implications. Terra Nova, 12, 42–47.
    [Google Scholar]
  10. Brügel, A., Dunkl, I., Frisch, W., Kuhlemann, J. & Balogh, K. (2003) Geochemistry and geochronology of gneiss pebbles from foreland molasse conglomerates: geodynamic and paleogeographic implications for the Oligo‐Miocene evolution of the Eastern Alps. J. Geol., 111, 543–563.
    [Google Scholar]
  11. Burbank, D.W. (1992) Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature, 357, 680–683.
    [Google Scholar]
  12. Carvajal, C., Steel, R. & Petter, A. (2009) Sediment supply: the main driver of shelf‐margin growth. Earth Sci. Rev., 96, 221–248.
    [Google Scholar]
  13. Castelltort, S. & Driessche, J.V.D. (2003) How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sed. Geol., 157, 3–13.
    [Google Scholar]
  14. Covault, J.A. & Fildani, A. (2014) Continental shelves as sediment capacitors or conveyors; source‐to‐sink insights from the Oceanside shelf, southern California, USA. In: Continental Shelves of the World; Their Evolution During the Last Glacio‐Eustatic Cycle (Ed. by ChiocciF.L. & ChivasA. ) Geol. Soc. London Memoirs, 41, 315–326.
    [Google Scholar]
  15. Covault, J.A., Hubbard, S.M., Graham, S.A., Hinsch, R. & Linzer, H.G. (2009) Turbidite‐reservoir architecture in complex foredeep‐margin and wedge‐top depocenters, Tertiary Molasse foreland basin system, Austria. Mar. Pet. Geol., 26, 379–396.
    [Google Scholar]
  16. Covault, J.A., Craddock, W.H., Romans, B.W., Fildani, A. & Gosai, M. (2013) Spatial and temporal variations in landscape evolution; historic and longer‐term sediment flux through global catchments. J. Geol., 121, 35–56.
    [Google Scholar]
  17. Coward, M. & Dietrich, D. (1989) Alpine tectonics – an overview. In: Alpine Tectonics (Ed. by CowardM.P. , DietrichD. & ParkR .) Geol. Soc. London Spec. Publ., 45, 1–29.
    [Google Scholar]
  18. DeCelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  19. Degraaff‐Surpless, K., Graham, S.A., Wooden, J.L. & McWilliams, M.O. (2002) Detrital zircon provenance analysis of the Great Valley Group, California: evolution of an arc‐forearc system. Geol. Soc. Am. Bull., 114, 1564–1580.
    [Google Scholar]
  20. Deptuck, M.E., Sylvester, Z., Pirmez, C. & O'Byrne, C. (2007) Migration‐aggradation history and 3‐D seismic geomorphology of submarine channels in the Pleistocene Benin‐major Canyon, western Niger Delta slope. Mar. Pet. Geol., 24, 406–433.
    [Google Scholar]
  21. Fertig, J., Graf, R., Lohr, H., Mau, J. & Muller, M. (1991) Seismic sequences and facies analysis of the Puchkirchen Formation, Molasse basin, south‐east Bavaria, Germany. In: Generation, Accumulation, and Production of Europe's Hydrocarbons (Ed. by SpencerA.M. ) European Association of Petroleum Geoscientists, Spec. Publ., 1, 277–287.
    [Google Scholar]
  22. Fildani, A. & Hessler, A.M. (2005) Stratigraphic record across a retroarc basin inversion: Rocas Verdes‐Magallanes basin, Patagonian Andes, Chile. Geol. Soc. Am. Bull., 117, 1596–1614.
    [Google Scholar]
  23. Fletcher, J.M., Grove, M., Kimbrough, D., Lovera, O. & Gehrels, G.E. (2007) Ridge‐trench interactions and the Neogene tectonic evolution of the Magdalena shelf and southern Gulf of California: insights from detrital zircon U‐Pb ages from the Magdalena fan and adjacent areas. Geol. Soc. Am. Bull., 119, 1313–1336.
