1887
Volume 30, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Investigations of syn‐sedimentary growth faults in the Last Chance delta (Ferron Sandstone, Utah, USA) show that fault‐bounded half‐grabens arrested high amounts of sand in the mouth bar and/or distributary channel areas. Fault‐controlled morphology causes changes in routing of the delta top to delta front drainage towards the long axis of half‐grabens. Faulting was spatially and temporally non‐systematic, and polyphase, with 3D cusp/listric fault geometries instigated by linkage of variously oriented segments. Hanging wall rollover folds consisting of wedge‐shaped syn‐kinematic sand attest to rapid <1‐m slip increments on faults followed by mild erosion along crests of fault blocks and sedimentary infill of adjacent accommodation. Triangle‐zones in prodelta to delta front muds are located underneath steeper faults and interconnected rotated fault‐flats. Their geometry is that of antiformal stack duplexes, in an arrangement of low‐angle‐to‐bedding normal faults at the base, replaced by folded thrusts upwards. These faults show a brittle, frictional flow deformation mechanism ascribed to early compaction of mud. For syn‐kinematic sand, there is a change from general granular/hydroplastic flow in shear zones to later brittle failure and cataclasis, a transition instigated by precipitation of calcite cement. Extensional faulting in the Last Chance delta was likely controlled by gravity driven collapse towards the delta slope and prodelta, as is commonly observed in collapsing deltas. The trigger and driving mechanism is envisioned as localized loads from sand deposited within distributary channels/mouth bars and fault‐controlled basins along the delta top. A regional tilt and especially displacement of compacted mud below sand bodies towards less compacted muds also contributed to the faulting.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12271
2017-12-19
2019-12-07
Loading full text...

Full text loading...

References

  1. Ahmed, S., Bhattacharya, J.P., Garza, D.E. & Li, Y. (2014) Facies architecture and stratigraphic evolution of a river‐dominated delta front, Turonian Ferron Sandstone, Utah, U.S.A. J. Sediment. Res., 84, 97–121.
    [Google Scholar]
  2. Anderson, P.B., Chidsey, T.C., Ryer, T.A., Adams, R.D. & McClure, K. (2004) Geologic framework, facies, paleogeography, and reservoir analogs of the Ferron Sandstone in the Ivie Creek Area, East‐Central Utah. In: Analog for Fluvial‐Deltaic Reservoir Modeling: The Ferron Sandstone (Ed. by ChidseyT.C.J. , AdamsR.D. & MorrisT.H. ) AAPG Stud. Geol., 50, 331–356.
    [Google Scholar]
  3. Anell, I., Braathen, A., Olaussen, S. & Osmundsen, P.T. (2013) Evidence of faulting contradicts a quiescent northern Barents Shelf during the Triassic. First Break, 31, 31–40.
    [Google Scholar]
  4. Anell, I., Braathen, A. & Olaussen, S. (2014) The Triassic – Early Jurassic of the northern Barents Shelf: a regional understanding of the Longyearbyen CO2 reservoir. Norw. J. Geol., 94, 83–98.
    [Google Scholar]
  5. Anell, I., Lecomte, I., Braathen, A. & Buckley, S.J. (2016) Synthetic seismic illumination of small‐scale growth faults, paralic deposits and low‐angle clinoforms: a case study of the Triassic successions on Edgeøya, NW Barents Shelf. Mar. Pet. Geol., 77, 625–639.
    [Google Scholar]
  6. Armstrong, F.C. & Oriel, S.S. (1965) Tectonic development of idaho‐wyoming thrust belt. Am. Assoc. Petrol. Geol., 49, 1847–1866.
    [Google Scholar]
  7. Back, S. & Morley, C.K. (2016) Growth faults above shale–Seismic‐scale outcrop analogues from the Makran foreland, SW Pakistan. Mar. Pet. Geol., 70, 144–162.
    [Google Scholar]
  8. Bhattacharya, J.P. & Davies, R.K. (2001) Growth faults at the prodelta to delta‐front transition, Cretaceous Ferron sandstone, Utah. Maine Petrol. Geol., 18, 525–534.
    [Google Scholar]
  9. Bhattacharya, J.P. & Maceachern, J.A. (2009) Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. J. Sediment. Res., 79, 184–209.
    [Google Scholar]
  10. Bhattacharya, J.P. & Tye, R.S. (2004) Searching for modern Ferron analogs and application to subsurface interpretation. In: Regional to Wellbore Analog for Fluvial–Deltaic Reservoir Modeling: The Ferron Sandstone of Utah (Ed. by ChidseyT.C.J. , AdamsR.D. & MorrisT.H. ) Am. Assoc. Petrol. Geol. Stud. Geol., 50, 39–58.
