1887
Volume 30, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The Mesozoic shelf margin in the Mahajanga Basin, northwest Madagascar, provides an example where inherited palaeobathymetry, coupled with sea‐level changes, high sediment supply and fluctuations in accommodation influenced the stacking patterns and geometry of clinoforms that accreted onto a passive rifted margin. Two‐dimensional (2D) seismic profiles are integrated with existing field data and geological maps to study the evolution of the margin. The basin contains complete records of transgression, highstand, regression and lowstand phases that took place from Jurassic to Cretaceous. Of particular interest is the Cretaceous, Albian to Turonian (. 113‐93 Ma), siliciclastic shelf margin that prograded above a drowned Middle Jurassic carbonate platform. The siliciclastic phase of the shelf margin advanced . 70 km within . 20 My, and contains 10 distinct clinoforms mapped along a 2D seismic reflection data set. The clinoforms show a progressive decrease in height and slope length, and a fairly constant slope gradient through time. The successive shelf edges begin with a persistent flat to slightly downward‐directed shelf‐edge trajectory that changes to an ascending trajectory at the end of clinoform progradation. The progressive decrease in clinoform height and slope length is attributed to a decrease in accommodation. The prograding margin is interpreted to have formed when siliciclastic input increased as eastern Madagascar was uplifted. This work highlights the importance of sediment supply and inherited palaeobathymetry as controls on the evolution of shelf margins and it provides a new understanding of the evolution of the Mahajanga Basin during the Mesozoic.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12270
2017-11-28
2020-02-26
Loading full text...

Full text loading...

References

  1. Abramovich, S., Keller, G., Adatte, T., Stinnesbeck, W., Hottinger, L., Stueben, D., Berner, Z., Ramanivosoa, B. & Randriamanantenasoa, A. (2002) Age and paleoenvironment of the Maastrichtian to Paleocene of the Mahajanga Basin, Madagascar: a multidisciplinary approach. Mar. Micropaleontol., 47, 17–70.
    [Google Scholar]
  2. Anell, I. & Midtkandal, I. (2017) The quantificable clinothem – types, shapes and geometric relationships in the Plio‐Pleistocene Giant Foresets Formation, Taranaki Basin, New Zealand. Basin Res., 29, 277–297.
    [Google Scholar]
  3. Bardintzeff, J.‐M., Liégeois, J.P., Bonin, B., Bellon, H. & Rasamimanana, G. (2010) Madagascar volcanic provinces linked to the Gondwana break‐up: geochemical and isotopic evidences for contrasting mantle sources. Gondwana Res., 18, 295–314.
    [Google Scholar]
  4. Besairie, H. (1972) Géologie de Madagascar. I. Les Terrains Sédimentaires. Annales Géologiques de Madagascar 35.
  5. Burgess, P.M. & Prince, G.D. (2015) Non‐unique stratal geometries: implications for sequence stratigraphic interpretations. Basin Res., 27, 351–365.
    [Google Scholar]
  6. Burgess, P.M. & Steel, R. (2008) Stratigraphic forward modeling of basin‐margin clinoform systems: implications for controls on topset and shelf width and timing of formation of shelf‐edge deltas. In: Recent Advances in Models of Siliciclastic Shallow‐Marine Stratigraphy (Ed. by HampsonG.J. , SteelR.J. , BurgessP.M. & DalrympleR.W. ) SEPM Spec. Publ., 90, 35–45.
    [Google Scholar]
  7. Carvajal, C.R. & Steel, R.J. (2006) Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34, 665–668.
    [Google Scholar]
  8. Catuneanu, O. (2002) Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. J. Afr. Earth Sc., 35, 1–43.
    [Google Scholar]
  9. Chumakov, N.M., Zharkov, M.A., Herman, A.B., Doludenko, M.P., Kalandadze, N.N., Lebedev, E.A., Ponomarenko, A.G. & Rautian, A.S. (1995) Climate belts of the Mid‐Cretaceous time. Stratigr. Geol. Correl., 3, 241–260.
    [Google Scholar]
  10. Cucciniello, C., Melluso, L., Jourdan, F., Mahoney, J.J., Meisel, T. & Morra, V. (2013) 40Ar‐39Ar ages and isotope geochemistry of Cretaceous basalts in northern Madagascar: refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province. Geol. Mag., 150, 1–17.
    [Google Scholar]
  11. Eagles, G. & König, M. (2008) A model of plate kinematics in Gondwana breakup. Geophys. J. Int., 173, 703–717.
    [Google Scholar]
  12. Emmel, B., Boger, S.D., Jacobs, J. & Daszinnies, M.C. (2012) Maturity of central Madagascar's landscape — Low‐temperature thermochronological constraints. Gondwana Res., 21, 704–713.