    [Google Scholar]
  24. Fonneland, H.C., Lien, T., Martinsen, O.J., Pedersen, R.B. & Kosler, J. (2004) Detrital zircon ages: a key to understanding the deposition of deep marine sandstones in the Norwegian North Sea. Sed. Geol., 164, 147–159.
    [Google Scholar]
  25. Fosdick, J.C., Graham, S.A. & Hilley, G.E. (2014) Influence of attenuated lithosphere and sediment loading on flexure of the deep‐water Magallanes retroarc foreland basin, Southern Andres. Tectonics, 33, https://doi.org/10.1002/2014TC003684.
    [Google Scholar]
  26. Frisch, W., Kuhlemann, J., Dunkl, I. & Brügel, A. (1998) Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion. Tectonophysics, 297, 1–15.
    [Google Scholar]
  27. Frisch, W., Brügel, A., Dunkl, I., Kuhlemann, J. & Satir, M. (1999) Post‐collisional large‐scale extension and mountain‐uplift in the Eastern Alps. Memorie di Scienze Geologiche, 51, 3–23.
    [Google Scholar]
  28. Frisch, W., Kuhlemann, J., Dunkl, I. & Szekely, B. (2001) The Dachstein paleosurface and the Augenstein Formation in the Northern Calcareous Alps – a mosaic stone in the geomorphological evolution of the Eastern Alps. Int. J. Earth Sci., 90, 500–518.
    [Google Scholar]
  29. Froitzheim, N., Plašienka, D. & Schuster, R. (2008) Alpine tectonics of the Alps and western Carpathians. In: The Geology of Central Europe (Ed. by McCannT. ), Mesozoic Cenozoic, 2, 1141–1232.
    [Google Scholar]
  30. Graham, S.A., Dickinson, W.R. & Ingersoll, R.V. (1975) Himalayan‐Bengal model for flysch dispersal in the Appalachian‐Ouachita system. Geol. Soc. Am. Bull., 86, 273–286.
    [Google Scholar]
  31. Graham, S.A., Tolson, R.B., Decelles, P.G., Ingersoll, R.V., Bargar, E., Caldwell, M., Cavazza, W., Edwards, D.P., Follo, M.F., Handschy, J.F., Lemke, L., Moxon, I., Rice, R., Smith, G.A. & White, J. (1986) Provenance modeling as a technique for analyzing source terrane evolution and controls on foreland sedimentation. In: Foreland Basins (Ed. by PAAllen , PHomewood ), Blackwell, Oxford.
    [Google Scholar]
  32. Grauert, B. & Arnold, A. (1968) Deutung diskordanter Zirkonalter der Silvrettadecke und des Gott‐hardmassivs (Schwizer Alpen). Contrib. Miner. Petrol., 20, 34–56.
    [Google Scholar]
  33. Grunert, P., Hinsch, R., Sachsenhofer, R.F., Bechtel, A., Coric, S., Harzhauser, M., Pillar, W.E. & Sperl, H. (2013) Early Burdigalian infill of the Puchkirchen Trough (North Alpine Foreland Basin, Central Paratethys): Facies development and sequence stratigraphy. Mar. Pet. Geol., 39, 164–186.
    [Google Scholar]
  34. Grunert, P., Auer, G., Harzhauser, M. & Piller, W.E. (2015) Stratigraphic constraints for the upper Oligocene to lower Miocene Puchkirchen Group (North Alpine Foreland Basin, Central Paratethys). Newsl. Stratigr., 48, 111–133.
    [Google Scholar]
  35. Heinrichs, T., Siegesmund, S., Frei, D., Drobe, M., & Schulz, B. (2012) Provenance signatures from whole‐rock geochemistry and detrital zircon ages of metasediments from the Austroalpine basement south of the Tauern Window (Eastern Tyrol, Austria). Geo Alp, 9, 156–185.
    [Google Scholar]
  36. Heller, P.L., Angevine, C.L., Winslow, N.S. & Paola, C. (1988) Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  37. Hinsch, R. (2013) Laterally varying structure and kinematics of the Molasse fold and thrust belt of the Central Eastern Alps: implications for exploration. AAPG Bull., 97, 1805–1831.