    [Google Scholar]
  11. Birgenheier, L.P., Horton, B., McCauley, A.D., Johnson, C.L. & Kennedy, A. (2017) A depositional model for offshore deposits of the lower Blue Gate Member, Mancos Shale, Uinta Basin, Utah, USA. Sedimentology, 64, 1402–1438.
    [Google Scholar]
  12. Bonaventura, X., Sima, A.A., Feixas, M., Buckley, S.J., Sbert, M. & Howell, J.A. (2017) Information measures for terrain visualization. Comput. Geosci., 99, 9–18.
    [Google Scholar]
  13. Boyer, S.E. & Elliott, D. (1982) Thrust systems. Am. Assoc. Pet. Geol. Bull., 66, 1196–1230.
    [Google Scholar]
  14. Brun, J.P. & Fort, X. (2011) Salt tectonics at passive margins: geology versus models. Mar. Pet. Geol., 28, 1123–1145.
    [Google Scholar]
  15. Buckley, S., Ringdal, K., Dolva, B., Naumann, N. & Kurz, T. (2017) LIME: 3D visualisation and interpretation of virtual geoscience models. In: EGU General Assembly Conference Abstracts 19, p. 15952.
  16. Copeland, P., Currie, C.A., Lawton, T.F. & Murphy, M.A. (2017) Location, location, location: the variable lifespan of the Laramide orogeny. Geology, 45, 223–226.
    [Google Scholar]
  17. Cotter, E. (1975) Deltaic deposits in the upper cretaceous Ferron Sandstone, Utah. In: Deltas: Models for Exploration (Ed. by M.L.Broussard ), pp. 471–484. Houston Geological Society, Houston, TX.
    [Google Scholar]
  18. Decelles, P.G. & Coogan, J.C. (2006) Regional structure and kinematic history of the Sevier fold‐and‐thrust belt, central Utah. Geol. Soc. Am. Bull., 118, 841–864.
    [Google Scholar]
  19. Deveugle, P.E.K., Jackson, M.D., Hampson, G.J., Farrell, M.E., Sprague, A.R., Stewart, J. & Calvert, C.S. (2011) Characterization of stratigraphic architecture and its impact on fluid flow in a fluvial‐dominated deltaic reservoir analog: upper Cretaceous Ferron Sandstone Member, Utah. Am. Assoc. Pet. Geol. Bull., 95, 693–727.
    [Google Scholar]
  20. Edwards, M.B. (1976) Growth faults in upper Triassic deltaic sediments, Svalbard. Am. Assoc. Petrol. Geol. Bull., 60, 341–355.
    [Google Scholar]
  21. Enge, H.D., Howell, J.A. & Buckley, S.J. (2010) The Geometry and Internal Architecture of Stream Mouth Bars in the Panther Tongue and the Ferron Sandstone Members, Utah, U.S.A. J. Sediment. Res., 80, 1018–1031.
    [Google Scholar]
  22. Fielding, C.R. (2010) Planform and facies variability in asymmetric deltas: facies analysis and depositional architecture of the turonian ferron sandstone in the western henry mountains, South‐Central Utah, U.S.A. J. Sediment. Res., 80, 455–479.
    [Google Scholar]
  23. Fielding, C.R. (2011) Foreland basin structural growth recorded in the Turonian Ferron Sandstone of the Western Interior Seaway Basin, USA. Geology, 39, 1107–1110.
    [Google Scholar]
  24. Fielding, C.R. (2015) Anatomy of falling‐stage deltas in the Turonian Ferron Sandstone of the western Henry Mountains Syncline, Utah: growth faults, slope failures and mass transport complexes. Sedimentology, 62, 1–26.
    [Google Scholar]
  25. Fort, X., Brun, J.P. & Chauvel, F. (2004) Salt tectonics on the Angolan margin, synsedimentary deformation processes. Am. Assoc. Petrol. Geol. Bull., 88, 1523–1544.
    [Google Scholar]
  26. Fossen, H. (2010) Deformation bands formed during soft‐sediment deformation: observations from SE Utah. Mar. Pet. Geol., 27, 215–222.
    [Google Scholar]
  27. Fossen, H., Schultz, R.A., Mair, K. & Shipton, Z.K. (2007) Deformation bands in sandstones—A review. J. Geol. Soc. Lond., 164, 755–769.
    [Google Scholar]
  28. Fossen, H., Schultz, R.A. & Torabi, A. (2011) Conditions and implications for compaction band formation in the Navajo Sandstone, Utah. J. Struct. Geol., 33, 1477–1490.
