1887
Volume 30, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Previous research demonstrates that large basins on the periphery of the northern edge of the Tibetan Plateau were partitioned during development of intrabasin mountain ranges. These topographic barriers segregated basins with respect to surface flow and atmospheric circulation, ponded sediments, and formed rain shadows. However, complex mixing between airmasses and nonsystematic isotope‐elevation lapse rates have hampered application of quantitative paleoaltimetry to determine the timing of development of critical topographic barriers. We address the timing and drivers for changes in surface connectivity and atmospheric circulation in the Linxia and Xunhua basins using a multidisciplinary approach incorporating detrital zircon geochronology, Monte Carlo inverse flexural modelling, and published stable isotope data. Disruption of surface flow between the two basins during exhumation of the Jishi Shan preceded development of topography sufficient to intercept moisture‐bearing airmasses. Detrital zircon data point to disruption of an eastward‐flowing axial fluvial network between 14.7 and 13.1 Ma, coincident with the onset of exhumation in the Jishi Shan. Flexural modelling suggests that by 13 Ma, the Jishi Shan had developed 0.3 ± 0.1 km of relief; sufficient to disrupt eastward‐flowing drainage networks but insufficient to intercept moisture‐bearing airmasses. Stable isotope data indicate that, although surface connections between the Xunhua and Linxia basins were broken, the two basins continued to be dominated by a common climate regime until 9.3 Ma. Subsequent reintegration of surface flow between the basins occurred between 9.3 and 7.6 Ma. Divergence in the stable isotope and depositional environment records between the two basins suggests that at 9.3 Ma the paleo‐Yellow River breached the growing Jishi Shan dam, and may have reintegrated surface flow between the two basins via erosion of the modern Yellow River gorge, which transects the Jishi Shan. The reintegration of the Xunhua and Linxia basins’ surface connection is confirmed by reintroduction of a Songpan‐Ganzi flysch sediment source by 7.6 Ma. Continued exhumation and uplift of the Jishi Shan developed 0.8 ± 0.2 km of relief by . 8 Ma capable of intercepting moisture‐bearing airmasses; isolating and increasing aridity in the Xunhua Basin while decreasing it in the Linxia Basin. Our findings point to protracted development of the modern . 1 km of relief in the Jishi Shan between 14 and . 4.5 Ma followed by attainment of a topographic equilibrium which persists into modern times.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12264
2017-10-04
2024-04-23
Loading full text...

Full text loading...

