1887
Volume 30, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The north–south trending, Late Cretaceous to modern Magallanes–Austral foreland basin of southernmost Patagonia lacks a unified, radiometric, age‐controlled stratigraphic framework. By simplifying the sedimentary fill of the basin to deep‐marine, shallow‐marine and terrestrial deposits, and combining 13 new U‐Pb detrital zircon maximum depositional ages (DZ MDAs) with published DZ MDAs and U‐Pb ash ages, we provide the first attempt at a unified, longitudinal stratigraphic framework constrained by radiometric age controls. We divide the foreland basin history into two phases, including (1) an initial Late Cretaceous shoaling upward phase and (2) a Cenozoic phase that overlies a Palaeogene unconformity. New DZ samples from the shallow‐marine La Anita Formation, the terrestrial Cerro Fortaleza Formation and several previously unrecognized Cenozoic units provide necessary radiometric age controls for the end of the Late Cretaceous foreland phase and the magnitude of the Palaeogene unconformity in the Austral sector of the basin. These samples show that the La Anita and Cerro Fortaleza Formations have Campanian DZ MDAs, and that overlying Cenozoic strata have Eocene to Miocene DZ MDAs. By filling this data gap, we are able to provide a first attempt at constructing a basinwide, age‐controlled stratigraphic framework for the Magallanes–Austral foreland basin. Results show southward progradation of shallow marine and terrestrial environments from the Santonian through the Maastrichtian, as well as a northward increase in the magnitude of the Palaeogene unconformity. Furthermore, our new age data significantly impact the chronology of fossil flora and dinosaur faunas in Patagonia.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12272
2018-01-29
2020-02-25
Loading full text...

Full text loading...