    [Google Scholar]
  29. Gardner, M.H. (1995) Tectonic and eustatic controls on the stratal architecture of mid‐Cretaceous stratigraphic sequences, central western interior foreland basin of North America, in: Stratigraphic Evolution of Foreland Basins. Special Publications of SEPM, pp. 243–281. https://doi.org/10.2110/pec.95.52.0243
  30. GarrisonJR, J.R. & van den Bergh, T. C. V. (2004) Regional to Wellbore Analog for Fluvial–Deltaic Reservoir Modeling: the Ferron Sandstone of Utah. Brigham Young University Geology Studies.
  31. Hooper, R.J., Fitzsimmons, R.J., Grant, N. & Vendeville, B.C. (2002) The role of deformation in controlling depositional patterns in the south‐central Niger Delta, West Africa. J. Struct. Geol., 24, 847–859.
    [Google Scholar]
  32. Hurst, A. & Vigorito, M. (2017) Saucer‐shaped sandstone intrusions: an underplayed reservoir target. Am. Assoc. Petrol. Geol. Bull., 101, 625–633.
    [Google Scholar]
  33. Imber, J., Childs, C., Nell, P.A.R., Walsh, J.J., Hodgetts, D. & Flint, S. (2003) Hanging wall fault kinematics and footwall collapse in listric growth fault systems. J. Struct. Geol., 25, 197–208.
    [Google Scholar]
  34. Kauffman, E.G. (1977) Geological and biological overview: western Interior Cretaceous basin. Mount. Geol., 14, 75–99.
    [Google Scholar]
  35. Khani, H.F. & Back, S. (2012) Temporal and lateral variation in the development of growth faults and growth strata in western Niger Delta, Nigeria. Am. Assoc. Petrol. Geol. Bull., 96, 595–614.
    [Google Scholar]
  36. Li, W., Bhattacharya, J.P. & Campbell, C. (2010) Temporal evolution of fluvial style in a compound incised‐valley fill, Ferron "Notom Delta" Henry Mountains Region, Utah (U.S.A.). J. Sediment. Res., 80, 529–549.
    [Google Scholar]
  37. Li, W., Bhattacharya, J.P., Zhu, Y., Garza, D. & Blankenship, E. (2011) Evaluating delta asymmetry using three‐dimensional facies architecture and ichnological analysis, Ferron ‘Notom Delta’, Capital Reef, Utah, USA”. Sedimentology, 58(2), 478–507.
    [Google Scholar]
  38. Li, Z., Schieber, J. & Bhattacharya, J.P. (2016) Facies Characteristics and Sequence Stratigraphy of the Upper Cretaceous Tununk Shale Member, Henry Mountains Region, Utah, in: American Association of Petroleum Geologist Annual Convention and Exhibition. Calgary, Canada.
  39. MaherJRH., Ogata, K. & Braathen, A. (2016) Cone‐in‐cone and beefcake mineralization associated with Triassic growth basin faulting and shallow diagenesis, Edgeøya, Svalbard. Geol. Mag., 2016, 1–16.
    [Google Scholar]
  40. Martinsen, O.J. (1989) Styles of soft‐sediment deformation on a Namurian (Carboniferous) delta slope, Western Irish Namurian Basin, Ireland. Geol. Soc. London. Spec. Publ., 41, 167–177.
    [Google Scholar]
  41. Martinsen, O.J. & Bakken, B. (1990) Extensional and compressional zones in slumps and slides in the Namurian of County Clare, Ireland. J. Geol. Soc. London, 147, 153–164.
    [Google Scholar]
  42. Mauduit, T. & Brun, J.‐P. (1998) Growth fault/rollover systems’ Birth, growth, and decay. J. Geophys. Res., B8, 18119–18136.
    [Google Scholar]
  43. van der Merwe, W.C., Hodgson, D.M. & Flint, S.S. (2011) Origin and terminal architecture of a submarine slide: a case study from the Permian Vischkuil Formation, Karoo Basin, South Africa. Sedimentology, 58, 2012–2038.
    [Google Scholar]
  44. Morley, C.K., King, R., Hillis, R., Tingay, M. & Backe, G. (2011) Deepwater fold and thrust belts classification, tectonics, structure and hydrocarbon prospectivity: a review. Earth Sci. Rev., 104, 41–91.
    [Google Scholar]
  45. Mutti, E., Tinterri, R., Benevelli, G., di Biase, D. & Cavanna, G. (2003) Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Mar. Pet. Geol., 20, 733–755.
    [Google Scholar]
  46. Oliveira, C.M.M., Hodgson, D.M. & Flint, S.S. (2009) Aseismic controls on in situ soft‐sediment deformation processes and products in submarine slope deposits of the Karoo Basin, South Africa. Sedimentology, 56, 1201–1225.
    [Google Scholar]
  47. Osmundsen, P.T., Braathen, A., Rød, R.S. & Hynne, I. (2014) Styles of normal faulting and fault‐controlled deposition in the Triassic of Hopen and Edgeøya, Svalbard. Norw. Petrol. Direct. Bull., 11, 61–79.