References

  1. Allen, P. & Allen, J. (2005) Basin Analysis: Principles and Applications. 2nd edn, Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  2. An, Z.‐S., Kutzbach, J.E., Prell, W.L. & Porter, S.C. (2001) Evolution of Asian monsoons and phased uplift of the Himalaya‐Tibetan Plateau since Late Miocene Times. Nature, 311, 62–66.
    [Google Scholar]
  3. Angevine, C., Heller, P. & Paola, C. (1990) Quantitative Sedimentary Basin Modeling, American Association of Petroleum Geologists. Tulsa. Continuing education course note series 32.
  4. Araguas‐Araguas, L., Froehlich, K. & Rozanski, K. (1998) Stable isotope composition of precipitation over Southeast Asia. J. Geophys. Res. Atmos., 103, 28721–28742.
    [Google Scholar]
  5. Bershaw, J., Penny, S.M. & Garzione, C.N. (2012) Stable isotopes of modern water across the Himalaya and Eastern Tibetan Plateau: implications for estimates of Paleoelevation and Paleoclimate. J. Geophys. Res. Atmos., 117, 1–18.
    [Google Scholar]
  6. Bershaw, J., Saylor, J.E., Garzione, C.N., Leier, A. & Sundell, K.E. (2016) Stable isotope variations (δ18O and δD) in modern waters across the Andean Plateau. Geochimica et Cosmochimica Acta, 194, 310–324.
    [Google Scholar]
  7. Bond, G.C. & Kominiz, M.A. (1984) Construction of tectonic subsidence curves for the Early Paleozoic Miogeocline, Southern Canadian Rocky Mountains: implications for subsidence mechanisms, age of breakup, and crustal thinning. Geol. Soc. Am. Bull., 95, 155–173.
    [Google Scholar]
  8. Bookhagen, B. & Burbank, D.W. (2006) Topography, relief, and trmm‐derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, 1–5.
    [Google Scholar]
  9. Bookhagen, B. & Strecker, M.R. (2012) Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: examples from the southern Central Andes. Earth Planet. Sci. Lett., 327, 97–110.
    [Google Scholar]
  10. Botsyun, S., Sepulchre, P., Risi, C. & Donnadieu, Y. (2016) Impacts of Tibetan Plateau uplift on atmospheric dynamics and associated precipitation Δ18o. Clim. Past, 12, 1401–1420.
    [Google Scholar]
  11. Braitenberg, C., Wang, Y., Fang, J. & Hsu, H.T. (2003) Spatial variations of flexure parameters over the Tibet‐Quinghai Plateau. Earth Planet. Sci. Lett., 205, 211–224.
    [Google Scholar]
  12. Bush, M.A., Saylor, J.E., Horton, B.K. & Nie, J. (2016) Growth of the Qaidam Basin During Cenozoic exhumation in the Northern Tibetan Plateau: inferences from depositional patterns and multiproxy detrital provenance signatures. Lithosphere, 8, 58–82.
    [Google Scholar]
  13. Cardozo, N. (2016) Backstrip. from http://www.ux.uis.no/~nestor/work/programs.html.
  14. Cardozo, N. (2016) Nestor Cardozo Matlab Scripts. from http://www.ux.uis.no/~nestor/work/matlabScripts.html.
  15. Carroll, A.R., Graham, S.A. & Smith, M.E. (2010) Walled sedimentary basins of China. Basin Res., 22, 17–32.
    [Google Scholar]
  16. CGIRCUG, The College of Geologic Investigation and Research in the Chinese University of Geoscience
    CGIRCUG, The College of Geologic Investigation and Research in the Chinese University of Geoscience (2006a) Geologic Map of Linxia City. Geologic Maps of the Peoples Republic of China, Geologic Publishing House, Beijing.
    [Google Scholar]
  17. CGIRCUG, The College of Geologic Investigation and Research in the Chinese University of Geoscience
    CGIRCUG, The College of Geologic Investigation and Research in the Chinese University of Geoscience (2006b) Geologic Map of Dingxi City. Geologic Maps of the Peoples Republic of China, Geologic Publishing House, Beijing.
    [Google Scholar]