    [Google Scholar]
  13. Gaina, C., Torsvik, T.H., van Hinsbergen, D.J.J., Medvedev, S., Werner, S.C. & Labails, C. (2013) The African Plate: a history of oceanic crust accretion and subduction since the Jurassic. Tectonophysics, 604, 4–25.
    [Google Scholar]
  14. Gaina, C., van Hinsbergen, D.J.J. & Spakman, W. (2015) Tectonic interactions between India and Arabia since the Jurassic reconstructed from marine geophysics, ophiolite geology, and seismic tomography. Tectonics, 34, 875–906.
    [Google Scholar]
  15. Geiger, M., Clark, D.N. & Mette, W. (2004) Reappraisal of the timing of the breakup of Gondwana based on sedimentological and seismic evidence from the Morondava Basin, Madagascar. J. Afr. Earth Sc., 38, 363–381.
    [Google Scholar]
  16. Gibbons, A.D., Whittaker, J.M. & Muller, R.D. (2013) The breakup of East Gondwana: assimilating constraints from Cretaceous ocean basins around India into the best‐fit tectonic model. J. Geophys. Res., 118, 1–15.
    [Google Scholar]
  17. Giese, J., Seward, D. & Schreurs, G. (2012) Low‐temperature evolution of the Morondava rift basin shoulder in western Madagascar: an apatite fission track study. Tectonics, 31. TC2009.
    [Google Scholar]
  18. Goodbreed, S.L. & Kuehl, S.A. (2000) The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: late quaternary stratigraphy and evolution of the Ganges‐Brahmaputra delta. Sed. Geol., 133, 227–248.
    [Google Scholar]
  19. Gradstein, F.M., Ogg, J.G. & Smith, A.G. (2004) A Geologic Time Scale 2004. pp. 589. Cambridge University Press, New York.
    [Google Scholar]
  20. Henriksen, S., Helland‐Hansen, W. & Bullimore, S. (2011) Relationships between shelf‐edge trajectories and sediment dispersal along depositional dip and strike: a different approach to sequence stratigraphy. Basin Res., 23, 3–21.
    [Google Scholar]
  21. Helland‐Hansen, W. & Hampson, G.J. (2009) Trajectory analysis: concepts and applications. Basin Res., 21, 454–483.
    [Google Scholar]
  22. Helland‐Hansen, W. & Martinsen, O.J. (1996) Shoreline trajectories and sequences; description of variable depositional‐dip scenarios. J. Sediment. Res., 66, 670–688.
    [Google Scholar]
  23. van Hinsbergen, D., de Groot, L.V., van Schail, S.J., Spakman, W., Bijl, P.K., Sluijs, A., Langereis, C.G. & Brinkhuis, H. (2015) A paleolatitude calculator for paleoclimate studies. PLoS ONE, 10, 1–21.
    [Google Scholar]
  24. Hubbard, S.M., Fildani, A., Romans, B.W., Colvault, J.A. & McHargue, T.R. (2010) High‐relief slope clinoform development: insights from outcrop, Magallanes Basin, Chile. J. Sediment. Res., 80, 357–375.
    [Google Scholar]
  25. Johannessen, E.P. & Steel, R.J. (2005) Shelf‐margin clinoforms and prediction of deepwater sands. Basin Res., 17, 521–550.
    [Google Scholar]
  26. Kertznus, V. & Kneller, B. (2009) Clinoform quantification for assessing the effects of external forcing on continental margin development. Basin Res., 21, 738–758.
    [Google Scholar]
  27. Leinweber, V.T. & Jokat, W. (2012) The Jurassic history of the Africa‐Antarctica corridor — new constraints from magnetic data on the conjugate continental margins. Tectonophysics, 530–531, 87–101.
    [Google Scholar]
  28. Luger, P., Gröschke, M., Bussman, M., Dina, A., Mette, W., Uhmann, A. & Kallenbach, H. (1994) Comparison of the Jurassic and Cretaceous sedimentary cycles of Somalia and Madagascar: implications for the Gondwana breakup. Geol. Rundsch., 83, 711–727.
    [Google Scholar]
  29. Melluso, L., Morra, V., Brotzu, P. & Mahoney, J.J. (2001) The cretaceous igneous province of madagascar: geochemistry and petrogenesis of lavas and dykes from the central–western sector. J. Petrol., 42, 1249–1278.
    [Google Scholar]
  30. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie‐Blick, N. & Pekar, S.F. (2005) The phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  31. Mitchum, R.M., Vail, P.R. & Sangree, J.B. (1977) Seismic stratigraphy and global changes of sea level, part 6: stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: Seismic Stratigraphy ‐ Applications to Hydrocarbon Exploration (Ed. by C.E.Payton ), AAPG, Tulsa.
