1887
Volume 30, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The Palaeogene Isparta Basin of southwestern Anatolia formed between two convergent arms of the Isparta Bend orocline of the Tauride orogen. The origin of this tightening orocline is hypothetically explained in plate‐tectonic terms. Basin sedimentation commenced on a down‐warped Mesozoic carbonate platform of a crustal block accreted at the end of Cretaceous to the southern margin of the Anatolian plate. The basin earliest deposits are Palaeocene reddish mudstones with a fossil‐barren condensed basal part and increasingly interspersed with thin calcarenitic turbidites towards the top. The supply of turbiditic sediment to the basin plain subsequently increased, as the upper‐bathyal basin plain became surrounded from both sides by a narrow littoral shelf with an advancing turbiditic slope ramp. A major forced regression occurred at the end of Bartonian, causing incision of subaerial to submarine valleys up 600 m deep, filled in with gravelly to sandy turbidites and debrisflow deposits during the subsequent rise of relative sea level. The half‐filled valleys were re‐incised due to a Rupelian forced regression and were fully filled with fluvio‐deltaic bayhead deposits during a final marine transgression that re‐established the basin‐margin biocalcarenitic shelf. The littoral environment then expanded across the shallowing basin, as the basin axial zone was up‐domed and eroded to bedrock level at the end of Oligocene and the basin was tectonically inverted in Miocene. The pattern of intra‐orocline foreland sedimentation documented by this case study provides tentative criteria for the recognition of synorogenic oroclines and for their distinction from post‐orogenic oroclines.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12269
2017-11-12
2020-02-18
Loading full text...

Full text loading...

References

  1. Akıncı, Ö., Robertson, A., Poisson, A. & Bozkurt, E. (Eds) (2003) The Isparta Angle, SW Turkey – Its role in the evolution of tethys in the Eastern Mediterranean Region. Geol. J., 38 (Spec. Issue 3–4), 191–394.
    [Google Scholar]
  2. Akkiraz, M.S., Akgün, F. & Örçen, S. (2007) Batı Toroslar?n kuzeyindeki İncesu Havzasının Oligosen palinostratigrafisi ve paleoiklimi, Isparta Ҫevresi, Türkiye. Türk. Jeol. Kurul. Bild. Özl., 60, 385–387. [In Turkish, with English abstract.]
    [Google Scholar]
  3. Andrew, T. & Robertson, A.H.F. (2002) The Beyşehir‐Hoyran‐Hadım nappes: genesis and emplacement of Mesozoic marginal and oceanic units of the northern Neotethys in southern Turkey. J. Geol. Soc. London, 159, 529–543.
    [Google Scholar]
  4. Barka, A. & Hancock, P. (1984) Neotectonic deformation patterns in the convex northwards arc of the North Anatolian fault zone. In: The Geological Evolution of the Eastern Mediterranean (Ed. by DixonJ.E. & RobertsonA.H.F. ) Geol. Soc. London. Spec. Publ., 17, 763–774.
    [Google Scholar]
  5. Berggren, W.A. & Pearson, P.N. (2005) A revised tropical to subtropical planktonic foraminiferal zonation. J. Foram. Res., 35, 279–298.
    [Google Scholar]
  6. Blikra, L.H. & Nemec, W. (1998) Postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record. Sedimentology, 45, 909–959.
    [Google Scholar]
  7. Blikra, L.H. & Nemec, W. (2000) Postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record. Reply to discussion by P. Bertran and V. Jomelli. Sedimentology, 47, 1058–1068.
    [Google Scholar]
  8. Blumenthal, M. (1963) Le système structural du Taurus sud‐Anatolien. Mém. hors‐série Soc. géol. Fr., Livre à la mémoire du Professeur Paul Fallot, pp. 611–662.
  9. Bouma, A.H., Normark, W.R. & Barnes, N.E. (1985) Submarine Fans and Related Turbidite Systems, 351 pp. Springer‐Verlag, New York.
    [Google Scholar]
  10. Buffetaut, E.
    & Koeberl, C. (eds.) (2012) Geological and Biological Effects of Impact Events, 295 pp. Springer‐Verlag, New York.
    [Google Scholar]
  11. Carey, S.W. (1955) The orocline concept in geotectonics, Part 1. Pap. Proc. R. Soc. Tasmania, 89, 255–288.
    [Google Scholar]
  12. Carlson, P.R., Bruns, T.R., Molnia, B.F. & Schwab, W.C. (1982) Submarine valleys in the northeastern Gulf of Alaska: characteristics and probable origin. Mar. Geol., 47, 217–242.