  18. Chen, B., Liu, J., Chen, C., Du, J. & Sun, Y. (2015) Elastic thickness of the Himalayan‐Tibetan Orogen estimated from the fan wavelet coherence method, and its implications for lithospheric structure. Earth Planet. Sci. Lett., 409, 1–14.
    [Google Scholar]
  19. Clark, M.K., Farley, K.A., Zheng, D.W., Wang, Z.C. & Duvall, A.R. (2010) Early cenozoic faulting of the Northern Tibetan Plateau Margin from Apatite (U‐Th)/He Ages. Earth Planet. Sci. Lett., 296, 78–88.
    [Google Scholar]
  20. Craddock, W.H., Kirby, E. & Zhang, H.P. (2011) Late miocene‐pliocene range growth in the interior of the Northeastern Tibetan Plateau. Lithosphere, 3, 420–438.
    [Google Scholar]
  21. Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus, 16, 436–468.
    [Google Scholar]
  22. Dayem, K.E., Molnar, P., Clark, M.K. & Houseman, G.A. (2009) Far‐field lithospheric deformation in tibet during continental collision. Tectonics, 28, 1–9.
    [Google Scholar]
  23. DeCelles, P., Kapp, P., Ding, L. & Gehrels, G. (2007) Late cretaceous to middle tertiary basin evolution in the central Tibetan Plateau: changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol. Soc. Am. Bull., 119, 654–680.
    [Google Scholar]
  24. Deng, T., Qui, Z.X., Wang, B.Y., Wang, W. & Hou, S.K. (2013) Late cenozoic biostratigraphy of the Linxia Basin, Northwestern China. In: Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology (Ed. by X.M.Wang , L.Flynn , M.Fortelius ), pp. 243–273. Colombia University Press, New York.
    [Google Scholar]
  25. Deng, Y., Zhang, Z., Fan, W. & Pérez‐Gussinyé, M. (2014) Multitaper spectral method to estimate the elastic Thickness Of South China: implications for intracontinental deformation. Geosci. Front., 5, 193–203.
    [Google Scholar]
  26. Dettman, D., Fang, X., Garzione, C. & Li, J. (2003) Uplift‐driven climate change at 12 Ma: a long delta O‐18 record from the Ne margin of the Tibetan Plateau. Earth Planet. Sci. Lett., 214, 267–277.
    [Google Scholar]
  27. Dickinson, W.R. & Gehrels, G.E. (2008) Sediment delivery to the cordilleran foreland basin: insights from U‐Pb ages of Detrital Zircons in Upper Jurassic and Cretaceous Strata of the Colorado Plateau. Am. J. Sci., 308, 1041–1082.
    [Google Scholar]
  28. Duvall, A.R., Clark, M.K., van der Pluijm, B. & Li, C.Y. (2011) Direct dating of eocene reverse faulting in Northeastern Tibet Using Ar‐Dating of fault clays and low‐temperature thermochronometry. Earth Planet. Sci. Lett., 304, 520–526.
    [Google Scholar]
  29. Duvall, A.R., Clark, M.K., Kirby, E., Farley, K.A., Craddock, W.H., Li, C. & Yuan, D.‐Y. (2013) Low‐temperature thermochronometry along the Kunlun and Haiyuan Faults, Ne Tibetan Plateau: evidence for kinematic change during late‐stage orogenesis. Tectonics, 32, 1190–1211.
    [Google Scholar]
  30. Fan, M.J., Dettman, D.L., Song, C.H., Fang, X.M. & Garzione, C.N. (2007) Climatic variation in the Linxia Basin, Ne Tibetan Plateau, from 13.1 to 4.3 Ma: The Stable Isotope Record. Palaeogeogr. Palaeoclimatol. Palaeoecol., 247, 313–328.
    [Google Scholar]
  31. Fang, X., Li, J., Zhu, J., Cheng, H. & Cao, J. (1997) Determination and calibration of time scale of late cenozoic sedimentary sequences in Linxia Basin, Gansu Province, China. Chin. Sci. Bull., 42, 1457–1471.
    [Google Scholar]
  32. Fang, X.‐M., Garzione, C., Van der Voo, R., Li, J.‐J. & Fan, M.‐J. (2003) Flexural subsidence by 29 Ma on the Ne Edge of Tibet from the Magnetostratigraphy of Linxia Basin, China. Earth Planet. Sci. Lett., 210, 545–560.
    [Google Scholar]
