1887
Volume 30, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

We present a source‐to‐sink analysis to explain sediment supply variations and depositional patterns over the Holocene within an active rift setting. We integrate a range of modelling approaches and data types with field observations from the Sperchios rift basin, Central Greece that allow us to analyse and quantify (1) the size and characteristics of sediment source areas, (2) the dynamics of the sediment routing system from upstream fluvial processes to downstream deposition at the coastline, and (3) the depositional architecture and volumes of the Holocene basin fill. We demonstrate that the Sperchios rift comprises a ‘closed’ system over the Holocene and that erosional and depositional volumes are thus balanced. Furthermore, we evaluate key controls in the development of this source‐to‐sink system, including the role of pre‐existing topography, bedrock erodibility and lateral variations in the rate of tectonic uplift/subsidence. We show that tectonic subsidence alone can explain the observed grain size fining along the rift axis resulting in the downstream transition from a braided channel to an extensive meander belt (>15 km long) that feeds the fine‐grained Sperchios delta. Additionally, we quantify the ratios of sediment storage to bypass for the two main footwall‐sourced alluvial fan systems and relate the fan characteristics to the pattern and rates of fault slip. Finally, we show that ≥40% of the sediment that builds the Sperchios delta is supplied by ≤22% of the entire source area and that this can be primarily attributed to a longer‐term (~106 years) transient landscape response to fault segment linkage. Our multidisciplinary approach allows us to quantify the relative importance of multiple factors that control a complex source‐to‐sink system and thus improve our understanding of landscape evolution and stratigraphic development in active extensional tectonic settings.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12263
2017-09-22
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/30/3/bre12263.html?itemId=/content/journals/10.1111/bre.12263&mimeType=html&fmt=ahah