    [Google Scholar]
  13. Catuneanu, O. (2006) Principles of Sequence Stratigraphy, 375 pp. Elsevier, Amsterdam.
    [Google Scholar]
  14. Clifton, H.E. (1981) Progradational sequences in Miocene shoreline deposits, southeastern Caliente Range, California. J. Sediment. Petrol., 51, 165–184.
    [Google Scholar]
  15. Collins, A.C. & Robertson, A.H.F. (1998) Processes of Late Cretaceous to Late Miocene episodic thrust sheet translation in the Lycian Taurides. SW Turkey. J. Geol. Soc. London, 155, 759–772.
    [Google Scholar]
  16. Collins, A.C. & Robertson, A.H.F. (2003) Kinematic evidence for Late Mesozoic‐Miocene emplacement of the Lycian Allochthon over the Western Anatolide Belt, SW Turkey. Geol. J., 38, 295–310.
    [Google Scholar]
  17. Collinson, J.D., Mountney, N.P. & Thompson, D.B. (2006) Sedimentary Structures. 3rd edn, 292 pp. Terra Publishing, Harpenden.
    [Google Scholar]
  18. Dalrymple, R.W., Boyd, R. & Zaitlin, B.A. (Eds) (1994) Incised‐valley systems: origin and sedimentary sequences. SEPM Spec. Publ., 51, 391.
    [Google Scholar]
  19. Dalrymple, R.W., Leckie, D.A. & Tillman, R.W. (Eds) (2006) Incised valleys in time and space. SEPM Spec. Publ., 85, 343.
    [Google Scholar]
  20. Dewey, J.F. & Şengör, A.M.C. (1979) Aegean and surrounding regions: complex multiple and continuum tectonics in a convergent zone. Geol. Soc. Am. Bull., 90, 84–92.
    [Google Scholar]
  21. Di˙lek, Y. & Moores, E.M. (1990) Regional tectonics of the eastern Mediterranean ophiolites. In: Ophiolites – Oceanic Crustal Analogues (Ed. by J.Malpas , E.M.Moores , A.Panayiotou & C.Xenophontos ), Proceeding of International Symposium Troodos 1987, pp. 295–309. Cyprus Geological Survey, Nicosia.
    [Google Scholar]
  22. Di˙lek, Y. & Rowland, J.C. (1993) Evolution of a conjugate passive margin pair in Mesozoic southern Turkey. Tectonics, 12, 954–970.
    [Google Scholar]
  23. Dott, R.H.Jr & Bourgeois, J. (1982) Hummocky stratification: significance of its variable bedding sequences. Geol. Soc. Am. Bull., 93, 663–680.
    [Google Scholar]
  24. Einsele, G. (2000) Sedimentary Basins: Evolution, Facies, and Sediment Budget. 2nd edn, 792 pp. Springer‐Verlag, Berlin.
    [Google Scholar]
  25. Flecker, R., Poisson, A. & Robertson, A.H.F. (2005) Facies and palaeogeographic evidence for the Miocene evolution of the Isparta Angle in its regional eastern Mediterranean context. Sediment. Geol., 173, 277–314.
    [Google Scholar]
  26. GörmÜş, M. & Karaman, M.E. (1992) Facies changes and new stratigraphical‐paleontological data in the Cretaceous‐Tertiary boundary around the Söbüdağ (Çünür–Isparta). Geosound, 21, 43–47.
    [Google Scholar]
  27. GörmÜş, M. & Özkul, M. (1995) Gönen–Atabey (Isparta) ve Ağlasun (Burdur) bölgenin stratigrafisi. S.D. Üniv. Fen Bilim. Enstit. Derg., 1, 43–64. [In Turkish, with English abstract.]
    [Google Scholar]
  28. Görür, N. & Tüysüz, O. (2001) Cretaceous to Miocene palaeogeographic evolution of Turkey: implications for hydrocarbon potential. J. Petrol. Geol., 24, 119–146.
    [Google Scholar]
  29. Gutnic, M. (1977) Géologie du Taurus pisidien au Nord d'Isparta (Turquie). Unpubl. PhD Dissertation, Université de Paris‐Sud, Orsay, 130 pp.
  30. Gutnic, M., Monod, O., Poisson, A. & Dumont, J.F. (1979) Géologie du Taurus occidentals (Turquie). Mém. Soc. Géol. France, 137, 1–112.
    [Google Scholar]
  31. Harms, J.C., Southard, J.B., Spearing, D.R. & Walker, R.G. (1975) Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratifcation Sequences. SEPM Short Course No. 2, Lecture Notes, 161 pp.