References

  1. Ali, R. & Fosdick, J.C. (2015) Thermal history of the Maastricthian‐Eocene Magallanes (Austral) foreland basin, Patagonia (50.5‐51.5°S): preliminary findings from vitrinite reflectance analysis and detrital zircon thermochronology. AAPG Eastern Section 44th Meeting, Indianapolis, 44, 27.
  2. Arbe, H.A. (2002) Anàlisis estratigràfico del Cretàcico de la Cuenca Austral. In: Geologià y Recursos Naturales de Santa Cruz (Ed. by HallerM.J. ) Relatorio del XV Congreso Geológico Argentino, El Calafate, 8, 103–128.
    [Google Scholar]
  3. Arbe, H.A. & Hechem, J.J. (1984) Estratigrafia y facies de depósitos continentals, litorales, y marinos del Cretàcico superior, lago Argentino, Actas 9 Congreso Geológico Argentino. 124‐158.
  4. Benson, R.B.J., Carrano, M.T. & Brussate, S.L. (2010) A new clade of archaic large‐bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic. Naturwissenschaften, 97, 71–78.
    [Google Scholar]
  5. Bernhardt, A., Jobe, Z.R., Grove, M. & Lowe, D.R. (2011) Paleogeography and diachronous infill of an ancient deep‐marine foreland basin, Upper Cretaceous Cerro Toro Formation, Magallanes Basin. Basin Res., 24, 269–294.
    [Google Scholar]
  6. Biddle, K.T., Uliana, M.A., Mitchum, R.M., Fitzgerald, M.G. & Wright, R.C. (1986) The stratigraphic and structural evolution of the central and eastern Magallanes Basin, southern South America. In: Foreland Basins (Ed. by AllenA. & HomewoodP. ) Int. Assoc. Sedimentol. Spec. Publ., 8, 41–61.
    [Google Scholar]
  7. Caldéron, M., Prades, C.F., Hervé, F., Avendaño, V., Fanning, C.M., Massonne, H.J., Theye, T. & Simonetti, A. (2013) Petrological vestiges of the Late Jurassic‐Early Cretaceous transition from rift to back‐arc basin in southernmost Chile: new age and geochemical data from the Capitán Aracena, Carlos III, and Tortuga ophiolitic complexes. Geochem. J., 47, 201–217.
    [Google Scholar]
  8. Cawood, A., Hawkesworth, C.J. & Dhuime, B. (2012) Detrital zircon record and tectonic setting. Geology, 40, 875–878.
    [Google Scholar]
  9. Dalziel, W.D. (1981) Back‐Arc extension in the southern Andes: A review and critical reappraisal. Philos. Trans. R. Soc. Lond., 300, 319–335.
    [Google Scholar]
  10. Daniels, B.G., Auchter, N.C., Hubbard, S.M., Romans, B.W., Matthews, W.A. & Stright, L. (2017) The timing of deep‐water slope evolutionary phases constrained by large‐n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, Chile. Geol. Soc. Am. Bull.https://doi.org/10.1130/b31757.1.
    [Google Scholar]
  11. Decelles, G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  12. Desegaulx, P., Roure, F. & Villein, A. (1990) Structural evolution of the Pyrenees: tectonic inheritance and flexural behavior in the continental crust. Tectonophysics, 182, 211–225.
    [Google Scholar]
  13. Dickinson, W.R. & Gehrels, G.E. (2009) Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata. A test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett., 288, 115–125.
    [Google Scholar]
  14. Egerton, M., Williams, C.J. & Lacovara, K.J. (2016) A new Late Cretaceous (late Campanian to early Maastrichtian) wood flora from southern Patagonia. Paleogeogr. Paleoclimatol. Paleoecol., 441, 305–316.
    [Google Scholar]
  15. Fildani, A., Cope, T.D., Graham, S.A. & Wooden, J.L. (2003) Initiation of the Magallanes foreland basin: timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis. Geology, 31, 1081–1084.
    [Google Scholar]
  16. Fosdick, J.C., Romans, B.W., Fildani, A., Bernhardt, A., Calderón, M. & Graham, S.A. (2011) Kinematic evolution of the Patagonian retroarc fold‐and‐thrust belt and Magallanes foreland basin, Chile and Argentina, 51°30′S. Geol. Soc. Am. Bull., 123, 1679–1698.
    [Google Scholar]
  17. Fosdick, J.C., Graham, S.A. & Hilley, G.E. (2014) Influence of attenuated lithosphere and sediment loading on flexure of the deep‐water Magallanes retroarc foreland basin, Southern Andes. Tectonics, 33, 2505–2525.