    [Google Scholar]
  32. Muto, T. & Steel, R.J. (2002) In defence of shelf‐edge delta development during falling and lowstand of relative sea level. J. Geol., 110, 421–436.
    [Google Scholar]
  33. Nguyen, L.C., Hall, S.A., Bird, D.E. & Ball, P.J. (2016) Reconstruction of the East Africa and Antarctica continental margins. J. Geophys. Res. Solid Earth, 121, https://doi.org/10.1002/2015JB012776.
    [Google Scholar]
  34. Olariu, C. & Steel, R.J. (2009) Influence of point‐source sediment‐supply on modern shelf‐slope morphology: implications for interpretation of ancient shelf margins. Basin Res., 21, 484–501.
    [Google Scholar]
  35. Papini, M. & Benvenuti, M. (1998) Lithostratigraphy, sedimentology, and facies architecture of the Late Cretaceous succession in the central Mahajanga Basin, Madagascar. J. Afr. Earth Sc., 26, 229–247.
    [Google Scholar]
  36. Papini, M. & Benvenuti, M. (2008) The Toarcian‐Bathonian succession of the Antsiranana Basin (NW Madagascar): facies analysis and tectono‐sedimentary history in the development of the East Africa‐Madagascar conjugate margins. J. Afr. Earth Sc., 51, 21–38.
    [Google Scholar]
  37. Patruno, S., Hampson, G.J. & Jackson, C.A.L. (2015) Quantitative characterisation of deltaic and subaqueous clinoforms. Earth Sci. Rev., 142, 79–119.
    [Google Scholar]
  38. Pirmez, C., Pratson, L.F. & Steckler, M.S. (1998) Clinoform development by advection‐diffusion of suspended sediment: modeling and comparison to natural systems. J. Geophys. Res. Solid Earth, 103, 24141–24157.
    [Google Scholar]
  39. Pomar, L. (2001) Types of carbonate platforms: a genetic approach. Basin Res., 13, 313–334.
    [Google Scholar]
  40. Posamentier, H.W. & Vail, P.R. (1988) Eustatic controls on clastic deposition II ‐ sequence and systems tract models. In: Sea Level Changes: An Integrated Approach. (Ed. by WilgusC.K. , HastingsB.S. , KendallC.G. , PosamentierH.W. , RossC.A. & Van WagonerJ.C. ), SEPM Spec. Publ., 42, 125–154.
    [Google Scholar]
  41. Posamentier, H.W., Jervey, M.T. & Vail, P.R. (1988) Eustatic controls on clastic deposition I ‐ conceptual framework. In: Sea Level Changes: An Integrated Approach (Ed. by WilgusC.K. , HastingsB.S. , KendallC.G. , PosamentierH.W. , RossC.A. & Van WagonerJ.C. ) SEPM Spec. Publ., 42, 110–124.
    [Google Scholar]
  42. Pratt, M.J., Wysession, M.E., Aleqabi, G., Wiens, D.A., Nyblade, A.A., Shore, P., Rambolamanana, G. & Andriampenomanana, F. (2016) Shear velocity structure of the crust and upper mantle of Madagascar derived from surface wave tomography. Earth Planet. Sci. Lett., 458, 405–417.
    [Google Scholar]
  43. Prince, G.D. & Burgess, P.M. (2013) Numerical modeling of falling‐stage topset aggradation: implications for distinguishing between forced and unforced regressions in the geological record. J. Sediment. Res., 83, 767–781.
    [Google Scholar]
  44. Reeves, C.V., Teasdale, J.P. & Mahanjane, E.S. (2016) Insight into the Eastern Margin of Africa from a new tectonic model of the Indian Ocean. In: Transform Margins: Development, Controls, and Petroleum Systems (Ed. by NemcokM. , RubarS. , SinhaS.T. , HermestonS.A. & LendenyiovaL. ) Geol. Soc. Spec. Pub., 431, 299–322.
    [Google Scholar]
  45. Rich, J.L. (1951) Three critical environments of deposition and criteria for recognition of rocks deposited in each of them. Geol. Soc. Am. Bull., 62, 1–20.
    [Google Scholar]
  46. Roberts, G.G., Paul, J.D., White, N. & Winterbourne, J. (2012) Temporal and spatial evolution of dynamic support from river profiles: a framework for Madagascar. Geochem. Geophys. Geosyst., 13. Q04004
    [Google Scholar]
  47. Rogers, R.R. (2005) Fine‐grained debris flows and extraordinary vertebrate burials in the Late Cretaceous of Madagascar. Geology, 33, 297–300.