  33. Fosdick, J.C., Graham, S.A. & Hilley, G.E. (2014) Influence of attenuated lithosphere and sediment loading on flexure of the deep‐water magallanes retroarc foreland Basin, Southern Andes. Tectonics, 33, 2505–2525.
    [Google Scholar]
  34. Garzione, C.N., Ikari, M.J. & Basu, A.R. (2005) Source of oligocene to pliocene sedimentary rocks in the Linxia Basin in Northeastern Tibet from Nd Isotopes: implications for tectonic forcing of climate. Geol. Soc. Am. Bull., 117, 1156–1166.
    [Google Scholar]
  35. GBGMR, Gansu Bureau of Geology and Mineral Resources
    GBGMR, Gansu Bureau of Geology and Mineral Resources (1989) Regional Geology of Gansu Province, Geological Publishing House, Beijing. 692 p.
    [Google Scholar]
  36. Gehrels, G.E., Valencia, V.A. & Ruiz, J. (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb Ages by Laser Ablation‐Multicollector‐inductively coupled plasma‐mass spectrometry. Geochem. Geophys. Geosyst., 9, 1–13.
    [Google Scholar]
  37. Gu, Z.G., Wang, S.H., Hsu, S.Y. & Wei, D.T. (1995a) Research progress on biostratigraphy of tertiary red beds in Linxia Basin, Gansu Province. In: Study on the Formation and Evolution of the Qinghai‐Xizang Province: Environmental Change Nad Ecological System (Ed. by The Expert Committee on Qingzang Program), pp. 91–95. Science Press, Beijing.
    [Google Scholar]
  38. Gu, Z.G., Wang, S.H., Hsu, S.Y. & Wei, D.T. (1995b) Discovery of giraffokeryx in China and the tertiary chronostratigraphy of Linxia, Gansu Province. China Sci. Bull., 40, 758–760.
    [Google Scholar]
  39. Hetenyi, M. (1979) Beams on Elastic Foundation. University of Michigan Press, Ann Arbor.
    [Google Scholar]
  40. Horton, B.K. (2012) Cenozoic evolution of Hinterland Basins in the Andes and Tibet. In: Recent Advances in Tectonics of Sedimentary Basins (Ed. by C.J.Busby & A.Azor ), pp. 427–444. Wiley‐Blackwell, Oxford, UK.
    [Google Scholar]
  41. Horton, B.K., Dupont‐Nivet, G., Zhou, J., Waanders, G.L., Butler, R.F. & Wang, J. (2004) Mesozoic‐cenozoic evolution of the Xining‐Minhe and Dangchang Basins, Northeastern Tibetan Plateau: magnetostratigraphic and biostratigraphic results. J. Geophys. Res. Solid Earth, 109, 1–15.
    [Google Scholar]
  42. Hough, B.G., Garzione, C.N., Wang, Z.C., Lease, R.O., Burbank, D.W. & Yuan, D.Y. (2011) Stable isotope evidence for topographic growth and basin segmentation: implications for the evolution of the Ne Tibetan Plateau. Geol. Soc. Am. Bull., 123, 168–185.
    [Google Scholar]
  43. Hough, B. G., Garzione, C. N., Wang, Z. & Lease, R. O. (2014) Timing and spatial patterns of basin segmentation and climate change in northeastern Tibet. In: Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau (Ed. by Nie, J. , Horton, B. K. , & Hoke, G. D. ) Geol. Soc. Am. Spl. Pap., 507, 129–153.
    [Google Scholar]
  44. Hren, M.T., Bookhagen, B., Blisniuk, P.M., Booth, A.L. & Chamberlain, C.P. (2009) Delta O‐18 and delta D of streamwaters across the Himalaya and Tibetan Plateau: implications for moisture sources and paleoelevation reconstructions. Earth Planet. Sci. Lett., 288, 20–32.
    [Google Scholar]
  45. Jordan, T.E. (1981) Thrust loads and foreland basin evolution, Cretaceous, Western United States. Am. Asso. Petrol. Geol. Bull., 65, 2506–2520.
    [Google Scholar]
  46. Jordan, T. & Watts, A. (2005) Gravity anomalies, flexure and the elastic thickness structure of the India‐Eurasia Collisional System. Earth Planet. Sci. Lett., 236, 732–750.
    [Google Scholar]
  47. Kent‐Corson, M.L., Ritts, B.D., Zhuang, G.S., Bovet, P.M., Graham, S.A. & Chamberlain, C.P. (2009) Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the Northern Margin of the Tibetan Plateau. Earth Planet. Sci. Lett., 282, 158–166.