    [Google Scholar]
  18. Fosdick, J.C., Grove, M., Graham, S.A., Hourigan, J.K., Lovera, O. & Romans, B.W. (2015) Detrital thermochronologic record of burial heating and sediment recycling in the Magallanes foreland basin, Paragonia Andes. Basin Res.https://doi.org/10.1111/bre.12088.
    [Google Scholar]
  19. Gehrels, G.E. & Pecha, M. (2014) Detrital zircon U‐Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America. Geosphere, 10, 49–65.
    [Google Scholar]
  20. Gehrels, G.E., Valencia, A. & Ruiz, J. (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation‐multicollector‐inductively coupled plasma‐mass spectrometry. Geochem. Geophys. Geosyst., 9. https://doi.org/101.1029/2007gc001805.
    [Google Scholar]
  21. Ghiglione, M.C., Likerman, J., Barberón, V., Beatriz Giambiagi, L., Aguirre‐Urreta, B. & Suarez, F. (2014) Geodynamic context for the deposition of coarse‐grained deep‐water axial channel systems in the Patagonian Andes. Basin Res., 26, 726–745.
    [Google Scholar]
  22. Ghiglione, M.C., Naipauer, M., Sue, C., Barberón, V., Valencia, V., Aguirre‐Urreta, B. & Ramos, A. (2015) U‐Pb zircon ages from the northern Austral basin and their correlation with the Early Cretaceous exhumation and volcanism of Patagonia. Cretac. Res., 55, 116–128.
    [Google Scholar]
  23. Giacosa, R., Fracchia, D. & Heredia, N. (2012) Structure of the southern Patagonian Andes at 49°S, Argentina. Geol. Acta, 10, 265–282.
    [Google Scholar]
  24. Goin, F.J., Poiré, D.G., De La Fuente, M.S., Cione, A.L., Novas, F.E., Bellosi, E.S., Ambrosio, A., Ferrer, O., Canessa, N.D., Carloni, A., Ferigolo, J., Ribeiro, A.M., Sales Viana, M.S., Pascual, R., Reguero, M., Vucetich, M.G., Marenssi, S., De Lima Filho, M. & Agostinho, S. (2002) Paleontología y Geología de los sedimentos del Cretácico Superior aflorantes al sur del Río Shehuen (Mata Amarilla, Provincia de Santa Cruz, Argentina). In: Congreso Geológico Argentino, No. 15, Actas: 603‐608.
  25. Griffin, M. & Varela, A.N. (2012) Systematic palaeontology and taphonomic significance of the mollusk fauna from the Mata Amarilla Formation (lower Upper Cretaceous), southern Patagonia, Argentina. Cretac. Res., 37, 164–176.
    [Google Scholar]
  26. Gutiérrez, N.M., Le Roux, J.P., Vasquez, A., Carreño, C., Pedroza, V., Araos, J., Oyarzún, J.L., Pino, J.P., Rivera, H.A. & Hinojosa, L.F. (2017) Tectonic events reflected by palaeocurrents, zircon geochronology, and palaeobotany in the Sierra Baguales of Chilean Patagonia. Tectonophysics, 695, 76–99.
    [Google Scholar]
  27. Hervé, F., Pankhurst, R.J., Fanning, C.M., Calderón, M. & Yaxley, G.M. (2007) The south Patagonia batholith: 150 my of granite magmatism on a plate margin. Lithos, 97, 373–394.
    [Google Scholar]
  28. Katz, H.R. (1963) Revision of cretaceous stratigraphy in Patagonian Cordillera of Ultima Esperanza, Magallanes Province, Chile. Am. Asso. Petrol. Geol. Bull., 47, 506–524.
    [Google Scholar]
  29. Kraemer, E. & Riccardi, A.C. (1997) Estratigrafía de la región comprendida entre los lagos Argentino y Viedma (49° 40′ ‐ 50° 10′ lat. S), Provincia de Santa Cruz. Revista de la Asociación Geológica Argentina, 52, 333–360.
    [Google Scholar]
  30. Lacovara, K.J., Lamanna, M.C., Ibiricu, L.M., Poole, J.C., Schroeter, E.R., Ullmann, V., Voegele, K.K., Boles, Z.M., Carter, A.M., Fowler, E.K., Egerton, M., Moyer, A.E., Coughenour, C.L., Schein, J.P., Harris, J.D., Martínez, R.D. & Novas, F.E. (2014) A gigantic, exceptionally complete Titanosaur sauropod dinosaur from southern Patagonia, Argentina. Sci. Rep.https://doi.org/10.1038/srep06196.
    [Google Scholar]
  31. Macellari, C.E., Barrio, C.A. & Manassero, M.J. (1989) Upper Cretaceous to Paleocene depositional sequences and sandstone petrography of southwestern Patagonia (Argentina and Chile). J. S. Am. Earth Sci., 2, 223–239.
    [Google Scholar]