    [Google Scholar]
  38. Hofmann, M., Linnemann, U., Gerdes, A., Ullrich, B. & Schauer, M. (2009) Timing of dextral strike‐slip processes and basement exhumation in the Elbe Zone (Saxo‐Thuringian Zone): the final pulse of the Variscan Orogeny in the Bohemian Massif constrained by LA‐SF‐ICP‐MS U‐Pb zircon data. Geol. Soc. London Spec. Publ., 327, 197–214.
    [Google Scholar]
  39. Hoinkes, G., Thöni, M., Lichem, C., Bernhard, F., Kaindl, R., Schweigel, J., Tropper, P. & Cosca, M. (1997) Metagranitoids and associated metasediments as indicators for the pre‐Alpine megmatic and metamorphic evolution of the western Ötztal Basement (Kaunertal, Tirol). Schweiz. Mineral. Petrogr. Mitt., 77, 299–314.
    [Google Scholar]
  40. Houseknecht, D.W., Bird, K.J. & Schenk, C.J. (2009) Seismic analysis of clinoform depositional sequences and shelf‐margin trajectories in Lower Cretaceous (Albian) strata, Alaska North Slope. Basin Res., 21, 644–654.
    [Google Scholar]
  41. Hubbard, S.M. (2006) Deep‐sea foreland basin axial channels and associated sediment gravity flow deposits, Oligocene Molasse Basin, Upper Austria, and Cretaceous Magallanes Basin, Chile. Unpublished Ph.D. thesis, Stanford University, 216 p.
  42. Hubbard, S.M., Romans, B.W. & Graham, S.A. (2008) Deep‐water foreland basin deposits of the Cerro Toro Formation, Magallanes Basin, Chile: architectural elements of a sinuous basin axial channel belt. Sedimentology, 55, 1333–1359.
    [Google Scholar]
  43. Hubbard, S.M., De Ruig, M.J. & Graham, S.A. (2009) Confined channel‐levee complex development in an elongate depo‐center: deep‐water Tertiary strata of the Austrian Molasse basin. Mar. Pet. Geol., 26, 85–112.
    [Google Scholar]
  44. Hubbard, S.M., Fildani, A., Romans, B.W., Covault, J.A. & McHargue, T.R. (2010) High‐relief slope clinoform development: insights from outcrop, Magallanes Basin, Chile. J. Sediment. Res., 80, 357–375.
    [Google Scholar]
  45. Inman, D.L., Nordstrom, C.E. & Flick, R.E. (1976) Currents in submarine canyons: an air–sea–land interaction. Annu. Rev. Fluid Mech., 8, 275–310.
    [Google Scholar]
  46. Jin, J., Aigner, T., Luterbacher, H.P., Bachmann, G.H. & Müller, M. (1995) Sequence stratigraphy and depositional history in the south‐eastern German Molasse Basin. Mar. Pet. Geol., 12, 929–940.
    [Google Scholar]
  47. Kimbrough, D.L., Grove, M., Gehrels, G.E., Dorsey, R.J., Howard, K.A., Lovera, O., Aslan, A., House, P.K. & Pearthree, P.A. (2015) Detrital zircon U‐Pb provenance of the Colorado River: a 5 m.y. record of incision into cover strata overlying the Colorado Plateau and adjacent regions. Geosphere, 11, 1–30.
    [Google Scholar]
  48. Kollman, K. & Malzer, O. (1980) Die Molassezone Oberosterreichs and Salzburgs. In: Erdol und Erdgas in Osterreich (Ed. by FBrix ), pp. 179–201. Naturhist. Mus., Wien.
    [Google Scholar]
  49. Kotková, J., Schaltegger, U. & Leichmann, J. (2010) Two types of ultrapotassic plutonic rocks in the Bohemian Massif – coeval intrusions at different crustal levels. Lithos, 115, 163–176.
    [Google Scholar]
  50. Krawczyk, C.M., Mccann, T., Cocks, L.R.M., England, R.W., Mcbridge, J.H. & Wybraniec, S. (2008) Caledonian tectonics. In: The Geology of Central Europe, Volume 1: Precambrian and Paleozoic (Ed. by TMccann ), Geological Society of London, London, Bath, xiii + 748 +  xxxviii p.