    [Google Scholar]
  48. Peng, Y., Steel, R.J. & Olariu, C. (2017) Transition from storm wave‐dominated outer shelf to gullied upper slope: the mid‐Pliocene Orinoco shelf margin, South Trinidad. Sedimentology. https://doi.org/10.1111/sed.12362.
    [Google Scholar]
  49. Richardson, S.E.J., Davies, R.J., Allen, M.B. & Grant, S.F. (2011) Structure and evolution of mass transport deposits in the South Caspian Basin, Azerbaijan. Basin Res., 23, 702–719.
    [Google Scholar]
  50. Rider, M.H. (1978) Growth faults in Carboniferous of western Ireland. Am. Assoc. Petrol. Geol. Bull., 62, 2191–2213.
    [Google Scholar]
  51. Rotevatn, A., Torabi, A., Fossen, H. & Braathen, A. (2008) Slipped deformation bands – a new type of cataclastic deformation bands in Western Sinai, Suez Rift, Egypt. J. Struct. Geol., 30, 1317–1331.
    [Google Scholar]
  52. RoyseJr, F. (1993) An overview of the geological structure of the thrust belt in Wyoming, northern Utah and eastern Idaho. In: Geology of Wyoming (Ed. by SnokeA.W. , SteidtmannJ.R. & RobertsS.M. ) Geol. Surv. Wyo. Mem., 5, 272–311.
    [Google Scholar]
  53. Ryer, T.A. (1981) Deltaic Coals of Ferron Sandstone Member of Mancos Shale : predictive Model for Cretaceous Coal‐Bearing Strata of Western Interior. Am. Assoc. Pet. Geol. Bull., 65, 2323–2340.
    [Google Scholar]
  54. Ryer, T.A. (2004) Previous studies of the Ferron Sandstone. In: Analog for Fluvial‐Deltaic Reservoir Modeling: The Ferron Sandstone (Ed. by ChidseyT.C.J. , AdamsR.D. & MorrisT.H. ) Am. Assoc. Petrol. Geol. Stud. Geol., 50, 1–38.
    [Google Scholar]
  55. Ryer, T.A. & Anderson, P.B. (2004) Facies of the Ferron Sandstone, East‐Central Utah. In: Analog for Fluvial‐Deltaic Reservoir Modeling: The Ferron Sandstone (Ed. by ChidseyT.C.J. , AdamsR.D. & MorrisT.H. ) Am. Assoc. Petrol. Geol. Stud. Geol., 50, 59–78.
    [Google Scholar]
  56. Schultz, R.A. & Fossen, H. (2008) Terminology for structural discontinuities. Am. Assoc. Petrol. Geol. bull., 92, 853–867.
    [Google Scholar]
  57. Strachan, L.J. & Alsop, G.I. (2006) Slump folds as estimators of palaeoslope: a case study from the Fisherstreet Slump of County Clare, Ireland. Basin Res., 18, 451–470.
    [Google Scholar]
  58. Torabi, A., Fossen, H. & Braathen, A. (2013) Insight into petrophysical properties of deformed sandstone reservoirs. Am. Assoc. Petrole. Geol. Bull., 97, 619–637.
    [Google Scholar]
  59. Tueckmantel, C., Fisher, Q.J., Knipe, R.J., Lickorish, H. & Khalil, S.M. (2010) Fault seal prediction of seismic‐scale normal faults in porous sandstone: a case study from the eastern Gulf of Suez rift, Egypt. Mar. Pet. Geol., 27, 334–350.
    [Google Scholar]
  60. Van Wagoner, J.C. (1995) Overview of sequence stratigraphy of foreland basin deposits: terminology, summary of papers, and glossary of sequence stratigraphy. In Sequence Stratigraphy of Foreland Basin Deposits (Ed. by Van WagonerJ.C ., BertramG.T .), Am. Assoc. Petr. Geol. Mem., 64, ix–xxi, Tulsa, OK.
    [Google Scholar]
  61. Waltham, D.H., Hardy, S. & Abousetta, A. (1993) Sediment geometries and domino faulting. Geol. Soc. Lond. Spec. Publ., 71(1), 67–85.
    [Google Scholar]
  62. Wignall, P.B. & Best, J.L. (2004) Sedimentology and kinematics of a large, retrogressive growth‐fault system in Upper Carboniferous deltaic sediments, western Ireland. Sedimentology, 51, 1343–1358.
    [Google Scholar]
  63. Yonkee, W.A. & Weil, A.B. (2015) Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system. Earth Sci. Rev., 150, 531–593.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12271
Loading
/content/journals/10.1111/bre.12271
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error