  32. Malkowski, M.A., Sharman, G.R., Graham, S.A. & Fildani, A. (2015a) Characterization and diachronous initiation of coarse clastic deposition in the Magallanes‐Austral foreland basin, Patagonian Andes. Basin Res.https://doi.org/10.1111/bre.12150.
    [Google Scholar]
  33. Malkowski, M.A., Grove, M. & Graham, S.A. (2015b) Unzipping the Patagonian Andes‐Long lived influence of rifting history on foreland basin evolution. Lithospherehttps://doi.org/10.1130/L489.1.
    [Google Scholar]
  34. Malkowski, M.A., Schwartz, T.M., Sharman, G.R., Sickmann, Z.T. & Graham, S.A. (2017) Stratigraphic and provenance variations in the early evolution of the Magallanes‐Austral foreland basin: implications for the role of longitudinal versus transverse sediment dispersal during arc‐continent collision. Geol. Soc. Am. Bull.https://doi.org/10.1130/b31549.1.
    [Google Scholar]
  35. Malumiàn, N., Panza, J.L., Parisi, C., Nanez, C., Carames, A. & Torre, A. (2000) Hoja Geologica 5172‐III, Yacimiento Rio Turbio (1:125,000). Serv. Geol. Minero Argentino, Boletin, 247, 180.
    [Google Scholar]
  36. Martínez, L.C.A., Iglesias, A., Artabe, A.E., Varela, A.N. & Apesteguía, S. (2017) A new Encephalarteae trunk (Cycadales) from the Cretaceous of Patagonia (Mata Amarilla Formation, Austral Basin), Argentina. Cretac. Res., 72, 81–94.
    [Google Scholar]
  37. Meilan, D. & Maza, A.E. (1994) Mapa Geologico de la Provincia de Santa Cruz Republica Argentina, escala 1:750000, Secretaria de Mineria Direccion Nacional del Servicio Geologico.
  38. Menegazzo, M.C., Catuneanu, O. & Chang, H.K. (2016) The South American retroarc foreland system: the development of the Bauru Basin in the back‐bulge province. Mar. Pet. Geol., 73, 131–156.
    [Google Scholar]
  39. Natland, M.L., Gonzales, E.P., Cañon, A. & Ernst, M. (1974) A system of stages for correlation of Magallanes Basin sediments. Geol. Soc. Am. Mem., 139, 1–73.
    [Google Scholar]
  40. Novas, F.E., Ezcurra, M.D. & Lecuona, A. (2008a) Orkoraptor burkei nov. gen. et sp., a large theropod from the Maastrichtian Pari Aike Formation, southern Patagonia, Argentina. Cretac. Res., 29, 468–480.
    [Google Scholar]
  41. Novas, F.E., Agnolín, F.L., Ezcurra, M.D., Porfiri, J. & Canale, J.I. (2013) Evolution of the carnivorous dinosaurs during the Cretaceous: the evidence from Patagonia. Cretac. Res., 45, 174–215.
    [Google Scholar]
  42. O'Gorman, J.P. & Varela, A.N. (2010) The oldest lower Upper Cretaceous plesiosaurs (Reptilia, Sauropterygia) from southern Patagonia, Argentina. Ameghiniana, 47, 447–459.
    [Google Scholar]
  43. Pankhurst, R.J., Riley, T.R., Fanning, C.M. & Kelley, S.P. (2000) Episodic silicic volcanism in Patagonia and the Antarctic peninsula: chronology of magmatism associated with the break‐up of Gondwana. J. Petrol., 41, 605–625.
    [Google Scholar]
  44. Ramos, A., Niemeyer, H., Skarmeta, J. & Muñoz, J. (1982) Magmatic evolution of the Austral Patagonian Andes. Earth Sci. Rev., 18, 411–443.
    [Google Scholar]
  45. Riccardi, A.C. & Aguirre‐Uretta, M.B. (1988) Bioestratigrafia del Cenomaniano‐Santoniano en la Patagonia Argentina. Quinto Congr. Geol. Chile. Actas, 2, 375–394.
    [Google Scholar]
  46. Riccardi, A.C. & Rolleri, E.O. (1980) Cordillera Patagónica Austral. In: Segundo Simposio de Geología Regional Argentina, Vo. 2 (Ed. by J.C.Turner ), pp. 1163–1306. Segundo Simposio de Geología Regional Argentina, Cordoba, Argentine.
    [Google Scholar]
  47. Romans, B.W., Fildani, A., Graham, S.A., Hubbard, S.M. & Covault, J.A. (2010) Importance of predecessor basin history on the sedimentary fill of a retroarc foreland basin: provenance analysis of the Cretaceous Magallanes basin, Chile (50‐52°S). Basin Res., 22, 640–658.
    [Google Scholar]
  48. Sachse, F., Strozyk, F., Anka, Z., Rodriguez, J.F. & Di Primio, R. (2015) The tectono‐stratigraphic evolution of the Austral Basin and adjacent areas against the background of Andean tectonics, southern Argentina, South America. Basin Res.https://doi.org/10.1111/bre.12118.