References

  1. Allen, P.A. (2008) From landscapes into geological history. Nature, 451, 274–276.
    [Google Scholar]
  2. Allen, P.A. & Densmore, A.L. (2000) Sediment flux from an uplifting fault block. Basin Res., 12, 367–380.
    [Google Scholar]
  3. Allen, P.A., Armitage, J.J., Carter, A., Duller, R.A., Michael, N.A., Sinclair, H.D., Whitchurch, A.L., Whittaker, A.C. & Schlunegger, F. (2013) Theqsproblem: sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60, 102–130.
    [Google Scholar]
  4. Allen, P.A., Armitage, J.J., Whittaker, A.C., Michael, N.A., Roda‐Boluda, D. & D'Arcy, M. (2015) Fragmentation model of the grain size mix of sediment supplied to basins. J. Geol., 123, 405–427.
    [Google Scholar]
  5. Apostolopoulos, G. (2005) Geophysical studies relating to the tectonic structure, geothermal fields and geomorphological evolution of the Sperchios River Valley, Central Greece. J. Balkan Geophys. Soc., 8, 99–112.
    [Google Scholar]
  6. Armijo, R., Meyer, B., King, G.C.P., Rigo, A. & Papanastassiou, D. (1996) Quaternary evolution of the Corinth rift and its implications for the late Cenozoic evolution of the Aegean. Geophys. J. Int., 126, 11–53.
    [Google Scholar]
  7. Armitage, J.J., Duller, R.A., Whittaker, A.C. & Allen, P.A. (2011) Transformation of tectonic and climatic signals from source to sedimentary archive. Nat. Geosci., 4, 231–235.
    [Google Scholar]
  8. Armitage, J.J., Allen, P.A., Burgess, P.M., Hampson, G.J., Whittaker, A.C., Duller, R.A. & Michael, N.A. (2015) Sediment transport model for the Eocene Escamilla sediment‐routing system: implications for the uniqueness of sequence stratigraphic architectures. J. Sediment. Res., 85, 1510–1524.
    [Google Scholar]
  9. Attal, M. & Lavé, J. (2006) Changes of bedload characteristics along the Marsyandi River (Central Nepal): implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active Orogenic belts. GSA Spec. Paper., 398, 143–171.
    [Google Scholar]
  10. Attal, M. & Lavé, J. (2009) Pebble abrasion during fluvial transport: experimental results and implications for the evolution of the sediment load along rivers. J. Geophys. Res., 114, F0402.
    [Google Scholar]
  11. Attal, M., Tucker, G.E., Whittaker, A.C., Cowie, P.A. & Roberts, G.P. (2008) Modeling fluvial incision and transient landscape evolution: influence of dynamic channel adjustment. J. Geophys. Res., 113, F03013.
    [Google Scholar]
  12. Attal, M., Cowie, P.A., Whittaker, A.C., Hobley, D., Tucker, G.E. & Roberts, G.P. (2011) Testing fluvial erosion models using the transient response of Bedrock Rivers to tectonic forcing in the Apennines, Italy. J. Geophys. Res., 116, F02005.
    [Google Scholar]
  13. Covault, J.A., Romans, B.W., Fildani, A., McGann, M. & Graham, S.A. (2010) Rapid climatic signal propagation from source to sink in a Southern California sediment routing system. J. Geol., 118, 247–259.
    [Google Scholar]
  14. Covault, J.A., Romans, B.W., Graham, S.A., Fildani, A. & Hilley, G.E. (2011) Terrestrial source to deep‐sea sink sediment budgets at high and low sea levels: insights from tectonically active Southern California. Geology, 39, 619–622.
    [Google Scholar]
  15. Cowie, P.A. & Shipton, Z.K. (1998) Fault tip displacement gradients and process zone dimensions. J. Struct. Geol., 20, 983–997.
    [Google Scholar]
  16. Cowie, P.A., Attal, M., Tucker, G.E., Whittaker, A.C., Naylor, M., Ganas, A. & Roberts, G.P. (2006) Investigating the surface process response to fault interaction and linkage using a numerical modelling approach. Basin Res., 18, 231–266.
    [Google Scholar]
  17. Cowie, P.A., Whittaker, A.C., Attal, M., Roberts, G., Tucker, G.E. & Ganas, A. (2008) New constraints on sediment‐flux–dependent river incision: implications for extracting tectonic signals from river profiles. Geology, 36, 535.
    [Google Scholar]
  18. D'Arcy, M., Whittaker, A.C., Roda‐Boluda, D.C. & Bristow, C. (2016) Measuring alluvial fan sensitivity to past climate changes using a self‐similarity approach to grain size fining, Death Valley, California. Sedimentology, 64, 388–424.
    [Google Scholar]
  19. Densmore, A.L., Allen, P.A. & Simpson, G. (2007) Development and response of a coupled catchment fan system under changing tectonic and climatic forcing. J. Geophys. Res., 112, F01002, https://doi.org/10.1029/2006JF000474.
    [Google Scholar]
  20. Duller, R.A., Whittaker, A.C., Fedele, J.J., Whitchurch, A.L., Springett, J., Smithells, R., Fordyce, S. & Allen, P.A. (2010) From grain size to tectonics. J. Geophys. Res., 115, F03022, https://doi.org/10.1029/2009JF001495.
    [Google Scholar]
  21. Eliet, P.P. (1995) Geomorphology and Tectono‐Sedimentary Interactions within Active Rift Environments: The Sperchios Basin, Central Greece, University of Manchester.
  22. Eliet, P.P. & Gawthorpe, R.L. (1995) Drainage development and sediment supply within rifts, examples from the Sperchios Basin, Central Greece. J. Geol. Soc., 152, 883–893.