    [Google Scholar]
  48. Kleinert, K. & Strecker, M.R. (2001) Climate change in response to orographic barrier uplift: paleosol and stable isotope evidence from the late Neogene Santa Maria basin, northwestern Argentina. Geol. Soci. Am. Bull., 113, 728–742.
    [Google Scholar]
  49. Lease, R.O. (2014) Cenozoic mountain building on the Northeastern Tibetan Plateau. Geol. Soc. Am. Spec. Pap., 507, 115–127.
    [Google Scholar]
  50. Lease, R.O., Burbank, D.W., Gehrels, G.E., Wang, Z.C. & Yuan, D.Y. (2007) Signatures of mountain building: detrital zircon U/Pb Ages from Northeastern Tibet. Geology, 35, 239–242.
    [Google Scholar]
  51. Lease, R.O., Burbank, D.W., Clark, M.K., Farley, K.A., Zheng, D.W. & Zhang, H.P. (2011) Middle miocene reorganization of deformation along the Northeastern Tibetan Plateau. Geology, 39, 359–362.
    [Google Scholar]
  52. Lease, R.O., Burbank, D.W., Hough, B., Wang, Z.C. & Yuan, D.Y. (2012a) Pulsed Miocene range growth in Northeastern Tibet: insights from Xunhua Basin Magnetostratigraphy and Provenance. Geol. Soc. Am. Bull., 124, 657–677.
    [Google Scholar]
  53. Lease, R.O., Burbank, D.W., Zhang, H., Liu, J. & Yuan, D. (2012b) Cenozoic shortening budget for the Northeastern Edge of the Tibetan Plateau: is lower crustal flow necessary?Tectonics, 31, 1–16.
    [Google Scholar]
  54. Leier, A., Quade, J., DeCelles, P. & Kapp, P. (2009) Stable isotopic results from Paleosol Carbonate in South Asia: paleoenvironmental reconstructions and selective alteration. Earth Planet. Sci. Lett., 279, 242–254.
    [Google Scholar]
  55. Li, L., Garzione, C.N., Pullen, A. & Chang, H. (2016) Early‐middle miocene topographic growth of the Northern Tibetan Plateau: stable isotope and sedimentation evidence from the Southwestern Qaidam Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol., 461, 201–213.
    [Google Scholar]
  56. Liu, S.F., Zhang, G.W., Pan, F., Zhang, H.P., Wang, P., Wang, K. & Wang, Y. (2013) Timing of Xunhua and Guide Basin development and growth of the Northeastern Tibetan Plateau, China. Basin Res., 25, 1–23.
    [Google Scholar]
  57. Metivier, F., Gaudemer, Y., Tapponnier, P. & Meyer, B. (1998) Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor Basins, China. Tectonics, 17, 823–842.
    [Google Scholar]
  58. Meyer, B., Tapponnier, P., Bourjot, L., Metivier, F., Gaudemer, Y., Peltzer, G., Shunmin, G. & Zhitai, C. (1998) Crustal thickening in Gansu‐Qinghai, Lithospheric Mantle Subduction, and Oblique, strike‐slip controlled growth of the Tibet Plateau. Geophys. J. Int., 135, 1–47.
    [Google Scholar]
  59. Nie, J., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., Bird, A., Andò, S., Vermeesch, P., Saylor, J., Lu, H., Breecker, D., Hu, X., Liu, S., Resentini, A., Vezzoli, G., Peng, W., Carter, A., Ji, S. & Pan, B. (2015) Loess plateau storage of Northeastern Tibetan Plateau‐Derived yellow river sediment. Nat. Commun., 6, 8511.
    [Google Scholar]
  60. Pingel, H., Alonso, R.N., Mulch, A., Rohrmann, A., Sudo, M. & Strecker, M.R. (2014) Pliocene orographic barrier uplift in the Southern Central andes. Geology, 42, 691–694.
    [Google Scholar]
  61. Poulsen, C.J. & Jeffery, M.L. (2011) Climate change imprinting on stable isotopic compositions of high‐elevation meteoric water cloaks past surface elevations of Major Orogens. Geology, 39, 595–598.
    [Google Scholar]
  62. QBGMR, Qinghai Bureau of Geology and Mineral Resources
    QBGMR, Qinghai Bureau of Geology and Mineral Resources (1991) Regional Geology of Qinghai Province. Beijing Geological Publishing House, Beijing.
    [Google Scholar]