    [Google Scholar]
  49. Schroeter, E.R., Egerton, M., Ibiricu, L.M. & Lacovara, K.J. (2014) Lamniform shark teeth from the late Cretaceous of southernmost South America (Santa Cruz Province, Argentina). PLoS ONE, 9, 1–7.
    [Google Scholar]
  50. Schwartz, T.M. & Graham, S.A. (2015) Stratigraphic architecture of a tide‐influenced shelf‐edge delta. Upper Cretaceous Dorotea Formation, Magallanes‐Austral Basin, Patagonia. Sedimentology, 62, 1039–1077.
    [Google Scholar]
  51. Schwartz, T.M., Malkowski, M.A. & Graham, S.A. (2012) Evaluation of the close‐out of deep‐marine deposition in the Magallanes‐Austral basin, Patagonian Chile and Argentina. AAPG Search and Discovery Article #90142.
  52. Schwartz, T.M., Fosdick, J.C. & Graham, S.A. (2016) Using detrital zircon U‐Pb ages to calculate Late Cretaceous sedimentation rates in the Magallanes‐Austral basin, Patagonia. Basin Res., 29, 725–746.
    [Google Scholar]
  53. Sharman, G.R., Graham, S.A., Grove, M. & Hourigan, J.K. (2013) A reappraisal of the early slip history of the San Andreas fault, central California, USA. Geology, 41, 727–730.
    [Google Scholar]
  54. Stern, C.R. & De Wit, M.J. (2003) Rocas Verdes ophiolites, southernmost South America: remnants of progressive stages of development of oceanic‐type crust in a continental margin back‐arc basin. In: Ophiolites in Earth History (Ed. by DilekY. & RobinsonR.T. ) Geol. Soc. Lond. Spec. Publ., 218, 665–683.
    [Google Scholar]
  55. Varela, A.N. (2015) Tectonic control of accommodation space and sediment supply within the Mata Amarilla Formation (lower Upper Cretaceous) Patagonia, Argentina. Sedimentology, 62, 867–896.
    [Google Scholar]
  56. Varela, A.N., Poiré, D.G., Martin, T., Gerdes, A., Goin, F.J., Gelfo, J.N. & Hoffmann, S. (2012a) U‐Pb zircon constraints on the age of the Cretaceous Mata Amarilla Formation, southern Patagonia, Argentina: its relationship with the evolution of the Austral Basin. Andean Geol., 39, 359–379.
    [Google Scholar]
  57. Varela, A.N., Veiga, G.D. & Poiré, D.G. (2012b) Sequence stratigraphic analysis of Cenomanian greenhouse palaeosols: a case study from southern Patagonia, Argentina. Sed. Geol., 67, 271–272.
    [Google Scholar]
  58. Varela, A.N., Gómez‐Peral, L.E., Richiano, S. & Poiré, D.G. (2013) Distinguishing similar volcanic source areas from an integrated provenance analysis: implications for foreland Andean basins. J. Sediment. Res., 83, 258–276.
    [Google Scholar]
  59. Varela, A.N., Raigemborn, M.S., Richiano, S., White, T., Poiré, D.G. & Lizzoli, S. (2018) Late Cretaceous paleosols as paleoclimate proxies of high‐latitude Southern Hemisphere: Mata Amarilla Formation, Patagonia, Argentina. Sed. Geol., 363, 83–95.
    [Google Scholar]
  60. Waschbusch, P.J. & Royden, L.H. (1992) Spatial and temporal evolution of foredeep basins: lateral strength variations and inelastic yielding in continental lithosphere. Basin Res., 4, 179–196.
    [Google Scholar]
  61. Wilson, T.J. (1991) Transition from back‐arc to foreland basin development in the southernmost Andes: stratigraphic record from the Ultima Esperanza District, Chile. Geol. Soc. Am. Bull., 103, 98–111.
    [Google Scholar]
  62. de Wit, M.J. & Stern, C.R. (1981) Variations in the degree of crustal extension during the formation of a back‐arc basin. Tectonophysics, 72, 229–260.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12272
Loading
/content/journals/10.1111/bre.12272
Loading

Data & Media loading...

Supplements

Full map of the Magallanes‐Austral basin divided by lithostratigraphic units.

PDF

Full descriptions of lithologic units in the Magallanes–Austral basin.

PDF

Selected field relationships.

PDF

U‐Th‐Pb isotope composition of detrital zircons analysed at the Arizona Laserchron Center.

U‐Th‐Pb isotope composition of detrital zircons analysed at the University of California Santa Cruz.

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error