  32. Harms, J.C., Southard, J.B. & Walker, R.G. (1982) Structures and Sequences in Clastic Rocks. SEPM Short Course No. 9, Lecture Notes, 250 pp.
  33. Hayward, A.B. (1984) Sedimentation and basin formation related to ophiolite nappe emplacement, Miocene, SW Turkey. Sediment. Geol., 40, 105–129.
    [Google Scholar]
  34. Helland‐Hansen, W. (2009) Towards the standardization of sequence stratigraphy: Discussion. Earth‐Sci. Rev., 94, 95–97.
    [Google Scholar]
  35. Holbourn, A., Henderson, A.S. & MacLeod, N. (2013) Atlas of Benthic Foraminifera. Wiley‐Blackwell, Hoboken, NJ, 654 pp.
    [Google Scholar]
  36. Hottinger, L. (2001) Learning from the past? In: Volume IV: The Living World, Part Two (Ed. by E.Box & S.Pignatti ), pp. 449–477. Academic Press, San Diego, CA.
    [Google Scholar]
  37. Janocko, M., Nemec, W., Henriksen, S. & Warchoł, M. (2013) The diversity of deep‐water sinuous channel belts and slope valley‐fill complexes. Mar. Pet. Geol., 41, 7–34.
    [Google Scholar]
  38. Johnston, S.T. (2001) The great Alaskan terrane wreck: reconciliation of paleomagnetic and geological data in the northern Cordilliera. Earth Planet. Sci. Lett., 193, 259–272.
    [Google Scholar]
  39. Karaman, M.E. (1990) Isparta güneyindeki sahanın jeolojik etüdü. Türk. Jeol. Bül., 33, 57–67. [In Turkish, with English abstract.]
    [Google Scholar]
  40. Karaman, M.E. (1994) Isparta–Burdur arasının jeolojisi ved tektonik özellikleri. Türk. Jeol. Bül., 37, 57–68. [In Turkish, with English abstract.]
    [Google Scholar]
  41. Karaman, M.E. (2000) Tectono‐stratigraphic outline of the Burdur‐Isparta area (Western Taurides, Turkey). Geol. Bull. Turkey, 43, 71–81.
    [Google Scholar]
  42. Karaman, M.E., Meriç, E. & Tansel, İ. (1988) Ҫünür (Isparta) dolaylarında Kretase–Tersiyer geçisi. Akd. Üniv. Isp. Müh. Fak. Derg., 4, 80–100. [In Turkish, with English abstract.]
    [Google Scholar]
  43. Karaman, M.E., Meri˙ç, E. & Tansel, İ. (1989) Gönen–Atabey arasındaki bölgenin jeolojisi. Cum. Üniv. Müh. Fak. Derg., 6, 129–143. [In Turkish, with English abstract.]
    [Google Scholar]
  44. Keller, G. & Perch‐Nielsen, K. (1995) Cretaceous‐Tertiary (K/T) mass extinction: effect of global change on calcareous microplankton. In: Effects of Past Global Change on Life (Ed. by N.R.Council ), pp. 72–93. National Academies Press, Washington, D.C.
    [Google Scholar]
  45. Kelling, G., Robertson, A.H.F. & Van Buchem, F. (2005) Cenozoic sedimentary basins of southern Turkey: an introduction. Sediment. Geol., 173, 1–13.
    [Google Scholar]
  46. Kennett, J.P. & Stott, L.D. (1991) Abrupt deep‐sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353, 225–229.
    [Google Scholar]
  47. Koçyi˙ği˙t, A. (1984) Tectono‐stratigraphic characteristics of Hoyran Lake region (Isparta Bend). In: Geology of the Taurus Belt – Proceedings of International Tauride Symposium (Ed. by O.Tekeli & M.C.Göncüoğlu ), pp. 53–67. Mineral Research and Exploration Institute of Turkey (MTA), Ankara.
    [Google Scholar]
  48. Leren, B.L.S., Janbu, N.E., Nemec, W., Kırman, E. & Ilgar, A. (2007) Late Cretaceous to Early Eocene sedimentation in the Sinop‐Boyabat Basin, north‐central Turkey: a deep‐water turbiditic system evolving into littoral carbonate platform. In: Sedimentary Environments, Processes and Basins – A Tribute to Peter Friend (Ed. by NicholsG. , PaolaC. & WilliamsE.A. ) Int. Assoc. Sedimentol. Spec. Publ., 38, 401–456.
    [Google Scholar]
  49. Leszczyński, S. & Nemec, W. (2015) Dynamic stratigraphy of composite peripheral unconformity in a foredeep basin. Sedimentology, 62, 645–680.