    [Google Scholar]
  51. Krippner, A. & Bahlburg, H. (2013) Provenance of Pleistocene Rhine River Middle Terrace sands between the Swiss‐German border and Cologne based on U‐Pb detrital zircon ages. Int. J. Earth Sci., 102, 917–932.
    [Google Scholar]
  52. Kuhlemann, J. (2006) From source terrains of the Eastern Alps to the Molasse Basin: detrital record of non‐steady‐state exhumation. Tectonophysics, 413, 301–316.
    [Google Scholar]
  53. Kuhlemann, J. (2007) Paleogeographic and paleotopographic evolution of the Swiss and Eastern Alps since the Oligocene. Glob. Planet. Change, 58, 224–236.
    [Google Scholar]
  54. Kuhlemann, J. & Kempf, O. (2002) Post‐eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sed. Geol., 152, 45–78.
    [Google Scholar]
  55. Kuhlemann, J., Frisch, W., Székely, B., Dunkl, I. & Kázmér, M. (2002) Post‐collisional sediment budget history of the Alps: tectonic versus climatic control. Int. J. Earth Sci., 91, 818–837.
    [Google Scholar]
  56. Kukulski, R.B., Hubbard, S.M., Moslow, T.F. & Raines, M.K. (2013) Basin‐scale stratigraphic architecture of upstream fluvial deposits: Jurassic‐Cretaceous foredeep, Alberta Basin, Canada. J. Sediment. Res., 83, 704–722.
    [Google Scholar]
  57. Lemcke, K. (1974) Vetikalbewegungen des vormesozoischen Sockels im nordlichen Alpenvorland vom Perm bis zur Gegenwart. Eclogae Geol. Helv., 67, 121–133.
    [Google Scholar]
  58. Lemcke, K. (1984) Geologische Vorgänge in den Alpen ab Obereozän im Spiegel vor allem der deutschen Molasse. Geol. Rundsch., 73, 371–397.
    [Google Scholar]
  59. Lemcke, K. (1988) Geologie von Bayern I., Das Bayerische Alpenvorland vor der Eiszeit Erdgeschichte‐Bau‐Bodenschätze. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart.
    [Google Scholar]
  60. Linzer, H.G. (2001) Cyclic channel systems in the Molasse Foreland Basin of the Eastern Alps – the effects of Late Oligocene foreland thrusting and early Miocene lateral escape. 2001 American Association of Petroleum Geologists Annual Convention, Official Program, 10, A118.
    [Google Scholar]
  61. Ludwig, K.R. (2009) Squid 2; A User's Manual. Berkeley Geochronology Center, Berkeley, CA.
    [Google Scholar]
  62. Malkowski, M.A., Sharman, G.R., Graham, S.A. & Fildani, A. (2015) Characterization and diachronous initation of corase clastic deposition in the Magallanes‐Austral foreland basin, Patagonian Andes. Basin Res., 1–29. https://doi.org/10.1111/bre.12150.
    [Google Scholar]
  63. Malkowski, M.A., Schwartz, T.M., Sharman, G.R., Sickmann, Z.T. & Graham, S.A. (2016) Stratigraphic and provenance variations in the early evolution of the Magallanes‐Austral foreland basin: implications for the role of longitudinal versus transverse sediment dispersal during arc‐continent collision. Geol. Soc. Am. Bull., https://doi.org/10.1130/B31549.1.
    [Google Scholar]
  64. Malusa, M.G., Villa, I.M., Vezzoli, G. & Garzanti, E. (2011) Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth Planet. Sci. Lett., 301, 324–336.
    [Google Scholar]
  65. Malusa, M.G., Carter, A., Limoncelli, M., Villa, I.M. & Garzanti, E. (2013) Bias in detrital zircon geochronology and thermochronometry. Chem. Geol., 359, 90–107.
    [Google Scholar]
  66. Mark, C., Cogné, N. & Chew, D. (2016) Tracking exhumation and drainage divide migration of the Western Alps: a test of the apatite U‐Pb thermochronometer as a detrital provenance tool. Geol. Soc. Am. Bull., https://doi.org/10.1130/B31351.1.