  63. Qiu, Z.‐X. & Qiu, Z.‐D. (1990) The sequence and division of mammalian local faunas in the Neogene of China. J. Stratigr., 14, 241–260.
    [Google Scholar]
  64. Qiu, Z.X., Xie, H.Y. & Yan, D.F. (1990) Discovery of some early miocene mammalian fossils from Dongxiang, Gansu. Vertebrate Palasiatica, 28, 24.
    [Google Scholar]
  65. Qiu, Z.‐X., Wang, B.‐Y., Deng, T., Ni, X.‐J. & Wang, X. (2002) Notes on the mammal fauna from the bottom of loess deposits at Longdan, Dongxiang County, Gansu Province. Quat. Sci., 22, 33–38.
    [Google Scholar]
  66. Quade, J., Garzione, C. & Eiler, J. (2007) Paleoelevation reconstruction using pedogenic carbonates. In: Paleoaltimetry: Geochemical and Thermodynamic Approaches (Ed. by M.J.Kohn ) Rev. Mineral. Geochem., 66, 53–87.
    [Google Scholar]
  67. Quade, J., Breecker, D.O., Daeron, M. & Eiler, J. (2011) The paleoaltimetry of tibet: an isotopic perspective. Am. J. Sci., 311, 77–115.
    [Google Scholar]
  68. Rowley, D.B. (2007) Stable isotope‐based paleoaltimetry: theory and validation. In: Paleoaltimetry: Geochemical and Thermodynamic Approaches (Ed. by M.J.Kohn ) Rev. Mineral. Geochem., 66, 23–52. Mineralogical Soc Amer, Chantilly.
    [Google Scholar]
  69. Rozanski, K., Araguas‐Araguas, L. & Gonfiantini, R. (1993) Isotopic patterns in modem global precipitation. In: Climate Change in Continental Isotopic Records ‐ Geophysical Monograph 78 (Ed. by P.K.Swart , K.C.Lohman , J.McKenzie , S.Savin ), pp. 1–36. American Geophysical Union, Washington, D.C.
    [Google Scholar]
  70. Saylor, J.E. & Sundell, K.E. (2016) Quantifying comparison of large detrital geochronology data sets. Geosphere, 12, 203–220.
    [Google Scholar]
  71. Saylor, J.E., Stockli, D.F., Horton, B.K., Nie, J. & Mora, A. (2012) Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: implications for the tectonic history of the Eastern Cordillera, Colombia. Geol. Soc. Am. Bull., 124, 762–779.
    [Google Scholar]
  72. Saylor, J.E., Knowles, J.N., Horton, B.K., Nie, J.S. & Mora, A. (2013) Mixing of source populations recorded in Detrital Zircon U‐Pb Age Spectra of Modern River Sands. J. Geol., 121, 17–33.
    [Google Scholar]
  73. Sclater, J.G. & Christie, P.A.F. (1980) Continental stretching: an explanation of the post‐mid‐cretaceous subsidence of the Central North Sea Basin. J. Geophys. Res. Solid Earth, 85, 3711–3739.
    [Google Scholar]
  74. Sircombe, K.N. (2004) Agedisplay: an excel workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput. Geosci., 30, 21–31.
    [Google Scholar]
  75. Sobel, E.R., Hilley, G.E. & Strecker, M.R. (2003) Formation of internally drained contractional basins by aridity‐limited bedrock incision. J. Geophys. Res. Solid Earth, 108, 1–23.
    [Google Scholar]
  76. Strecker, M.R., Alonso, R.N., Bookhagen, B., Carrapa, B., Hilley, G.E., Sobel, E.R. & Trauth, M.H. (2007) Tectonics and Climate of the Southern Central Andes. Annu. Rev. Earth Planet. Sci., 35, 747–787.
    [Google Scholar]
  77. Sun, C.R., Chen, G.L. & Li, Z.R. (1997) Stratigraphy (Lithostratic) of Qinghai Province (in Chinese). University of Geosiences Press, Wuhan, China.
  78. Tang, H., Micheels, A., Eronen, J.T., Ahrens, B. & Fortelius, M. (2013) Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments. Clim. Dyn., 40, 1531–1549.
    [Google Scholar]
  79. Tapponnier, P., Xu, Z.Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G. & Yang, J.S. (2001) Geology ‐ oblique stepwise rise and growth of the Tibet Plateau. Science, 294, 1671–1677.
    [Google Scholar]