    [Google Scholar]
  48. Rogers, R.R., Hartman, J.H. & Krause, D.W. (2000) Stratigraphic analysis of Upper Cretaceous rocks in the Mahajanga Basin, northwestern Madagascar: implications for ancient and modern faunas. J. Geol., 108, 275–301.
    [Google Scholar]
  49. Rogers, R.R., Krause, D.W. & Rogers, K.C. (2003) Cannibalism in the Madagascan dinosaur Majungatholus atopus . Nature, 422, 515–518.
    [Google Scholar]
  50. Rogers, R.R., Krause, D.W., Rogers, K.C., Rasoamiaramanana, A.H. & Rahantarisoa, L. (2007) Paleoenvironment and paleoecology of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the late Cretaceous of Madagascar. J. Vertebr. Paleontol., 27, 21–31.
    [Google Scholar]
  51. Rogers, R.R., Krause, D.W., Kast, S.C., Mashall, M.S., Rahantarisoa, L., Robins, C.R. & Setich, J.J.W. (2013) A new, richly fossiliferous member comprised of tidal deposits in the Upper Cretaceous Maevarano Formation, northwestern Madagascar. Cretac. Res., 44, 12–29.
    [Google Scholar]
  52. Roig, J.Y., Tucker, R.D., Peters, S.G., Delor, C. & Theveniaut, H. (2012) Carte Geologique de la Republique de Madagascar.
  53. Schandelmeier, H., Bremer, F. & Holl, H.G. (2004) Kinematic evolution of the Morondava rift basin of SW Madagascar—from wrench tectonics to normal extension. J. Afr. Earth Sc., 38, 321–330.
    [Google Scholar]
  54. Schlanger, S.O., Arthur, M.A., Jenkyns, H.C. & Scholle, P.A. (1987) The Cenomanian‐Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon‐rich beds and the marine δ13C excursion. Geol. Soc. Spec. Publ., 26, 371–399.
    [Google Scholar]
  55. Seward, D., Grujic, D. & Schreurs, G. (2004) An insight into the breakup of Gondwana: identifying events through low‐temperature thermochronology from the basement rocks of Madagascar. Tectonics, 23, 1–20.
    [Google Scholar]
  56. Steckler, M.S., Mountain, G.S., Miller, K.G. & Christie‐Blick, N. (1999) Reconstruction of Tertiary progradation and clinoform development on the New Jersey passive margin by 2‐D backstripping. Mar. Geol., 154, 399–420.
    [Google Scholar]
  57. Steel, R.J. & Olsen, T. (2002) Clinoforms, clinoform trajectories and deepwater sands. In: Sequence Stratigraphic Models for Exploration and Production: Evolving Methodology, Emerging Models, and Application Histories (Ed. by ArmentroutJ.M. & RosenN.C ) GCS‐SEPM Spec. Publ., pp. 367–381.
    [Google Scholar]
  58. Storey, M., Mahoney, J.J. & Saunders, A.D. (1997) Cretaceous basalts in Madagascar and the transition between plume and continental lithosphere mantle sourced. In: Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism (Ed. by MahoneyJ.J. & CoffinM.F. ) Geophys. Monog., Amer. Geophys. Union100, 95–122.
    [Google Scholar]
  59. Tari, G., Coterill, K., Molnar, J., Valasek, D., Walters, G. & Alvarez, Y. (2004) Salt tectonics and sedimentation in the offshore Majunga Basin, Madagascar. In: Salt‐Sediment Interactions and Hydrocarbon Prospectivity: Concepts, Applications, and Case Studies for the 21st Century (Ed. by P.J.Post , D.L.Olson , K.T.Lyons , S.L.Palmes , P.F.Harrison , N.C.Rosen ), pp. 614–639. GCSSEPM Foundation, Houston, TX.
    [Google Scholar]
  60. Torsvik, T.H., Tucker, R.D., Ashwal, L.D., Carter, L.M., Jamtveit, B., Vidyadharan, K.T. & Venkataramana, P. (2000) Late Cretaceous India‐Madagascar fit and timing of break‐up related magmatism. Terra Nova, 12, 220–224.
    [Google Scholar]
  61. Wild, R., Flint, S.S. & Hodgson, D.M. (2009) Stratigraphic evolution of the upper slope and shelf edge in the Karoo Basin, South Africa. Basin Res., 21, 502–527.
    [Google Scholar]
  62. Vail, P.R. & Mitchum, R.M. (1977) Seismic stratigraphy and global changes of sea level: part 1. In: Seismic Stratigraphy ‐ Applications to Hydrocarbon Exploration (Ed. by C.E.Payton ), AAPG, Tulsa.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12270
Loading
/content/journals/10.1111/bre.12270
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error