    [Google Scholar]
  67. Masalimova, L.U., Lowe, D.R., McHargue, T. & Derksen, R. (2015) Interplay between an axial channel belt, slope gullies and overbank deposition in the Puchkirchen Formation in the Molasse Basin, Austria. Sedimentology, 62, 1717–1748.
    [Google Scholar]
  68. McCann, T. (2008) Introduction and overview. In: The Geology of Central Europe, Volume 1: Precambrian and Paleozoic (Ed. by MccannT. ), Geological Society of London, London, Bath, xiii + 748 +  xxxviii p.
    [Google Scholar]
  69. Métivier, F., Gaudemer, Y., Tapponnier, P. & Klein, M. (1999) Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int., 137, 280–318.
    [Google Scholar]
  70. Milliman, J.D. & Syvitski, J.P.M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous river. J. Geol., 100, 525–544.
    [Google Scholar]
  71. Normark, W.R., Piper, D.J.W., Romans, B.W., Covault, J.A., Dartnell, P. & Sliter, R.W. (2009) Submarine canyon and fan systems of the California Continental Borderland. In: Earth Science in the Urban Ocean: The Southern California Continental Borderland (Ed. by HJLee , WRNormark ) Geol. Soc. Am. Spec. Pap., 454, 141–168.
    [Google Scholar]
  72. Oliver, G.J.H., Corfu, F. & Krough, T.E. (1993) U‐Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. J. Geol. Soc. London, 150, 355–369.
    [Google Scholar]
  73. Ortner, H. & Stingl, V. (2001) Facies and basin development of the Oligocene in the Lower Inn Valley, Tyrol/Bavaria. In: Paleogene of the Eastern Alps: Österreichische Akademie der Wissenschaften and Schriftenreihe der Erdwissenschaftlichen Kommissionen, Band 14 (Ed. by WEPiller , MWRasser ), pp. 153–196. Austrian Academy of Sciences Press, Vienna.
    [Google Scholar]
  74. Owen, A., Nichols, G.J., Hartley, A.J., Weissmann, G.S. & Scuderi, L.A. (2015) Quantification of a distributive fluvial system: the salt wash DFS of the Morrison Formation, SW U.S.A. J. Sediment. Res., 85, 544–561.
    [Google Scholar]
  75. Paola, C., Heller, P.L. & Angevine, C.L. (1992) The large‐scale dynamics of grain‐size variation in alluvial basins, 1: theory. Basin Res., 4, 73–90.
    [Google Scholar]
  76. Posamentier, H.W. & Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. J. Sediment. Res., 73, 367–388.
    [Google Scholar]
  77. Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. (1986) Numerical Recipes, the Art of Scientific Computing, p. 186. Cambridge University Press, Cambridge.
    [Google Scholar]
  78. Raines, M.K., Hubbard, S.M., Kukulski, R.B., Leier, A.L. & Gehrels, G.E. (2013) Sediment dispersal in an evolving foreland: detrital zircon geochronology from Upper Jurassic and lowermost Cretaceous strata, Alberta Basin, Canada. Geol. Soc. Am. Bull., 125, 741–755.
    [Google Scholar]
  79. Ricci Lucchi, F. (1986) The Oligocene to recent foreland basins of the northern Apennines. In: Foreland Basins (Ed. by AllenP.A. & HomewoodP ) Int. Assoc. Sedimentol. Spec. Publ., 8, 105–139.
    [Google Scholar]
  80. Robinson, D. & Zimmer, W. (1989) Seismic stratigraphy of Late Oligocene Puchkirchen formation of upper Austria. Geol. Rundsch., 78, 49–79.
    [Google Scholar]
  81. Rögl, F., Hochuli, P. & Muller, C. (1979) Oligocene‐early Miocene stratigraphic correlations in the Molasse Basin of Austria. Annales Geologiques des Pays Helleniques, v. Tome hors series, 1045–1050.