  80. Taylor, M., Yin, A., Ryerson, F., Kapp, P. & Ding, L. (2003) Conjugate strike‐slip faulting along the Bangong‐Nujiang Suture Zone Accommodates Coeval East‐West Extension and North‐South Shortening in the Interior of the Tibetan Plateau. Tectonics, 22, 1–16.
    [Google Scholar]
  81. Tian, L., Yao, T., Numaguti, A. & Sun, W. (2001) Stable isotope variations in monsoon precipitation on the Tibetan Plateau. J. Meteorol. Soc. Jpn, 79, 959–966.
    [Google Scholar]
  82. Tian, L., Yao, T., MacClune, K., White, J.W.C., Schilla, A., Vaughn, B., Vachon, R. & Ichiyanagi, K. (2007) Stable isotopic variations in West China: a consideration of moisture sources. J. Geophys. Res. Atmos., 112, 1–12.
    [Google Scholar]
  83. Turcotte, D.L. & Schubert, G. (1982) Geodynamics. Cambridge University Press, Cambridge.
    [Google Scholar]
  84. Vermeesch, P. (2013) Multi‐sample comparison of detrital age distributions. Chem. Geol., 341, 140–146.
    [Google Scholar]
  85. Vuille, M., Bradley, R.S., Werner, M., Healy, R. & Keimig, F. (2003) Modeling Δ18o in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. J. Geophys. Res. Atmos., 108, 1–24.
    [Google Scholar]
  86. Vuille, M., Werner, M., Bradley, R.S. & Keimig, F. (2005) Stable isotopes in precipitation in the Asian Monsoon Region. J. Geophys. Res. Atmos., 110, 1–15.
    [Google Scholar]
  87. Wangen, M. (2010) Physical Principles of Sedimentary Basin Analysis. Cambridge University Press, Cambridge.
    [Google Scholar]
  88. Watts, A.B. (2001) Isostasy and Flexure of the Lthosphere. Cambridge University Press, Cambridge.
    [Google Scholar]
  89. Weislogel, A.L., Graham, S.A., Chang, E.Z., Wooden, J.L. & Gehrels, G.E. (2010) Detrital Zircon Provenance from Three Turbidite Depocenters of the middle‐upper triassic Songpan‐Ganzi complex, Central China: record of collisional tectonics, erosional exhumation, and sediment production. Geol. Soc. Am. Bull., 122, 2041–2062.
    [Google Scholar]
  90. Yong, L., Allen, P.A., Densmore, A.L. & Qiang, X. (2003) Evolution of the Longmen Shan Foreland Basin (Western Sichuan, China) During the Late Triassic Indosinian Orogeny. Basin Res., 15, 117–138.
    [Google Scholar]
  91. Yuan, D.‐Y., Ge, W.‐P., Chen, Z.‐W., Li, C.‐Y., Wang, Z.‐C., Zhang, H.‐P., Zhang, P.‐Z., Zheng, D.‐W., Zheng, W.‐J., Craddock, W.H., Dayem, K.E., Duvall, A.R., Hough, B.G., Lease, R.O., Champagnac, J.‐D., Burbank, D.W., Clark, M.K., Farley, K.A., Garzione, C.N., Kirby, E., Molnar, P. & Roe, G.H. (2013) The Growth of Northeastern Tibet and its relevance to large‐scale continental geodynamics: a review of recent studies. Tectonics, 32, 2013TC003348.
    [Google Scholar]
  92. Zhuang, G., Brandon, M.T., Pagani, M. & Krishnan, S. (2014) Leaf wax stable isotopes from Northern Tibetan Plateau: implications for uplift and Climate since 15 Ma. Earth Planet. Sci. Lett., 390, 186–198.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12264
Loading
/content/journals/10.1111/bre.12264
Loading

Data & Media loading...

Supplements

Data Repository Text. Detailed zircon U‐Pb geochronology methods. Cumulative compacted and decompacted sediment accumulation curves for the Wangjiashan and Maogou locations since 29 Ma using the alternative chronology of Deng . (2014).

PDF

List of samples used in this study.

Compaction coefficients.

U‐Pb data table from University of Houston.

U‐Pb data table from University of Arizona.

MDS results presented in Fig. 10 and 11.

Subsidence results presented in Fig. 6.

Flexural modelling results presented in Fig. 12.

MATLAB (.m) files for MDS algorithm (DZmds).

ARCHIVE

DZmds.exe file.

ARCHIVE

MATLAB (.m) files for flexural modelling.

ARCHIVE
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error