    [Google Scholar]
  23. Fedele, J.J. & Paola, C. (2007) Similarity solutions for fluvial sediment fining by selective deposition. J. Geophys. Res., 112, F02038, https://doi.org/10.1029/2005JF000409 .
    [Google Scholar]
  24. Finnegan, N.J., Roe, G., Montgomery, D.R. & Hallet, B. (2005) Controls on the channel width of rivers: implications for modeling fluvial incision of bedrock. Geology, 33, 229.
    [Google Scholar]
  25. Forzoni, A., Storms, J.E.A., Whittaker, A.C. & de Jager, G. (2014) Delayed delivery from the sediment factory: modeling the impact of catchment response time to tectonics on sediment flux and fluvio‐deltaic stratigraphy. Earth Surf. Proc. Land., 39, 689–704.
    [Google Scholar]
  26. Gogou, A., Triantaphyllou, M., Xoplaki, E., Izdebski, A., Parinos, C., Dimiza, M., Bouloubassi, I., Luterbacher, J., Kouli, K., Martrat, B., Toreti, A., Fleitmann, D., Rousakis, G., Kaberi, H., Athanasiou, M. & Lykousis, V. (2016) Climate variability and socio‐environmental changes in the Northern Aegean (Ne Mediterranean) during the last 1500 years. Quatern. Sci. Rev., 136, 209–228.
    [Google Scholar]
  27. Goldsworthy, M., Jackson, J. & Haines, J. (2002) The continuity of active fault systems in Greece. Geophys. J. Int., 148, 596–618.
    [Google Scholar]
  28. Hampson, G.J., Duller, R.A., Petter, A.L., Robinson, R.A.J. & Allen, P.A. (2014) Mass‐balance constraints on stratigraphic interpretation of linked alluvial‐coastal‐shelfal deposits from source to sink: example from Cretaceous Western Interior Basin, Utah and Colorado, U.S.A. J. Sediment. Res., 84, 935–960.
    [Google Scholar]
  29. Heller, P. & Paola, C. (1992) The large‐scale dynamics of grain size variation in alluvial basins, 2: application to syntectonic conglomerate. Basin Res., 4, 91–102.
    [Google Scholar]
  30. Hutton, E.W.H. & Syvitski, J.P.M. (2008) Sedflux 2.0: an advanced process‐response model that generates three‐dimensional stratigraphy. Comput. Geosci., 34, 1319–1337.
    [Google Scholar]
  31. Jordan, T.E. & Flemings, P.B. (1991) Large‐scale stratigraphic architecture, eustatic variation, and unsteady tectonism: a theoretical evaluation. J. Geophys. Res. Solid Earth, 96, 6681–6699.
    [Google Scholar]
  32. Kilias, A.A., Tranos, M.D., Papadimitriou, E.E. & Karakostas, V.G. (2008) The recent crustal deformation of the Hellenic Orogen in Central Greece; the Kremasta and Sperchios fault systems and their relationship with the adjacent large structural features. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften ‐ German Journal of Geology (ZDGG), 159, 533–547.
    [Google Scholar]
  33. Kim, W., Connell, S.D., Steel, E., Smith, G.A. & Paola, C. (2011) Mass‐balance control on the interaction of axial and transverse channel systems. Geology, 39, 611–614.
    [Google Scholar]
  34. Lambeck, K. & Purcell, A. (2005) Sea‐level change in the mediterranean sea since the Lgm: model predictions for tectonically stable areas. Quatern. Sci. Rev., 24, 1969–1988.
    [Google Scholar]
  35. Leeder, M.R. & Jackson, J.A. (1993) The interaction between normal faulting and drainage in active extensional basins, with examples from the Western United States and Central Greece. Basin Res., 5, 79–102.
    [Google Scholar]
  36. Matenco, L. & Andriessen, P. (2013) Quantifying the mass transfer from mountain ranges to deposition in sedimentary basins: source to sink studies in the Danube Basin‐Black Sea System. Global Planet. Change, 103, 1–18.
    [Google Scholar]
  37. Michael, N.A., Whittaker, A.C. & Allen, P.A. (2013) The functioning of sediment routing systems using a mass balance approach: example from the Eocene of the Southern Pyrenees. J. Geol., 121, 581–606.
    [Google Scholar]
  38. Michael, N.A., Whittaker, A.C., Carter, A. & Allen, P.A. (2014) Volumetric budget and grain size fractionation of a geological sediment routing system: Eocene Escanilla formation, South‐Central Pyrenees. Geol. Soc. Am. Bull., 126, 585–599.
    [Google Scholar]
  39. Mudd, S.M., Attal, M., Milodowski, D.T., Grieve, S.W.D. & Valters, D.A. (2014) A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis. J. Geophys. Res., series F, 119, 138–152.
    [Google Scholar]
  40. Orton, G.J. & Reading, H.G. (1993) Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology, 40, 475–512.
    [Google Scholar]
  41. Paola, C. (2000) Quantitative models of sedimentary basin filling. Sedimentology, 47, 121–178.
    [Google Scholar]
  42. Paola, C., Heller, P. & Angevine, C. (1992) The large‐scale dynamics of grain size variation in alluvial basins: 1. Theory. Basin Res., 4, 73–90.
    [Google Scholar]
  43. Pechlivanidou, S. (2012) Modeling the sedimentological and the geomorphological evolution of the Sperchios deltaic sequence during Holocene. Doctoral Thesis, Aristotle University of Thessaloniki, 229 pp (in Greek; English abstract).