    [Google Scholar]
  82. Romans, B.W., Fildani, A., Graham, S.A., Hubbard, S.M. & Covault, J.A. (2010) Importance of predecessor basin history on sedimentary fill of a retroarc foreland basin: provenance analysis of the Cretaceous Magallanes basin, Chile (50–52 S). Basin Res., 22, 640–658.
    [Google Scholar]
  83. Romans, B.W., Fildani, A., Hubbard, S.M., Covault, J.A., Fosdick, J.C. & Graham, S.A. (2011) Evolution of deep‐water stratigraphic architecture, Magallanes Basin, Chile. Mar. Pet. Geol., 28, 612–628.
    [Google Scholar]
  84. Romans, B.W., Castelltort, S., Covault, J.A., Fildani, A. & Walsh, J.P. (2016) Environmental signal propagation in sedimentary systems across timescales. Earth Sci. Rev., 153, 7–29.
    [Google Scholar]
  85. Rubatto, D. (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U‐Pb ages and metamorphism. Chem. Geol., 184, 123–138.
    [Google Scholar]
  86. de Ruig, M.J. (2003) Deep marine sedimentation and gas reservoir distribution in Upper Austria: new insights from 3D seismic data. Oil Gas Eur. Mag., 29, 64–73.
    [Google Scholar]
  87. de Ruig, M.J. & Hubbard, S.M. (2006) Seismic facies and reservoir characteristics of a deep‐marine channel belt in the Molasse foreland basin, Puchkirchen Formation, Austria. AAPG Bull., 90, 735–752.
    [Google Scholar]
  88. Saylor, J.E. & Sundell, K.E. (2016) Quantifying comparison of large detrital geochronology data sets. Geosphere, 12, 203–220.
    [Google Scholar]
  89. Scheiber, T., Berndt, J., Mezger, K. & Pfiffner, O.A. (2014) Precambrian to Paleozoic zircon record in the Siviez‐Mischabel basement (western Swiss Alps). Swiss J. Geosci., 107, 49–64.
    [Google Scholar]
  90. Schmidt, F. & Erdogan, L.T. (1993) Basin modelling in an overthrust area of Austria. In: Basin Modelling: Advances and Applications (Ed. by A.G.Dore , J.H.Augustson , C.Hermanrud , D.J.Stewart , & ØSylta , Norwegian Petroleum Society, Spec. Publ., 3, 573–581.
    [Google Scholar]
  91. Schwartz, T.M. & Graham, S.A. (2015) Stratigraphic architecture of a tide‐influenced shelf‐edge delta, Upper Cretaceous Dorotea Formation, Magallanes‐Austral Basin, Patagonia. Sedimentology, 62, 1039–1077.
    [Google Scholar]
  92. Sharman, G.R., Graham, S.A., Grove, M., Kimbrough, D.L. & Wright, J.E. (2015) Detrital zircon provenance of the Late Cretaceous‐Eocene California forearc: influence of Laramide low‐angle subduction on sediment dispersal and paleogeography. Geol. Soc. Am. Bull., 127, 38–60. https://doi.org/10.1130/B31065.1.
    [Google Scholar]
  93. Shultz, M.R., Fildani, A., Cope, T.D. & Graham, S.A (2005) Deposition and stratigraphic architecture of an outcropping ancient slope system: Tres Pasos Formation, Magallanes Basin, southern Chile. In Submarine Slope Systems: Processes and Products (Ed. by HodgsonD.M. & FlintS.S. ) Geol. Soc. Spec. Pub., 244, 27–50.
    [Google Scholar]
  94. Sinclair, H.D. (1997) Tectonostratigraphic model for underfilled peripheral foreland basins: an Alpine perspective. Geol. Soc. Am. Bull., 109, 324–346.
    [Google Scholar]
  95. Sinclair, H.D. & Allen, P.A. (1992) Vertical versus horizontal motions in the Alpine orogenic wedge: stratigraphic response in the foreland basin. Basin Res., 4, 215–232.
    [Google Scholar]
  96. Sinclair, H.D., Coakley, B.J., Allen, P.A. & Watts, A.B. (1991) Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: an example from the Central Alps, Switzerland. Tectonics, 10, 599–620.