    [Google Scholar]
  50. Loutit, T.S., Hardenbol, J., Vail, P.R. & Baum, G.R. (1988) Condensed sections: the key to age determination and correlation of continental margin sequences. In: Sea Level Changes: An Integrated Approach (Ed. by WilgusC.K. , HastingsB.S. , KendallC.G.S.T.C. , PosamentierH.W. , RossC.A. & Van WagonerJ.C. ) SEPM Spec. Publ., 42, 183–213.
    [Google Scholar]
  51. Lowe, D.R. (1982) Sediment gravity flows, II. Depositional models with special reference to the deposits of high‐density turbidity currents. J. Sediment. Petrol., 52, 279–297.
    [Google Scholar]
  52. Lyle, M.W. (2003) Neogene carbonate burial in the Pacific Ocean. Paleoceanography, 18, PA1059.
    [Google Scholar]
  53. McKenzie, D. (1972) Active tectonics of the Mediterranean region. Geophys. J. R. Astron. Soc., 30, 109–185.
    [Google Scholar]
  54. Nemec, W. & Steel, R.J. (1984) Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass‐flow deposits. In: Sedimentology of Gravels and Conglomerates (Ed. by KosterE.H. & SteelR.J. ) Can. Soc. Petrol. Geol. Mem., 10, 1–31.
    [Google Scholar]
  55. Nielsen, J.K., Görmüş, M., Uysal, K. & Kanbur, S. (2010) First record of trace fossils from the Lake District, southwestern Turkey. Bull. Geosci., 85, 691–708.
    [Google Scholar]
  56. Nielsen, J.K., Görmüş, M., Uysal, K. & Kanbur, S. (2012) Ichnology of the Miocene Güneyce Formation (southwest Turkey): oxygenation and sedimentation dynamics. Turk. J. Earth Sci., 21, 391–405.
    [Google Scholar]
  57. Okay, A.I. & Tüysüz, O. (1999) Tethyan sutures of northern Turkey. In: The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen (Ed. by DurandB. , JolivetL. , HorváthF. & SéranneM. ) Geol. Soc. London. Spec. Publ., 156, 475–515.
    [Google Scholar]
  58. ÖzgÜl, N. (1984) Stratigraphy and tectonic evolution of the Central Taurides. In: Geology of the Taurus Belt – Proceedings of International Tauride Symposium (Ed. by O.Tekeli & M.C.Göncüoğlu ), pp. 77–90. Mineral Research and Exploration Institute of Turkey (MTA), Ankara.
    [Google Scholar]
  59. Parejas, E. (1942) Sandıklı, Dinar, Burdur, Isparta ve Eğridir bölgesinde yapılan jeolojik löveler hakkında rapor. MTA Enst. Derl. Rap., 1390, 1–64. [In Turkish.]
    [Google Scholar]
  60. Pearson, P., Olsson, R., Huber, B., Hemleben, C., Berggren, W., Premoli Silva, I. & Ade, B. (2005) Atlas of Eocene planktonic Foraminifera. Epitome, 1, 274.
    [Google Scholar]
  61. Poisson, A., Akay, E., Dumont, J.F. & Uysal, S. (1984) The Isparta Angle: a Mesozoic paleorift in the Western Taurides. In: Geology of the Taurus Belt (Ed. by O.Tekeli & M.C.Göncüoğlu ), pp. 11–26. MIT, Ankara.
    [Google Scholar]
  62. Poisson, A., Yağmurlu, F., Bozcu, M. & Şentürk, M. (2003) New insight on the tectonic setting and evolution of the Isparta Angle, SW Turkey. Geol. J., 38, 257–282.
    [Google Scholar]
  63. Porębski, S.J. (1995) Lithofacies architecture of an incised‐valley estuary: La Meseta Formation (Eocene) of Seymour Island, Antarctic Peninsula. Stud. Geol. Pol., 107, 7–97.
    [Google Scholar]
  64. Rampino, M.R. & Volk, T. (1988) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary. Nature, 332, 63–65.
    [Google Scholar]
  65. Rea, D.K. & Lyle, M.W. (2005) Paleogene calcite compensation depth in the eastern subtropical Pacific: answers and questions. Paleoceanography, 20, PA1012.
    [Google Scholar]
  66. Robertson, A.H.F. (2000) Mesozoic–Tertiary tectono‐sedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey. In: Tectonics and Magmatism in Turkey and the Surrounding Area (Ed. by BozkurtE. , WinchesterJ.A. & PiperJ.D.A. ) Geol. Soc. London. Spec. Publ., 173, 97–138.