  44. Pechlivanidou, S., Vouvalidis, K., Lovlie, R., Nesje, A., Albanakis, K., Pennos, C., Syrides, G., Cowie, P. & Gawthorpe, R. (2014) A multi‐proxy approach to reconstructing sedimentary environments from the Sperchios Delta, Greece. Holocene, 24, 1825–1839.
    [Google Scholar]
  45. Perron, J.T. & Royden, L. (2013) An integral approach to bedrock river profile analysis. Earth Surf. Proc. Land., 38, 570–576.
    [Google Scholar]
  46. Poulos, S., Leontaris, S. & Collins, M.B. (1997) Sedimentological and clay mineralogical investigations in Malliakos Gulf, Eastern Greece. Bollet. Geofis. Teorit. Appl., 38, 267–279.
    [Google Scholar]
  47. Riiser, O.S. (2016) Using grain size analysis to understand transverse versus axial sediment supply to a rift: Example from the Sperchios rift, Greece. Master Thesis, University of Bergen.
  48. Rohais, S., Bonnet, S. & Eschard, R. (2012) Sedimentary record of tectonic and climatic erosional perturbations in an experimental coupled catchment‐fan system. Basin Res., 24, 198–212.
    [Google Scholar]
  49. Royden, L. & Perron, J.T. (2013) Solutions of the stream power equation and application to the evolution of river longitudinal profiles. J. Geophys. Res. Earth Surf., 118, 497–518.
    [Google Scholar]
  50. Sømme, T.O., Helland‐Hansen, W., Martinsen, O.J. & Thurmond, J.B. (2009) Relationships between morphological and sedimentological parameters in source‐to‐sink systems: a basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Res., 21, 361–387.
    [Google Scholar]
  51. Sømme, T.O., Piper, D.J.W., Deptuck, M.E. & Helland‐Hansen, W. (2011) Linking onshore‐offshore sediment dispersal in the golo source‐to‐sink system (Corsica, France) during the late quaternary. J. Sediment. Res., 81, 118–137.
    [Google Scholar]
  52. Sømme, T.O., Martinsen, O.J. & Lunt, I. (2013) Linking offshore stratigraphy to onshore paleotopography: the late Jurassic‐Paleocene evolution of the South Norwegian margin. Geol. Soc. Am. Bull., 125, 1164–1186.
    [Google Scholar]
  53. Syvitski, J.P.M. (2011) Global sediment fluxes to the earth's coastal ocean. Appl. Geochem., 26, S373–S374.
    [Google Scholar]
  54. Syvitski, J.P.M. & Hutton, E.W.H. (2001) 2d Sedflux 1.0c. Comput. Geosci., 27, 731–753.
    [Google Scholar]
  55. Syvitski, J.P.M. & Milliman, J.D. (2007) Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol., 115, 1–19.
    [Google Scholar]
  56. Visher, G.S. (1969) Grain size distributions and depositional processes. J. Sediment. Petrol., 39, 1074–1106.
    [Google Scholar]
  57. Whipple, K.X. & Tucker, G.E. (1999) Dynamics of the stream‐power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research need. J. Geophys. Res., 104, 17661–17674.
    [Google Scholar]
  58. Whittaker, A.C. & Walker, A.S. (2015) Geomorphic constraints on fault throw rates and linkage times: examples from the Northern Gulf of Evia, Greece. J. Geophys. Res., series F, 120, 137–158.
    [Google Scholar]
  59. Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E. & Roberts, G.P. (2007) Bedrock channel adjustment to tectonic forcing: implications for predicting river incision rates. Geology, 35, 103.
    [Google Scholar]
  60. Whittaker, A.C., Attal, M. & Allenn, P.A. (2010) Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. Basin Res., 22, 809–828.
    [Google Scholar]
  61. Whittaker, A.C., Duller, R.A., Springett, J., Smithells, R.A., Whitchurch, A.L. & Allen, P.A. (2011) Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply. Geol. Soc. Am. Bull., 123, 1363–1382.
    [Google Scholar]
  62. Willett, S.D., McCoy, S.W., Perron, J.T., Goren, L. & Chen, C.Y. (2014) Dynamic reorganization of river basins. Science, 343, 1248765.
    [Google Scholar]
  63. Zanchetta, G., Sulpizio, R., Roberts, N., Cioni, R., Eastwood, W.J., Siani, G., Caron, B., Paterne, M. & Santacroce, R. (2011) Tephrostratigraphy, chronology and climatic events of the Mediterranean basin during the Holocene: an overview. Holocene, 21, 33–52.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12263
Loading
/content/journals/10.1111/bre.12263
Loading

Data & Media loading...

Supplements

(a) Coefficient of variation, , against downstream distance along the Sperchios River calculated for grains size distributions measured for active gravel bars. (b) and (c) Same as in (a) but for the two large alluvial fans. Plot showing the predicted grain size distributions due to different spatial variations in basin subsidence rate (a, b) and (c) mass loss from the abrasion process compared with the measured grain size data along the axial system (black dots). Map view of chi (χ) values calculated on the opposite sides of the main Sperchios drainage divide for all catchments with a base‐level at the coast, following the approach of Willett . (2014) and using m/n = 0.5. Slope map of the Inahos flysch catchment with all slopes <25° shown with grey colour and slopes >25° shown with orange to red colours.

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error