    [Google Scholar]
  97. Sissingh, W. (1997) Tectonostratigraphy of the North Alpine Foreland Basin: correlation of Tertiary depositional cycles and orogenic phases. Tectonophysics, 282, 223–256.
    [Google Scholar]
  98. Steininger, F.F., Wessely, G., Rögl, F. & Wagner, L. (1987) Tertiary sedimentary history and tectonic evolution of the eastern Alpine foredeep. Giornale de Geologie, 48, 285–297.
    [Google Scholar]
  99. Szwarc, T.S., Johnson, C.L., Stright, L.E. & McFarlane, C.M. (2015) Interactions between axial and transverse drainage systems in the Late Cretaceous Cordilleran foreland basin: evidence from detrital zircons in the Straight Cliffs, southern Utah, USA. Geol. Soc. Am. Bull., 127, 372–392.
    [Google Scholar]
  100. Teipel, U., Eichhorn, R., Loth, G., Rohrm Loth, J., Höll, R. & Kennedy, A. (2004) U‐Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for upper Vendian and lower Ordovician magmatism. Int. J. Earth Sci., 93, 782–801.
    [Google Scholar]
  101. Thöni, M. (1986) The Rb‐Sr thin slab isochron method – an unreliable geochronologic method for dating geologic events in polymetamorphic terranes?Memorie di Scienze Geologiche, 38, 283–352.
    [Google Scholar]
  102. Thöni, M. (1999) A review of geochronological data from the Eastern Alps. In: The New Metamorphic Map of the Alps (Ed. by FreyM. , DesmonsJ. & NeubauerF. ) Schweiz. Mineral. Petrogr. Mitt., 79, 209–230.
    [Google Scholar]
  103. Tollmann, A. (1978) Plattentektonische Fragen in den Ostalpen und der plattentektonische Mechanismus des mediterranen Orogens. Mitt. Österr. Geol. Ges., 69, 291–351.
    [Google Scholar]
  104. Van Houten, F.B. (1974) Northern Alpine molasse and similar Cenozoic sequences of southern Europe. In: Modern and Ancient Geosynclinal Sedimentation (Ed. by DottR.H., Jr ., & ShaverR.H. ) SEPM Spec. Publ., 19, 260–273.
    [Google Scholar]
  105. Vermeesch, P. (2013) Multi‐sample comparison of detrital age distributions. Chem. Geol., 341, 140–146.
    [Google Scholar]
  106. Wagner, L.R. (1996) Stratigraphy and hydrocarbons in the Upper Austrian Molasse Foredeep (active margin). In: Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe (Ed. by WesselyG. & LieblW. ) European Association of Geoscientists and Engineers, Spec. Publ., 5, 217–235.
    [Google Scholar]
  107. Wagner, L.R. (1998) Tectono‐stratigraphy and hydrocarbons in the Molasse Foredeep of Salzburg, Upper and Lower Austria. In: Cenozoic Foreland Basins of Western Europe (Ed. by A.Mascle , C.Puidefabregas , H.P.Luterbacher & M.Fernandez ) Geol. Soc. Spec. Publ., 134, 339–369.
    [Google Scholar]
  108. Ziegler, P.A. (1982) Geological atlas of Western and Central Europe, p. 130. Shell Internationale Petroleum Maatschappij, Elsevier, Amsterdam.
    [Google Scholar]
  109. Zweigel, J., Aigner, T. & Luterbacher, H. (1998) Eustatic versus tectonic controls on Alpine foreland basin fill: sequence stratigraphy and subsidence analysis in the SE German Molasse. In: Cenozoic Foreland Basins of Western Europe (Ed. by A.Mascle , C.Puidefabregas , H.P.Luterbacher & M.Fernandez ) Geol. Soc. Spec. Publ., 134, 299–323.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12259
Loading
/content/journals/10.1111/bre.12259
Loading

Data & Media loading...

Supplements

U‐Th‐Pb Isotope Composition of Detrital Zircons. Intersample Comparison Results. Analytical SHRIMP‐RG Methods.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error