    [Google Scholar]
  67. Robertson, A.H.F. (2002) Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65, 1–67.
    [Google Scholar]
  68. Robertson, A.H.F. & Dixon, J.E. (1984) Introduction: aspects of the geological evolution of the Eastern Mediterranean. In: The Geological Evolution of the Eastern Mediterranean (Ed. by DixonJ.E. & RobertsonA.H.F. ) Geol. Soc. London. Spec. Publ., 17, 1–74.
    [Google Scholar]
  69. Robertson, A.H.F., Poisson, A. & Akıncı, Ö. (2003) Developments in research concerning Mesozoic‐Tertiary Tethys and neotectonics in the Isparta Angle, SW Turkey. Geol. J., 38, 195–234.
    [Google Scholar]
  70. Robertson, A.H.F., Parlak, O. & Ustaömer, T. (2012) Overview of the Palaeozoic‐Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Petroleum Geosci., 18, 381–404.
    [Google Scholar]
  71. Sagular, E.K. & Görmüş, M. (2006) New stratigraphical results and evidence of reworking based on nannofossils, foraminiferal and sedimentological data in the Eocene sequence from the Dereboğazi area, N Isparta Angle, SW Turkey. J. Asian Earth Sci., 27, 78–98.
    [Google Scholar]
  72. Şenel, M. (1997) Geological Maps of Turkey at 1:250 000 Scale, Isparta Sheet. Miner. Res. Explor. Inst. Turkey (MTA) Publ., 4, 1–47. [In Turkish.]
    [Google Scholar]
  73. Şengör, A.M.C. (1984) The cimmeride orogenic system and the tectonics of Eurasia. Geol. Soc. Am. Spec. Pap., 195, 82.
    [Google Scholar]
  74. Şengör, A.M.C. (1987) Tectonics of the Tethysides: orogenic collage development in a collisional setting. Ann. Rev. Earth Planet. Sci., 15, 213–244.
    [Google Scholar]
  75. Şengör, A.M.C. & Yılmaz, Y. (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.
    [Google Scholar]
  76. Şengör, A.M.C., Görür, N. & Saroğlu, F. (1985) Strike‐slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Strike‐Slip Deformation, Basin Formation, and Sedimentation (Ed. by BiddleK.D. & Christie‐BlickN. ) SEPM Spec. Publ., 17, 227–264.
    [Google Scholar]
  77. Si˙rel, E. & Acar, Ş. (1982) Praebullalveolina, a new foraminiferal genus from the Upper Eocene of the Afyon and Ҫanakkale region (west of Turkey). Eclogae Geol. Helv., 75, 821–839.
    [Google Scholar]
  78. Snedden, J.W. & Liu, C. (2010) A compilation of Phanerozoic sea‐level change, coastal onlaps and recommended sequence designations. AAPG Search Discovery, Article 40594, 3.
    [Google Scholar]
  79. Uchman, A. (2009) The Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies: Characteristics and constraints. Palaeogeogr. Palaeoclim. Palaeoecol., 276, 107–119.
    [Google Scholar]
  80. Van der Voo, R. (2004) Presidential address: Paleomagnetism, oroclines, and growth of the continental crust. GSA Today, 14, 4–9.
    [Google Scholar]
  81. Waldron, J.W.F. (1984) Structural history of the Antalya Complex in the ‘Isparta Angle’, southwest Turkey. In: The Geological Evolution of the Eastern Mediterranean (Ed. by DixonJ.E. & RobertsonA.H.F. ) Geol. Soc. London. Spec. Publ., 17, 273–286.
    [Google Scholar]
  82. Walker, R.G. (1984) General introduction: facies, facies sequences and facies models. In: Facies Models. 2nd edn (Ed. by WalkerR.G. ) Geosci. Can. Repr. Ser., 1, 1–9.
    [Google Scholar]
  83. Yalçınkaya, S. (1989) Isparta–Ağlasun (Burdur) dolaylarının jeolojisi. Unpubl. PhD Thesis, İstanbul University, İstanbul, 176 pp. [In Turkish.]
  84. Yazgan, E. (1984) Geodynamic evolution of the Eastern Taurus region. In: Geology of the Taurus Belt (Ed. by O.Tekeli , M.C.Göncüoğlu ), pp. 199–208. MTA Publications, Ankara.
    [Google Scholar]
  85. Yılmaz, Y. (1993) New evidence and model on the evolution of the southeast Anatolian orogen. Geol. Soc. Am. Bull., 105, 251–271.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12269
Loading
/content/journals/10.1111/bre.12269
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error